Abstract
The nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections were studied in 11 Japanese monkeys (Macaca fuscata) using HRP and fluorescent dyes (DAPI and RITC) as retrograde tracers and by physiological recordings of antidromic field potentials. A strip of nasotemporal overlap ran orthogonal to the horizontal meridian in all the whole-mount retinas studied. In HRP-labeled retinas of 6 monkeys, the width of the overlap gradually increased from 0.6 degrees in the central retina up to 5 degrees at eccentricity of 5 mm, and to 15 degrees at the extreme periphery. We also noted a clear asymmetric distribution of crossed and uncrossed retinal ganglion cell projections particularly in the perifoveal region; ipsilaterally projecting cells encircled the nasal edge of the fovea, whereas few contralaterally projecting cells were observed in the temporal edge. Soma-size analysis revealed that crossed projections in the temporal portion of the overlap arose mainly from large and small cells (presumably P alpha and P gamma cells, respectively); uncrossed projections in its nasal portion arose from medium-sized cells (presumably P beta cell). Direct evidence of the overlap as well as of the asymmetry was obtained in subsequent fluorescent dye experiments in 3 monkeys. Physiological studies on 2 additional monkeys confirmed the widening of the nasotemporal overlap towards the upper and lower parts of the retina. Moreover, in the nasal portion of the overlap, only slow potentials, which presumably reflect activities of P beta cells, were recorded after stimulation of the ipsilateral LGN as expected from the morphological study. The findings are discussed in relation to clinical observations of macular sparing and splitting, and with regard to the functional differences between P alpha and P beta cell systems on which binocular stereoscopic vision along the midsagittal plane may be based.