Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1984 Mar 1;4(3):868–879. doi: 10.1523/JNEUROSCI.04-03-00868.1984

Olfactory marker protein: turnover and transport in normal and regenerating neurons

RM Kream, FL Margolis
PMCID: PMC6564834  PMID: 6707736

Abstract

A 19,000-dalton acidic protein designated olfactory marker protein (OMP) is a cell-specific marker of mature olfactory chemosensory neurons. Intranasal irrigation of mouse olfactory epithelium with [35S]methionine labeled OMP to high specific activity. Turnover and transport characteristics of 35S-labeled OMP were compared to those of 35S-labeled global cytosol protein in groups of young, adult, and Triton-treated adult mice. The latter contained primarily large numbers of regenerating olfactory neurons. In olfactory epithelium of young and Triton-treated mice, the specific activity of OMP was three times that of global cytosol protein, whereas in adults the two measures were equal. In all three groups, however, the rate of degradation of OMP was roughly equal to that of cytosol protein (T1/2 = 5 to 6 days). By contrast, differences in T1/2 for OMP decline in the bulb of adult, young, and Triton-treated adult mice were highly significant (T1/2′s of 9.3, 6.1, and 4 to 5 days, respectively; p = 0.001). The specific activity of [35S]methionine incorporated in OMP exceeded that of the free amino acid 5-fold, indicating minimal precursor reutilization during the course of our experiments. Turnover data indicate that increased isotope incorporation into OMP in the epithelium is matched by an accelerated rate of degradation in the bulb. This may be correlated with the physiological state or developmental age of the primary neurons since in young and Triton-treated adult mice, rapidly maturing “young” olfactory neurons represent a larger proportion of the total population than in adults. Thus, OMP behaves as a typical, relatively slowly transported soluble protein (v = 2 to 4 mm/day, slow component b).


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES