Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1994 Sep 1;14(9):5514–5524. doi: 10.1523/JNEUROSCI.14-09-05514.1994

Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors

S Vernino 1, M Rogers 1, KA Radcliffe 1, JA Dani 1
PMCID: PMC6577067  PMID: 8083751

Abstract

A new approach was developed to determine quantitatively the fraction of current carried by Ca2+ through an ion channel under physiological conditions. This approach entails the simultaneous measurement of membrane current and intracellular Ca2+ for single cells. Whole-cell patch-clamp techniques were used to measure current, and intracellular Ca2+ was monitored with the fluorescent indicator fura-2. To obtain a quantitative measure of the fraction of current carried by Ca2+, a cell- by-cell calibration method was devised to account for differences among cells in such factors as cellular volume and Ca2+ buffering. The method was used to evaluate the Ca2+ flux through muscle and neuronal nicotinic ACh receptors (nAChRs). In a solution containing 2.5 mM Ca2+ at a holding potential of -50 mV, Ca2+ carries 2.0% of the inward current through muscle nAChRs from BC3H1 cells and 4.1% of the inward current through neuronal nAChRs from adrenal chromaffin cells. The Ca2+ flux through neuronal nAChRs of adrenal chromaffin cells is insensitive to alpha-bungarotoxin. The influx of Ca2+ is voltage dependent, and because of the Ca2+ concentration difference across the cellular membrane, there is Ca2+ influx into the cell even when there is a large net outward current. At both muscle and neuronal cholinergic synapses, activity-dependent Ca2+ influx through nicotinic receptors produces intracellular signals that may have important roles in synaptic development, maintenance, and plasticity.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES