Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1988 Dec 1;8(12):4685–4692. doi: 10.1523/JNEUROSCI.08-12-04685.1988

Inhibition of voltage-gated K channels in synaptosomes by sn-1,2- dioctanoylglycerol, an activator of protein kinase C

KA Colby 1, MP Blaustein 1
PMCID: PMC6569572  PMID: 3199201

Abstract

Tracer efflux studies were used to determine the effect of activation of protein kinase C on K channel function in rat brain synaptosomes. Hippocampal synaptosomes were treated with sn-1,2-dioctanoylglycerol (diC8), a synthetic diacylglycerol (DG) analog that activates protein kinase C. DiC8 inhibited depolarization-induced 86Rb efflux through voltage-gated K channels but did not affect the component of efflux corresponding to Ca-activated K channels. In time-course experiments, diC8 inhibited two components of 86Rb efflux: efflux through a rapidly inactivating, voltage-gated K channel (responsible for the “A” current) and that through a slowly inactivating, voltage-gated K channel (believed to be the “delayed rectifier”). Experiments with specific blockers of these voltage-gated K channels supported this observation. Inhibition of K-stimulated 86Rb efflux by diC8 was time dependent: at least 15 sec of preincubation was required before the effect could be observed. The effect of diC8 was concentration dependent: 50 microM diC8 produced a half-maximal inhibition of K-stimulated 86Rb efflux. The idea that the inhibition of synaptosome K channels by diC8 resulted from activation of C kinase was supported by pharmacological evidence. The action of diC8 was mimicked by 1-oleoyl-2-acetylglycerol, another DG analog that activates protein kinase C, but not by deoxy-diC8, a DG analog that does not activate C kinase. Inhibition of C kinase by sphingosine or H-7 prevented the diC8 effect. These studies demonstrate that synaptosomes are a good model in which to study modulation of mammalian CNS K channels.(ABSTRACT TRUNCATED AT 250 WORDS)


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES