Abstract
This study describes a Ca2+ store in fura-2-loaded bullfrog sympathetic neurons that modulates [Ca2+]i responses elicited by either depolarization or Ca2+ release from a caffeine- and ryanodine-sensitive store. This store is insensitive to caffeine and ryanodine, but is sensitive to the protonophore carbonyl cyanide p- trifluoromethoxyphenylhydrazone (FCCP). The FCCP-sensitive store slows both the rise in [Ca2+]i during stimulation (apparently by accumulating Ca2+ from the cytosol) and the recovery following stimulation (by releasing the accumulated Ca2+ into the cytosol). For a fixed level of depolarization, recovery is slowed to an extent that depends on stimulus duration. [Ca2+]i imaging shows that these effects are prominent in the soma but not in growth cones. Ca2+ uptake by the FCCP- sensitive store appears to be strongly [Ca2+]i dependent, since it becomes influential only when [Ca2+]i approaches approximately 500 nM. Therefore, this store may specifically influence [Ca2+]i during moderate and strong stimulation. The effect of the store on responses to depolarization can be accounted for by a simple three-compartment scheme consisting of the extracellular medium, the cytosol, and a single internal store with a [Ca2+]i-dependent uptake mechanism resembling the mitochondrial Ca2+ uniporter. The store's effect on responses to caffeine-induced Ca2+ release can be accounted for by including a second internal compartment to represent the caffeine- sensitive store. While the identity of the FCCP-sensitive store is unknown, its sensitivity to FCCP is consistent with a mitochondrial pool. It is suggested that by modulating the temporal properties of [Ca2+]i following stimulation, the FCCP-sensitive store may influence the degree of activation of intracellular [Ca2+]i-dependent processes.