Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1988 Jul 1;8(7):2606–2617. doi: 10.1523/JNEUROSCI.08-07-02606.1988

Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C

HP Rang 1, JM Ritchie 1
PMCID: PMC6569523  PMID: 3249246

Abstract

The effect of activation of protein kinase C by phorbol esters has been studied on the nonmyelinated (C) fibers of the rat vagus nerve. Grease- gap recording at room temperature was used to monitor changes in the resting and action potentials. Effects of phorbol esters on the rate of efflux of 86Rb and 14C-guanidinium were also measured. The active isomer beta-phorbol 12,13-dibutyrate (PDBu), applied for 10 min at concentrations of 10 nM to 3 microM, caused a slowly developing depolarization, which persisted after the drug was washed out. The action potential was concomitantly reduced. These effects did not occur with the inactive isomer alpha-phorbol 12,13-didecanoate. The PDBu- induced depolarization was reduced by about 75% if Na+ was replaced by the impermeant cation N-methyl-(+)-glucamine (NMG); the residual effect was almost abolished if the nerves were presoaked in a solution containing gluconate in place of Cl-. It was concluded that increases in conductance mainly to Na+ and Cl- were responsible for the depolarization. The response was unaffected by tetrodotoxin or calcium- channel blockers. Omission of Ca2+, surprisingly, enhanced the PDBu- induced depolarization 3–5-fold; furthermore, addition of 2 mM Ca2+ following a PDBu-induced depolarization recorded in Ca2+-free solution caused a pronounced repolarization. This effect of Ca2+ occurred also with Sr2+ and Ba2+, but not with other divalent cations or with La3+. Divalent cations known to block Ca channels inhibited the repolarizing action of Ca2+. These results suggested that Ca2+ acts intracellularly, either to block Na channels opened by PDBu or to activate protein phosphatases. The PDBu-induced response in Ca2+-free solution was increased 2-fold by a reduction in pH from 7.4 to 6.5. Under normal conditions the nerve was reversibly depolarized by this pH change; after PDBu this pH sensitivity was enhanced, and depolarization occurred at a less acidic pH. PDBu caused a 3–4-fold increase in the rate of efflux of 86Rb (a marker for K+ ions) and of 14C-guanidinium (a marker for Na+ ions) from preloaded nerves. These effects, in contrast to the depolarization, were transient.(ABSTRACT TRUNCATED AT 400 WORDS)


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES