Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1994 Apr 1;14(4):2435–2443. doi: 10.1523/JNEUROSCI.14-04-02435.1994

Role of dynorphin and GABA in the inhibitory regulation of NMDA-induced dopamine release in striosome- and matrix-enriched areas of the rat striatum

MO Krebs 1, C Gauchy 1, M Desban 1, J Glowinski 1, ML Kemel 1
PMCID: PMC6577130  PMID: 7908960

Abstract

Using a new superfusion procedure in vitro, we have previously reported that the NMDA-evoked release of newly synthesized 3H-dopamine (DA) was higher in matrix- than in striosome-enriched areas of the rat striatum. In addition, GABAergic medium-sized spiny neurons were shown to be indirectly involved in this regulation. Since dynorphin and GABA are colocalized in a population of medium-sized spiny neurons, the role of dynorphin-containing neurons in the NMDA-evoked release of 3H-DA has been investigated using the same superfusion procedure on rat striatal slices. (1) The NMDA (50 microM, 25 min application)-evoked release of 3H-DA was increased in the presence of naloxone (1 microM, continuously delivered) in both striatal compartments, the overall response being more elevated in the striosome-enriched area. (2) The TTX (1 microM, continuously delivered)-resistant NMDA-evoked responses were also enhanced in the presence of naloxone, but in this case, the disinhibitory effects of naloxone were similar in striosome- and matrix- enriched areas. (3) The selective kappa-agonist U-50488 (1 microM) totally reversed the naloxone-disinhibitory effect on the NMDA-evoked response in the matrix-enriched area, but only partially in the striosome-enriched area. It also completely prevented the disinhibitory effect of naloxone on the TTX-resistant NMDA-evoked release of 3H-DA in both compartments. (4) The bicuculline (5 microM)- and naloxone (1 microM)-disinhibitory effects on the NMDA-evoked release of 3H-DA were additive in the matrix- but not in the striosome-enriched areas.(ABSTRACT TRUNCATED AT 250 WORDS)


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES