Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1993 Aug 1;13(8):3448–3455. doi: 10.1523/JNEUROSCI.13-08-03448.1993

Estradiol attenuates alpha 2-adrenoceptor-mediated inhibition of hypothalamic norepinephrine release

GB Karkanias 1, AM Etgen 1
PMCID: PMC6576516  PMID: 8101869

Abstract

These studies tested the hypothesis that estradiol facilitates norepinephrine (NE) neurotransmission by modulating alpha 2- adrenoceptor-mediated inhibition of NE release. KCl-induced overflow of 3H from superfused slices preloaded with 3H-NE was Ca2+ dependent. Hypothalamic slices from estradiol-treated rats exposed to a single KCl pulse (S1) had modestly (20%) but significantly elevated NE release when compared to slices from ovariectomized (OVX) rats. Blockade of alpha 2-adrenoceptors by pretreatment with the imidazoline antagonists idazoxan (IDA) and RX821002 (RX) markedly facilitated NE release during S1 in hypothalamic slices from OVX rats; this facilitation was attenuated or absent in slices from estradiol-treated rats. In additional studies slices were stimulated twice, 24 min apart (S1 and S2), for 3 min with 20 mM KCl. In the absence of drug, the amount of 3H- NE released during S2 was always less than the amount released during S1 (i.e., S2:S1 approximately 0.6), regardless of whether slices were from OVX or estradiol-treated females. When 10 microM IDA was applied after S1 and 15 min prior to S2, the S2: S1 ratio increased to 1.8 +/- 0.1 in hypothalamic slices from OVX animals. In contrast, the S2:S1 ratio rose only to 1.1 +/- 0.2 in slices from estradiol-treated animals. RX applied before S2 markedly increased the S2:S1 ratio in both hypothalamic and preoptic area slices from OVX rats but failed to increase the S2:S1 ratio in slices from estradiol-treated rats. Interestingly, the modest effects of alkaloid alpha 2-antagonists such as yohimbine and rauwolscine on NE release in hypothalamic and preoptic area slices were not modified by estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES