Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1987 Feb 1;7(2):311–318. doi: 10.1523/JNEUROSCI.07-02-00311.1987

Stimulation of adenylate cyclase in relation to dopamine-induced long- term enhancement (LTE) of muscarinic depolarization in the rabbit superior cervical ganglion

S Mochida, H Kobayashi, B Libet
PMCID: PMC6568905  PMID: 2880935

Abstract

Dopamine (DA) induction of the long-term enhancement (LTE) of the slow muscarinic depolarizing response to methacholine (MCh), equivalent to the slow EPSP (S-EPSP), was previously found to be mimicked by exogenous cyclic AMP (cAMP) in the rabbit superior cervical ganglion (SCG). DA-induced LTE of the S-EPSP was shown to be depressed by some DA antagonists. We now show that DA (15 microM), its analog, 2-amino- 6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (ADTN), and a D2 receptor antagonist, metoclopramide, each can induce both LTE of MCh depolarization and an increase in ganglionic cAMP. Conversely, antagonists of DA-induced LTE also depress DA-induced rises in cAMP; these antagonists include haloperidol (1 microM), both (+) and (-) enantiomers of butaclamol (0.7–7 microM), flupenthixol (1 microM), and (+)-R-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- o l (SCH-23390) (7 microM). The selective D2 antagonists sulpiride (10 microM) and domperidone (10 microM) affect neither DA action. Alpha-2 adrenergic agonists (alpha-methyl-norepinephrine and clonidine) produce no LTE; alpha-antagonist dihydroergotamine (35 microM) does not affect either DA action, although it can completely block the hyperpolarizing response to DA or other catecholamines. Beta-antagonist propranolol (5 microM) partially depresses DA-induced rises in cAMP but has no effect on the DA-induced LTE. (Butaclamol and propranolol in combination can completely block the cAMP rise induced by DA.) Beta-agonist isoproterenol can induce appreciable LTE of MCh depolarization, but this LTE is not depressed by propranolol (10 microM). Isoproterenol can elicit a substantial rise in cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES