Abstract
The concentration-dependent actions of neostigmine, a carbamate anticholinesterase agent, were studied on the acetylcholine receptor channel complex in voltage-clamped twitch fibers of costocutaneous muscles of garter snakes. Low concentrations of neostigmine (10(-6) or 10(-5) M) increased miniature endplate current (MEPC) amplitude and the time constant of MEPC decay without changing the relationship between the MEPC decay time constant and membrane potential. Acetylcholine- or carbachol-induced endplate current fluctuation spectra were well fitted by a single Lorentzian curve with a characteristic frequency and single- channel conductance unaltered by low concentrations of neostigmine. Concentrations of neostigmine greater than 5 X 10(-5) M decreased MEPC amplitude and split the decay of MEPCs into two components, one faster and one slower than the control rate. These effects were both voltage and concentration dependent. Spectra of current fluctuations recorded in concentrations greater than or equal to 5 X 10(-5) M neostigmine required two time constants, one faster and one slower than the control. Two component spectra were also obtained with carbachol- induced current fluctuation spectra, indicating that these effects of neostigmine were direct and not a consequence of acetylcholinesterase inhibition. Similar results were also obtained in muscles pretreated with collagenase to remove junctional acetylcholinesterase. The fast and slow time constants obtained from current fluctuation spectra decreased and increased, respectively, with either increases in the concentration of neostigmine or membrane hyperpolarization when analyzed in the same fiber. The effects of neostigmine on channel lifetime were reversible with washing. These results indicate that the effects of neostigmine are concentration dependent. Concentrations greater than 2.5 X 10(-5) M exhibit direct effects on the endplate receptor channel complex which are unrelated to acetylcholinesterase inhibition. These actions include: a prolongation of the gating kinetics of the endplate receptor channel complex, the production of an altered state of the receptor channel complex evidenced by a high frequency component to current fluctuation spectra, and a direct action to block the acetylcholine receptor.