Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1984 Sep 1;4(9):2410–2417. doi: 10.1523/JNEUROSCI.04-09-02410.1984

Evidence implicating substantia nigra in regulation of kindled seizure threshold

JO McNamara, MT Galloway, LC Rigsbee, C Shin
PMCID: PMC6564806  PMID: 6481454

Abstract

We studied the effects of microinjected drugs and brainstem lesions on motor and limbic seizures in the kindling model of epilepsy. The duration of motor seizures was determined by timing the colonic and tonic movements of the extremities. The duration of limbic seizures was determined by measuring afterdischarge recorded on the electroencephalogram. Bilateral microinjection of a gamma-aminobutyric acid (GABA) agonist, muscimol, into the area of the substantia nigra (SN) markedly suppressed both motor and limbic seizures induced by stimulation of amygdala, olfactory structures, or lateral entorhinal cortex. Microinjection of saline did not suppress seizures. The suppressive effect of muscimol: (i) dissipated after several hours and was dependent on dose; (ii) was due to an elevation of the seizure threshold, since typical seizures could be elicited with electrical current far exceeding the threshold; and (iii) exhibited spatial specificity since muscimol injections 1 to 2 mm dorsal to the SN or into neocortex did not suppress the seizures. The actions of muscimol were probably mediated by its GABA agonist properties, since microinjection of an irreversible inhibitor of GABA transaminase (gamma- vinyl GABA) into the area of the SN also suppressed kindled seizures. Destruction of brainstem structures was produced by microinjection of the neurotoxin, N-methyl-D,L-aspartate. Seizures were markedly suppressed in animals with bilateral destruction of the SN but not in animals in which the SN was spared bilaterally. We interpret the data to indicate that the SN is the site at which the GABA agonists and lesions act to raise the threshold for kindled seizures. The suppression of limbic seizures indicates that this brainstem nucleus can regulate the intrinsic neuronal excitability of hemispheric sites.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES