Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1989 Nov 1;9(11):3899–3907. doi: 10.1523/JNEUROSCI.09-11-03899.1989

Differential effects of nerve transection on the ACh and GABA receptors of chick ciliary ganglion neurons

AE McEachern 1, MH Jacob 1, DK Berg 1
PMCID: PMC6569917  PMID: 2555459

Abstract

Chick ciliary ganglion neurons have nicotinic acetylcholine receptors (AChRs) that mediate chemical transmission through the ganglion, and GABAA receptors of unknown significance. Previous experiments examining the role of cell-cell interactions in regulating neuronal AChRs have shown that postganglionic axotomy of ciliary ganglia in newly hatched chicks causes a 10-fold decline in total AChRs within 5 d compared with unoperated contralateral ganglia and that preganglionic denervation causes a 3-fold decline within 10 d. Many of the AChRs are known to be intracellular; of those present on the cell surface, only a small fraction appears to be functionally available normally. In the present experiments, the effects of the operations on functional AChRs and GABAA receptors in the plasma membrane of the neurons were examined by removing the ganglia 5 d after axotomy or 10 d after denervation, dissociating them into single cells, and immediately measuring their ACh and GABA sensitivities with intracellular recording techniques. The ACh sensitivity of axotomized ciliary ganglion neurons was reduced 10- fold compared with neurons from unoperated contralateral ganglia of the same chicks. The reduction could be largely accounted for by a decrease in the maximum response and did not arise from a change either in the dose-response curve or the acetylcholinesterase activity of the neurons. Autoradiographic studies using a radiolabeled anti-AChR monoclonal antibody also demonstrated a substantial decrease in the total number of surface AChRs associated with axotomized neurons. In contrast, axotomy had no unilateral effect on the GABA response.(ABSTRACT TRUNCATED AT 250 WORDS)


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES