Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1986 Mar 1;6(3):764–773. doi: 10.1523/JNEUROSCI.06-03-00764.1986

Reinnervation of the extraocular muscles in goldfish is nonselective

SS Scherer
PMCID: PMC6568478  PMID: 3958794

Abstract

The selectivity of axonal regeneration to the extraocular muscles in teleosts has been reinvestigated by mapping, with retrogradely transported HRP, the motor pools of the muscles innervated by the oculomotor nerve. In normal goldfish, the motoneurons of the superior rectus, inferior rectus, and inferior oblique muscles formed discrete, nonoverlapping motor pools; the motor pool of the medial rectus muscle overlapped with those of the inferior oblique and inferior rectus muscles. In fish whose oculomotor nerve had regenerated (after intracranial transection), in contrast, many motoneurons in other, inappropriate motor pools reinnervated the superior rectus and inferior oblique muscles (the only muscles examined in lesioned animals). Furthermore, these inappropriate motoneurons continued to project to these muscles for at least 1 year. The oculomotor nerve and its molecular branches were examined by light and electron microscopy to determine the pathway by which axons regenerated to their muscles. Axons regenerated within the basal laminae of Schwann cells, which persisted in the distal nerve-stump after a lesion. After labeling the inferior oblique nerve with HRP in regenerated nerves, there were labeled axons in all of the muscular branches; this indicates that regenerating axons branched, which was confirmed by finding an increased number of myelinated axons in other, regenerated inferior oblique nerves. Thus, different branches of the same axons sometimes reinnervated different muscles. These results demonstrate that regenerating axons in the oculomotor nerve are misdirected to inappropriate muscles, and do not selectively reinnervate individual muscles, as had been previously suggested (Sperry and Arora, 1965).


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES