Abstract
In the laboratory rat and guinea pig, glucocorticoids (GCs), the adrenal steroids that are secreted during stress, can damage the hippocampus and exacerbate the hippocampal damage induced by various neurological insults. An open question is whether GCs have similar deleterious effects in the primate hippocampus. In fact, we showed that sustained and fatal stress was associated with preferential hippocampal damage in the vervet monkey; however, it was not possible to determine whether the excessive GC secretion that accompanied such stress was the damaging agent. The present study examines this possibility. Pellets of cortisol (the principal GC of primates) were stereotaxically implanted into hippocampi of 4 vervet monkeys; contralateral hippocampi were implanted with cholesterol pellets as a control. One year later at postmortem, preferential damage occurred in the cortisol-implanted side. In the cholesterol side, mild cell layer irregularity was noted in 2 of 4 cases. By contrast in the cortisol-exposed hippocampi, all cases had at least 2 of the following neuropathologic markers: cell layer irregularity, dendritic atrophy, soma shrinkage and condensation, or nuclear pyknosis. Damage was severe in some cases, and was restricted to the CA3/CA2 cellfield. This anatomical distribution of damage, and the cellular features of the damage agree with that observed in instances of GC-induced toxicity in the rodent hippocampus, and of stress-induced toxicity in the primate hippocampus. These observations suggest that sustained GC exposure (whether due to stress, Cushings syndrome or exogenous administration) might damage the human hippocampus.