Abstract
Unrestrained human arm trajectories between point targets have been investigated using a three-dimensional tracking apparatus, the Selspot system. Movements were executed between different points in a vertical plane under varying conditions of speed and hand-held load. In contrast to past results which emphasized the straightness of hand paths, movement regions were discovered in which the hand paths were curved. All movements, whether curved or straight, showed an invariant tangential velocity profile when normalized for speed and distance. The velocity profile invariance with speed and load is interpreted in terms of simplification of the underlying arm dynamics, extending the results of Hollerbach and Flash (Hollerbach, J. M., and T. Flash (1982) Biol. Cybern. 44: 67–77).