Abstract
A recent study (Roberts, 1993) of saccular hair cells from grass frogs (Rana pipiens) has suggested a mechanism by which the unusually high concentrations of calcium-binding proteins found in certain sensory receptors and neurons, particularly in the auditory system, can influence short-range intracellular calcium signaling. In frog saccular hair cells, the mechanism operates within arrays of calcium channels and calcium-activated potassium channels that are involved in the cells' electrical resonance and synaptic transmission. The present study tests the hypothesis that calbindin-D28k, one of the most abundant proteins in these cells, can serve as a mobile calcium buffer that reduces and localizes changes in the intracellular free-calcium concentration ([Ca2+]i) by shuttling calcium away from the channel arrays. Based upon theoretical analysis and computer modeling, it is shown that [Ca2+]i near one or more open channels quickly reaches a steady-state level determined primarily by two properties of the buffer, the mean time (tau c) before it captures a free-calcium ion and a replenishment factor (R), which are related to the buffer's diffusional mobility (DBu), association rate constant (kon), and concentration (Bo) by tau c = (konB0)-1 and R = B0DBu. Simulation of calcium entry through a channel array showed that approximately 1.5 mM of a molecule with the diffusional and binding properties expected for calbindin-D28k (Bo approximately 8 mM calcium-binding sites) is needed to reproduce the previous experimental results. A lower concentration (B0 = 2 mM) was almost completely depleted within the channel array by a modest calcium current (8 pA = 12% of calcium channels open), but still had two important effects: it caused [Ca2+]i to fall steeply with distance outside the array (space constant < 50 nm), and returned [Ca2+]i quickly to the resting level after the channels closed. A high concentration of calbindin-D28k can thus influence the cell's electrical resonance and synaptic transmission. Its most important functions may be to localize regions of high [Ca2+]i and speed the return of [Ca2+]i toward the resting level.