Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1995 Jan 1;15(1):689–698. doi: 10.1523/JNEUROSCI.15-01-00689.1995

Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat

Y Zhou 1, AG Leventhal 1, KG Thompson 1
PMCID: PMC6578270  PMID: 7823172

Abstract

Visual deprivation in early life profoundly affects the characteristic sensitivity of visual cortical cells to stimulus orientation and direction. Recently, relay cells in the lateral geniculate nucleus (LGNd) have been shown to exhibit significant degrees of orientation and direction sensitivity. The effects of visual deprivation upon these properties of subcortical cells are unknown. In this study cats were reared from birth to 6–12 months of age in total darkness; the orientation and direction sensitivities of area 17 (striate cortex) and LGNd cells were compared. All cells were studied using identical quantitative techniques and statistical tests designed to analyze distributions of angles. The results confirm previous work and indicate that the orientation and direction sensitivities of cells in area 17 are profoundly reduced by dark rearing. In marked contrast, these properties of LGNd relay cells are unaffected. The result is that, unlike in the normal cat, in dark-reared cats the orientation and direction sensitivities of cells in the LGNd and visual cortex do not differ. It is concluded that (1) the orientation and direction sensitivities of cortical cells contribute little, if at all, to the sensitivities of LGNd cells since LGNd cells exhibit normal sensitivities even though the cortical cells projecting to them exhibit greatly reduced sensitivities and (2) during normal development intracortical mechanisms appear to expand upon and/or modify the weak orientation and direction sensitivities of their inputs. These intracortical mechanisms depend upon normal visual experience since in dark-reared cats, but not normal ones, the orientation and direction sensitivities of cells in the LGNd and visual cortex do not differ quantitatively or qualitatively.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES