Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1986 Mar 1;6(3):681–690. doi: 10.1523/JNEUROSCI.06-03-00681.1986

Excitatory action of ATP on embryonic chick muscle

RI Hume, MG Honig
PMCID: PMC6568459  PMID: 3007690

Abstract

It has been suggested that ATP might play a role in synaptic transmission at developing vertebrate neuromuscular junctions. To increase our understanding of the events underlying synapse formation, we have used intracellular recording and patch clamp recording to examine the response of chick myoblasts and myotubes to to ATP and other nucleotides, ATP, applied at micromolar concentrations, has a potent depolarizing action on chick myoblasts and myotubes. The ATP depolarization declines during prolonged application of ATP and shows no recovery for at least 20 min after the removal of ATP. The physiological event that underlies the ATP response has a reversal potential near O mV and is due to a conductance increase. However, contrary to our expectation, in a series of nearly 200 cell-attached and outside-out patch recordings, we did not detect single-channel currents that were related to ATP. The myotube ATP receptor is pharmacologically distinct from putative ATP receptors in other systems. It is not activated by ADP, AMP, or adenosine. Furthermore, the nonhydrolyzable ATP analogs, AMP-PNP, alpha,beta-meATP, and beta,gamma-meATP (respectively, 5-adenylylimido diphosphate; alpha,beta- methylene adenosine 5′-triphosphate; and beta,gamma-methylene adenosine 5′-triphosphate), which are potent ATP agonists in other systems, have no depolarizing action on myotubes. The ATP receptor is also distinct from the nicotinic ACh receptor since responses to ATP are unaffected by the nicotinic antagonists d-tubocurarine and alpha-bungarotoxin. We therefore applied alpha-bungarotoxin to nerve-muscle co-cultures in the hope of uncovering an additional component of the postsynaptic potential, which might represent a synaptic action of ATP. Under these experimental conditions no evidence indicative of a postsynaptic action of ATP released from nerve terminals was observed.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES