Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1993 Feb 1;13(2):442–454. doi: 10.1523/JNEUROSCI.13-02-00442.1993

Three subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina

KT Keyser 1, LR Britto 1, R Schoepfer 1, P Whiting 1, J Cooper 1, W Conroy 1, A Brozozowska- Prechtl 1, HJ Karten 1, J Lindstrom 1
PMCID: PMC6576634  PMID: 8426223

Abstract

A recent report described the isolation of cDNA clones encoding alpha 7 and alpha 8 subunits of alpha-bungarotoxin-sensitive nicotinic ACh receptors (alpha BgtAChRs) from chick brain and demonstrated that they were related to, but distinct from, the alpha subunits of nicotinic ACh receptors (nAChRs) from muscles and neurons. Monoclonal antibodies against the two alpha BgtAChR subunits were used to demonstrate that at least two subtypes are present in embryonic day 18 chicken brain. The predominant brain subtype contains alpha 7 subunits, while a minor subtype contains both alpha 7 and alpha 8 subunits. Both subtypes may also contain other subunits. Here we report the results of immune precipitation studies and immunohistochemical studies of alpha BgtAChRs in the chick retina. In addition to the two subtypes found in brain, a new alpha BgtAChR subtype that contains alpha 8 subunits, but not alpha 7 subunits, was identified and was found to be the major subtype in chick retina. This subtype has a lower affinity for alpha-bungarotoxin (alpha Bgt) than does the subtype containing only alpha 7 subunits. Small amounts of this alpha 8 subtype were also detected in brain by labeling with higher concentrations of 125I-alpha Bgt than had been used previously. The subtype containing only alpha 7 subunits comprised 14% of the alpha BgtAChRs in hatchling chick retina. The subtype containing alpha 8 subunits (but no alpha 7 subunits) accounted for 69%, and the alpha 7 alpha 8 subtype accounted for 17%. Amacrine, bipolar, and ganglion cells displayed alpha 8 subunit immunoreactivity, and a complex pattern of labeling was evident in both the inner and outer plexiform layers. In contrast, only amacrine and ganglion cells exhibited alpha 7 subunit immunoreactivity, and the pattern of alpha 7 subunit labeling in the inner plexiform layer differed from that of alpha 8 subunit labeling. These disparities suggest that the alpha BgtAChR subunits are differentially expressed by different populations of retinal neurons. In addition, the distribution of alpha BgtAChR subunit immunoreactivity was found to differ from that of alpha-Bgt- insensitive nAChR subunits.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES