Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2018 Nov 29;49(5):604–622. doi: 10.1111/ejn.13949

Cholinergic modulation of striatal microcircuits

Nilupaer Abudukeyoumu 1,, Teresa Hernandez‐Flores 1,, Marianela Garcia‐Munoz 1, Gordon W Arbuthnott 1,
PMCID: PMC6587740  PMID: 29797362

Abstract

The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.

Keywords: acetylcholine, cholinergic interneurons, neuromodulation, striatum

Introduction

Cholinergic interneurons (ChIs) contribute to give striatum its place among structures with the highest levels of acetylcholine (ACh) in the brain (Zhou et al., 2002). Without a doubt, these interneurons exert a strong and complex modulation of striatal microcircuits. These large interneurons form synapses with medium size spiny neurons (MSNs) and other numerous smaller GABAergic interneurons of which there are 10 subtypes and counting (Tepper & Koos et al., 2017). ChIs can be identified by their electrophysiological characteristics (Goldberg & Wilson et al., 2017) and by immunoreactivity of their enzymatic profile (Mesulam et al., 1984). The morphology of ChIs, the richness of their synaptic contacts as well as the expression of a variety of receptors has attracted the attention of neuroscientists. More than 1000 research articles on ChIs, published during the last two decades, have enriched the understanding of their function.

Striatal acetylcholine receptors

An early study indicated that destroying possible afferent pathways to striatum ‘cortex, thalamus, globus pallidus or ventrotegmental area’ did not affect the activity of choline acetylase nor acetylcholinesterase (AChE) or the histochemical staining within the nucleus (McGeer et al., 1971; Lynch et al., 1972). This led to the proposal that interneurons were the main intrinsic source of striatal ACh. We now know of external sources of ACh that arrives from the pedunculopontine and laterodorsal tegmental nuclei (Dautan et al., 2014), but the main source of striatal ACh still is the spontaneously active ChIs (Kitai & Surmeier, 1993; Pisani et al., 2007; English et al., 2012; Goldberg et al., 2012). At the cellular level, ACh exerts its actions through the activation of two families of receptors, muscarinic (mAChR) and nicotinic (nAChR). The mAChRs belong to the G‐protein‐coupled receptor (GPCR) family (Caulfield, 1993). These receptors are divided into group I (M1, M3, and M5) and group II (M2 and M4). Group I receptors are coupled to Gq/11 proteins via α subunits that activate protein kinase C (PKC) and phospholipase C (PLC) leading to the production of inositol triphosphate and diacylglycerol that results in an increase in intracellular calcium. Group I receptors are found in striatal MSNs of both the direct (dMSN) and indirect (iMSN) pathways. In MSNs, these receptors are postsynaptically in dendritic spine necks and extrasynaptically locations (Hersch & Levey, 1995; Yan et al., 2001). Group II receptors are coupled to Gi/o proteins, inhibit adenyl cyclase (AC) activity and close voltage‐activated calcium (Cav) CaV2 channels while opening inwardly rectifying potassium channels (Kir3) following GPCR activation (Caulfield, 1993; Nathanson, 2000; Eglen, 2006; Haga, 2013). Muscarinic M2 receptors act as autoreceptors on ChIs and are located mostly extrasynaptically suggesting a role in volume neurotransmission (Bernard et al., 1998). M2 receptors act as inhibitory heteroreceptors on striatal neuropeptide Y‐somatostatin expressing (NPY‐SOM) GABAergic interneurons and on corticostriatal glutamatergic terminals (Hersch et al., 1994; Bernard et al., 1998).

The high degree of similarity of the orthosteric ligand‐binding site in all five types of muscarinic receptors is the main reason it has been difficult to identify subtype‐selective ligands (Eglen, 2006; Dencker et al., 2012) and a reason why the dissection of specific cholinergic effects on neuronal activity and release has been difficult to achieve. Nevertheless, new pharmacological tools such as the highly specific antagonist peptide isolated from the green mamba snake venom are now being used (Jerusalinsky et al., 2000; Karlsson et al., 2000; Rowan & Harvey, 2011; Servent et al., 2011). Similarly, positive allosteric modulators and allosteric agonists are becoming promising tools, even providing some therapeutic potential for several central nervous system diseases (Digby et al., 2010; Bock et al., 2017).

Acetylcholine release is regulated by presynaptically located hetero‐ and autoreceptors. Muscarinic autoreceptors M2/M4 (Hersch et al., 1994; Ding et al., 2006), via direct Gi/o‐mediated inhibition of presynaptic CaV2.2 and CaV2.1 channels linked to exocytosis. Another presynaptic control of release is regulated by the M4 auto‐ and heteroreceptor activation of the barium‐sensitive potassium currents carried through Kir3 potassium channels in ChIs (Yan & Surmeier, 1996; Ding et al., 2006) and corticostriatal terminals (Calabresi et al., 1998a).

Nicotinic (nAChR) receptors are pentameric ligand‐gated ion channels that consist of either heteromeric subunit combinations of α subunits (α2‐10) and β subunits (β2‐4; Exley & Cragg, 2008; Gotti et al., 2009). The most common types of nAChR in striatum are the homomeric α subunits (α7) and α4β2*. The α4β2* subcomposition acts as an autoreceptor in ChIs, as a postsynaptic heteroreceptor in GABAergic interneurons and as a presynaptic heteroreceptor in GABA, serotonin, and dopamine axon terminals (Eskow Jaunarajs et al., 2015). The reported subunit composition on GABAergic interneurons is proposed to have the α4β2* and α4α5β2* subtypes (Eskow Jaunarajs et al., 2015).

Characteristics of cholinergic interneurons

Anatomical

In general, anatomical studies have revealed that ChIs immunoreactive for choline acetyltransferase (ChAT), with a large multipolar cell body of 23–50 μm in diameter and widespread aspiny dendrites that arborize up to 1 mm (Kimura et al., 1981; Bolam et al., 1984b; Wilson et al., 1990) with 3–6 primary dendrites that extend in a radial pattern (Doig et al., 2014). Electron microscopy of rat striatal tissue performed by Doig et al., 2010, 2014 indicates that ChIs receive a prominent inhibitory input and that most of excitatory input is from thalamic afferents; a single ChI receives 8450 ± 694 connections of which the majority are symmetric. Moreover, there are approximately three times more vesicular glutamate transporter type 2 (vGLUT2)‐positive thalamic terminals than vesicular glutamate transporter type 1 (vGLUT1)‐positive cortical terminals in an individual ChI (Doig et al., 2014). It is important to mention that boutons expressing vGLUT1 and vGLUT2 are the highest in the dorsal one‐third in the rat striatum (Wouterlood et al., 2012). However, since vGLUT2 is also expressed in some dopamine terminals in ventral striatum (Stuber et al., 2010), it is harder to isolate thalamic inputs.

In spite of the comparative small number of ChIs (Lehmann et al., 1979; Bolam et al., 1984a; Bennett & Wilson, 1999; Bennett et al., 2000; Kreitzer, 2009; Girasole & Nelson, 2015), their long and many branched axons allow a widespread release of ACh (Bolam et al., 1984a; Contant et al., 1996; Calabresi et al., 2000). Initially, ChIs were described as homogeneously dispersed; however, in mice, a greater concentration of ChIs in the dorsomedial compared to ventrolateral areas was observed following a stereological reconstruction (Matamales et al., 2016). A correlation between this distribution and the presence of vGLUT1 and vGLUT2 contribute to a possible segregation of function.

Similar to dopaminergic axon varicosities, cholinergic ones, form few structurally defined synaptic connections, therefore favoring a slow cholinergic volume transmission (Descarries et al., 1997; Zhou et al., 2001; Aznavour et al., 2003; Coppola et al., 2016; Ovsepian et al., 2016; Dunant & Gisiger, 2017). The integration of a striatal cholinergic tone established by volume and synaptic transmission is considered to act within neuronal networks to change their balance of activity to possibly initiate neuronal ensembles with specific functions (Fuxe et al., 2012).

Electrophysiological

The spontaneously active firing characteristic of ChIs ensures the basal cholinergic tone (Kawaguchi et al., 1995; Lee et al., 1998; Wilson, 2005). These neurons have high input resistance, a broad action potential duration (Wilson et al., 1990; Tubert et al., 2016), a depolarized, and often changing, resting membrane potential that is usually fixed at −60 mV with a low holding current (Threlfell et al., 2012). These interneurons also called ‘tonically active neurons or TANs’ and ‘autonomous pacemakers’ are able to produce action potentials at 2–10 Hz in the absence of synaptic input (Bolam et al., 1984a; Wilson et al., 1990). Behind this tonic or pacemaking mechanism, it is an interplay of several ionic conductances (Wilson et al., 1990; Pisani et al., 2007). Their pacemaker cycle begins with an initial tetrodotoxin‐sensitive sodium current‐induced depolarization that leads to calcium influx from CaV2 channels. This first calcium influx in turn activates the calcium and voltage‐activated big potassium currents (BK). This potassium influx contributes to membrane repolarization and the activation of the CaV2.2 current that, in turn, activates the small‐conductance calcium‐activated potassium current (SK). This second potassium current induces a medium duration after‐hyperpolarization (mAHP) of 100–200 ms that defines the spike pattern and spike width (Kawaguchi, 1992; Bennett et al., 2000; Goldberg & Wilson, 2005). A decrease in intracellular calcium levels reduces the SK current and consequently the mAHP. The I h inward cyclic nucleotide‐gated cation current (HCN) repolarizes the membrane to about −60 mV, with a resulting inactivation of the outward potassium A‐type KV4 current. At the end of the cycle, depolarization is slowed down, the persistent sodium current is activated, and the threshold for an action potential is reached, beginning a new sequence (Bennett et al., 2000; Goldberg & Wilson, 2005; Deng et al., 2007; Pisani et al., 2007).

Another feature of ChIs is a long pause in the tonic firing that follows bursts of action potentials. Their intrinsic properties allow ChIs to fire in regular, irregular, and in burst fashion interspersed with long pauses (Bennett et al., 2000; Goldberg & Wilson, 2005, 2017; Wilson, 2005; Sanchez et al., 2011). During a burst, a subthreshold accumulation of calcium through CaV1 channels recruits an additional potassium current that, in turn, produces a long‐lasting (several seconds) hyperpolarization (sAHP) (Wilson & Goldberg, 2006; Tubert et al., 2016).

It is considered that the delta frequency activity of these interneurons results from the combination of synaptic inputs and intrinsic mechanisms (Beatty et al., 2015). A muscarinic‐dependent coherence between motor cortex and ChIs can be established following optogenetic stimulation at both beta and low gamma frequencies (Kondabolu et al., 2016). The reports on striatal oscillatory activity at different frequencies and the synchronization with other brain regions have been the topic of several recent publications (Brittain & Brown, 2014; Feingold et al., 2015; Sharott et al., 2017).

Recordings of striatal neurons in behaving primates revealed two cellular striatal populations (Kimura et al., 1984): phasic active neurons that show brief action potentials and low spontaneous activity or MSNs (Wilson & Groves, 1981; Apicella, 2017) and TANs that display a broader action potential and tonic spontaneous firing rate (<12 Hz; Kimura et al., 1984; Wilson et al., 1990; Aosaki et al., 1995; Apicella, 2002, 2017; Doig et al., 2014). Following electrophysiological criteria, TANs were considered as putative ChIs when antidromic stimulation from globus pallidus (GP) was unable to activate them (Kimura et al., 1990, 1996). Moreover, in view of their morphological, electrophysiological, regional, functional, and immunoreactivity similarities, TANs were identified as ChIs (Wilson et al., 1990; Aosaki et al., 1995; Bennett & Wilson, 1999; Reynolds et al., 2004; Inokawa et al., 2010; Goldberg & Reynolds, 2011; Bradfield et al., 2013; Schulz & Reynolds, 2013; Atallah et al., 2014). See Zhang & Cragg (2017) for a review on behavioral studies of TANs and the range of striatal inputs that can modify the pauses.

The fact that the firing properties of TANs are similar to some GABAergic interneurons has created confusion in the proper neuronal differentiation (Berke, 2008; Beatty et al., 2012; Gonzales et al., 2013; Gonzales & Smith, 2015; Apicella, 2017). It would be best to identify all interneurons, including cholinergic, not only associated with their extracellular electrophysiological characteristics but also with other criteria. The systematic approach to interneuron research being developed (Kepecs & Fishell, 2014; Wamsley & Fishell, 2017) will provide a database of properly classified interneurons (e.g., mRNA‐expression profile). The future will likely bring further determination of their individual electrophysiological characteristics and integrative properties.

Afferents to cholinergic interneurons

ChIs display symmetric (inhibitory) and asymmetric (excitatory) synaptic specializations, from GABA/substance P and glutamate/dopamine terminals, respectively (Kawaguchi, 1992; Bergson et al., 1995; Yan et al., 1997; Koos & Tepper, 2002; Zheng & Wilson, 2002; Maurice et al., 2004; Lim et al., 2014; Munoz‐Manchado et al., 2016). Here, we give examples of the established connectivity of ChIs, local neurons, and afferents to striatal microcircuits (Fig. 1; Table 1).

Figure 1.

Figure 1

Connectivity of cholinergic interneurons in striatal microcircuits. Afferents from thalamus and cortex initiate direct glutamate‐induced postsynaptic activity in cholinergic and GABAergic interneurons (TH, PLTS, NPY‐NGF, FS subtypes) and in MSNs. ChI connectivity is reciprocal with other ChIs, PLTS, NPY‐NGF interneurons and with MSNs. Unidirectional connections from ChIs are to FA. Intrastriatal unidentified GABAergic terminals are contacted by ChIs expressing nicotinic and muscarinic receptors. These terminals could be dopaminergic (see Corelease in ChIs) or GABAergic arkypallidal (Extrastriatal: GABAergic). Synaptic connections between ChIs and FS are weak at best and probably FS to ChI connectivity does not exist. Reciprocal connectivity of MSNs with other MSNs and TH interneurons is also illustrated. For simplicity, only the dopaminergic input from SNc to ChIs is illustrated. Abbreviations of interneurons: ChI—cholinergic; PLTS—persistent low‐threshold spiking; NPY‐NGF—neuropeptide‐Y expressing neurogliaform; FA—fast adapting; FS—fast spiking, TH—tyrosine‐hydroxylase. See Table 1 for the numbers associated to connections.

Table 1.

References supporting connectivity illustrated in Fig. 1

# From To References
1 Cortex TH Ibanez‐Sandoval et al. (2010)
2 Cortex FS Bennett & Bolam (1994); Mallet et al. (2005); Fino et al. (2008)
3 Cortex PLTS Fino et al. (2009); Ibanez‐Sandoval et al. (2011)
4 Cortex ChIs Lapper & Bolam (1992); Ding et al. (2010); Doig et al. (2014); Guo et al. (2015)
5 Cortex NPY/NGF Ibanez‐Sandoval et al. (2011); Assous et al. (2017)
6 Cortex MSN Somogyi et al. (1981); Barral et al. (1999); Ding et al. (2010); Doig et al. (2010); Huerta‐Ocampo et al. (2014)
7 SNc ChIs Chuhma et al. (2014), Straub et al. (2014)
8 Thalamus MSN Ding et al. (2010); Doig et al. (2010); Dube et al. (1988); Sadikot et al. (1992); Huerta‐Ocampo et al. (2014)
9 Thalamus TH Assous et al. (2017)
10 Thalamus FS Kita (1993)
11 Thalamus ChIs Lapper & Bolam (1992); Ding et al. (2010); Doig et al. (2010)
12 Thalamus NPY/NGF Assous et al. (2017)
13 ChIs MSN Bolam et al. (1986); Bernard et al. (1992); Lapper & Bolam (1992); Hersch & Levey (1995); Bennett & Wilson (1998); Alcantara et al. (2001); Yan et al. (2001); Chuhma et al. (2011); Goldberg & Reynolds (2011); Goldberg et al. (2012); Gonzales et al. (2013); Guo et al. (2015); Phelps et al. (1985); Izzo & Bolam (1988)
14 TH MSN Ibanez‐Sandoval et al. (2010); Freund et al. (1984)
15 TH PLTS Assous et al. (2017)
16 FS MSN Kita (1993); Koos & Tepper (1999); Gittis et al. (2010); Bennett & Bolam (1994)
17 FS FS Koos & Tepper (1999); Gittis et al. (2010)
18 FS PLTS Gittis et al. (2010); Szydlowski et al. (2013)
19 PLTS MSN Kawaguchi (1993); Gittis et al. (2010)
20 PLTS ChIs Elghaba et al. (2016); Straub et al. (2016)
21 NPY/NGF ChIs Assous et al. (2017)
22 NPY/NGF MSN English et al. (2012)
23 MSN ChIs Mulder et al. (1984); Bolam et al. (1986); Le Moine et al. (1994); Aosaki & Kawaguchi (1996); Bell et al. (1998); Pickel et al. (2000); Jabourian et al. (2005); Perez et al. (2007); Govindaiah et al. (2010); Gonzales et al. (2013); Ponterio et al. (2013); Gonzales & Smith (2015)
24 MSN MSN Wilson & Groves (1980); Taverna et al. (2008); Burke et al. (2017)
25 ChIs PLTS Vuillet et al. (1992); Elghaba et al. (2016)
26 ChIs FS Chang & Kita (1992); Koos & Tepper (2002); English et al. (2012)
27 ChIs NPY/NGF Assous et al. (2017)
28 ChIs FA Faust et al. (2015); Faust et al. (2016)
29 ChIs Dopamine terminals Jones et al. (2001); Zoli et al. (2002); Salminen et al. (2004); Exley & Cragg (2008); Gotti et al. (2009); Threlfell et al. (2012); Gonzales & Smith (2015)
30 ChIs
ChIs
Autoreceptors
ChIs
Ding et al. (2006); Pakhotin & Bracci (2007)
31 FA MSN Faust et al. (2015); Faust et al. (2016)

These selected references by no means reflect all the evidence gathered through more than 40 years of research, apologies for unintended omissions.

Intrastriatal

A key intrastriatal microcircuit is formed by connections between MSNs, interneurons, and ChIs. In general, 60% of the total intrastriatal synaptic contacts are GABAergic and somatodendritic (Gonzales et al., 2013; Gonzales & Smith, 2015). Medium size spiny neurons that release substance P and dynorphin (Bolam et al., 1986; Pickel et al., 2000; Perez et al., 2007) or enkephalin (Le Moine et al., 1994; Jabourian et al., 2005) contact and modulate ChIs. Importantly, opposite actions are described for their effects: excitatory for substance P (Aosaki & Kawaguchi, 1996; Bell et al., 1998; Perez et al., 2007; Govindaiah et al., 2010) and a powerfully inhibitory for opioid agonists (Mulder et al., 1984; Jabourian et al., 2005; Ponterio et al., 2013). Axon collaterals of MSNs contact ChIs (Bolam et al., 1986; Lapper & Bolam, 1992; Bennett & Wilson, 1998; Gonzales et al., 2013; Guo et al., 2015). In rhesus monkeys, striatal output neurons of both types contact ChIs (Gonzales et al., 2013); however, in rodents, substance P containing terminals of dMSNs contact ChIs (Bolam et al., 1986; Martone et al., 1992). Microcircuits where ChIs are connected among themselves through GABAergic interneurons can be seen when a single action potential produced in a ChI evokes nAChR‐mediated polysynaptic GABAA inhibitory postsynaptic currents (Sullivan et al., 2008). Connectivity with an incidence of 9 ChIs to 12 MSN has been observed following MSN optogenetic stimulation (Chuhma et al., 2011). Some interactions of ChIs occur between reciprocally connected ChIs (Pakhotin & Bracci, 2007) and with the GABAergic NPY‐low threshold spiking subtype (Vuillet et al., 1992). It would be important to determine if striatal GABAA receptors contain the δ subunit that has been shown to be persistently active and to control presynaptic excitability in the spinal cord (Liu et al., 2017).

Extrastriatal

GABAergic

Extrastriatal GABAergic afferents arrive to striatum from three different GABAergic afferents, two from GP and one from substantia nigra par compacta (SNc) (Fig. 2; Table 2). In GP, the arkypallidal‐type A (GP‐TA) and the prototypic‐type I (GP‐TI) have been classified by electrophysiological (Mallet et al., 2008), anatomical (Bevan et al., 1998), and molecular (Mallet et al., 2012; Mastro et al., 2014; Abdi et al., 2015) techniques. The GP‐TA express preproenkephalin gene and FoxP2 or Meis2 transcription factors (Abdi et al., 2015) and contact cholinergic, nitric oxide synthase (NOS) interneurons, and MSNs (Mallet et al., 2012). SNc terminals that corelease dopamine and GABA synaptically modify the activity of ChIs (Chuhma et al., 2014; Straub et al., 2014), both types of MSNs, and other interneurons (Tritsch & Sabatini, 2012).

Figure 2.

Figure 2

Influence of afferents on cholinergic activity and release. As mentioned in the text, pre‐ and postsynaptic auto‐ and heteroreceptors to ChIs and their afferents can selectively affect the spatial and temporal release of ACh with important functional consequences. The participation of different types of glutamate receptors not only modulates ChI activity and ACh release but also exerts a fine control over dopamine release and other interneuronal and MSN activity. Coincident afferent striatal activation can induce short‐ and long‐term changes in ACh release important in the expression of striatal functions; in this way, ChIs, although few in number, are centrally positioned to likely control neuronal activity using wired and volume transmission. See Table 2 for the letters associated to the references of postsynaptic and presynaptic auto‐ and heteroreceptors.

Table 2.

References supporting connectivity illustrated in Fig. 2

Letter References
a Hersch et al. (1994); Testa et al. (1994); Calabresi et al. (1998c); Hernandez‐Echeagaray et al. (1998); Barral et al. (1999); Bell et al. (2002); Pisani et al. (2002); Conn et al. (2005); Ribeiro (2005); Pakhotin & Bracci (2007); Martella et al. (2009); Campos et al. (2010); Ding et al. (2010); Atwood et al. (2014); Pancani et al. (2014); Kupferschmidt & Lovinger (2015); Shen et al. (2015); Banerjee et al. (2016); Howe et al. (2016)
b Testa et al. (1994); Bell et al. (2002); Martella et al. (2009); Johnson et al. (2017); Pisani et al. (2002); Conn et al. (2005); Ding et al. (2010); Atwood et al. (2014); Ribeiro et al. (2017)
c Di Chiara et al. (1994); Consolo et al. (1996); Calabresi et al. (1998b); Vorobjev et al. (2000); Cepeda et al. (2001); Deng et al. (2010); Kosillo et al. (2016)
d Calabresi et al. (1998a); Calabresi et al. (1999a) Bell et al. (2002); Conn et al. (2005); Mitrano & Smith (2007); Ribeiro et al. (2017)
e Hersch et al. (1994); Yan & Surmeier (1996); Bernard et al. (1998); Azam et al. (2003); Ding et al. (2006); Eskow Jaunarajs et al. (2015)
f Yan et al. (1997); Bennett & Wilson (1998)
g Bernard et al. (1998); Sullivan et al. (2008); English et al. (2012); Eskow Jaunarajs et al. (2015); Elghaba et al. (2016); Straub et al. (2016); Assous et al. (2017)
h Weiner et al. (1990); Jones et al. (2001); Zhou et al. (2001); Zoli et al. (2002); Salminen et al. (2004); Gotti et al. (2009); Livingstone & Wonnacott (2009); Chuhma et al. (2014); Foster et al. (2014); Straub et al. (2014); Wang et al. (2014); Gonzales & Smith (2015); Howe et al. (2016); Garcao et al. (2014)
i Richfield et al. (1989); Bergson et al. (1995); Yan et al. (1997); Yan & Surmeier (1997); Aosaki et al. (1998); Alcantara et al. (2003); Centonze et al. (2003a); Cabrera‐Vera et al. (2004); Maurice et al. (2004); Ding et al. (2006); Deng et al. (2007); Ding et al. (2010); Ding et al. (2011)
j Bernard et al. (1992); Hersch et al. (1994); Santiago & Potter (2001); Yan et al. (2001); Perez‐Rosello et al. (2005); Hernandez‐Flores et al. (2015)

These selected references by no means reflect all the evidence gathered through more than 40 years of research, apologies for unintended omissions.

Glutamatergic

Presynaptic regulation of ACh release has an important function in control of the excitability in striatal microcircuits (Fig. 2). The regulation of dopamine release mediated by a glutamate‐ACh link has become important, and metabotropic glutamate (mGlu) receptors are being explored as potential targets for the treatment of neurodegenerative diseases (Ribeiro, 2005). As indicated before, glutamatergic fibers from both cortex and intralaminar thalamus form asymmetric synaptic contacts on striatal ChIs but with a higher proportion of synaptic contacts from thalamic inputs (Doig et al., 2014). Cortical axons contact distal striatal dendrites, and thalamic axons contact striatal somas and dendritic shafts (Lapper & Bolam, 1992). In primates, approximately 20% of synaptic connections to ChIs are presumed glutamatergic and localized on the distal dendrites (Gonzales et al., 2013; Gonzales & Smith, 2015), and in rodents, the soma and proximal dendrites of ChIs are the targets of glutamatergic input (Doig et al., 2014). However, both cortical and thalamic stimulation induces short latency responses in ChIs and effects of the different afferent synaptic locations have been explored. Compared to responses induced by thalamic stimulation, cortical responses are less robust and attenuate if the stimulation is repeated (Doig et al., 2014). These differences could mediate the length of the pause and strength of the rebound; sustained thalamic input seems to keep cholinergic firing followed by long pauses with no rebound. Moreover, the variable intrinsic activity of ChIs seems more important than the location of the afferents in the moment‐to‐moment variability in the size of neuronal recruitment (Kosillo et al., 2016). The section Influence of cholinergic interneurons within the striatal microcircuits: dopaminergic terminals’ describes other experiments that have contributed to clarify the role of glutamate receptors selectively activated by cortical or thalamic afferents.

ChIs express postsynaptic and presynaptic ionotropic and metabotropic glutamate heteroreceptors (Testa et al., 1994; Landwehrmeyer et al., 1995; Bell et al., 2002; Deng et al., 2010). A membrane depolarization (Vorobjev et al., 2000; Cepeda et al., 2001) and modulatory actions mediated by PKC are observed in ChIs (Di Chiara et al., 1994; Calabresi et al., 1998a) following the activation of postsynaptic glutamate ionotropic receptors, that is, n‐methyl‐D‐aspartate (NMDA), α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA), or kainic acid.

The presynaptic activation of these receptors on ChIs increases ACh release (Consolo et al., 1996). In striatal microcircuits, mGluRs modulate excitability and neurotransmitter release (Conn et al., 2005). The group‐III member, mGlu7, is not expressed in ChIs (Pisani et al., 2002) but expressed presynaptically as autoreceptors where it decreases the probability of release and in turn postsynaptic cholinergic excitability (Bell et al., 2002). Group‐II mGlu2/3 receptors are expressed pre‐ and postsynaptically in ChIs (Testa et al., 1994; Bell et al., 2002). As presynaptic heteroreceptors, they decrease glutamate release with a consequent depression of excitatory postsynaptic potentials (Martella et al., 2009). The mGlu2/3 autoreceptors (and GABAB receptors) dampen glutamate release, decrease postsynaptic excitatory responses, and can produce a transient depression (Martella et al., 2009) and long‐term depression (LTD) (Kupferschmidt & Lovinger, 2015). Moreover, mGlu2/3 receptors are predominantly coupled to Gi/o proteins that mediate inhibition of AC activity and also to other cell signaling pathways involved in neuroprotection. For example, extracellular signal‐regulated kinase activation attenuates rotenone toxicity on dopaminergic neurons (Ribeiro, 2005). ChIs also express group‐I mGlu1/5 (Bell et al., 2002), especially in dendrites (Mitrano & Smith, 2007). The activation of mGlu1/5 receptors induces membrane depolarization (Calabresi et al., 1999b; Bell et al., 2002; Martella et al., 2009).

Dopaminergic

Dopaminergic SNc afferents exert a robust striatal influence due to their tonic spontaneous activity (1‐8 Hz) and broad terminal field arborization (Prensa & Parent, 2001; Schultz, 2007; Matsuda et al., 2009); a single dopamine neuron has a dense terminal field that occupies 3% of striatal volume with axonal varicosities forming synapses every 2 μm (Arbuthnott & Wickens, 2007). D2 receptors located postsynaptically on ChIs reduce autonomous firing through voltage‐sensitive sodium channels (Maurice et al., 2004; Ding et al., 2010) or hyperpolarization‐activated HCN currents (Deng et al., 2007).

The dopamine–ACh interaction is mediated by D2 and D1/5 receptors. D1/D5 subtypes are expressed in dendrites (Bergson et al., 1995; Yan & Surmeier, 1997; Yan et al., 1997) and D2 receptors are located in soma, dendrites, and axons (Alcantara et al., 2003). The activation of D1/D5 receptors in slice preparations enhances ChIs excitability (Centonze et al., 2003b; Ding et al., 2011). Apparently, a cAMP‐dependent mechanism allows the closure of potassium channels and promotes the opening of nonselective cation channels (Aosaki et al., 1998). Cholinergic receptors expressed in the dopaminergic axon terminal fields modulate dopamine release; nAChRs increase dopamine release (Imperato et al., 1986; Calabresi et al., 1989) whereas presynaptic M5 mAChRs reduce it (Foster et al., 2014). At the somatodedritic level, both nAChRs and M5 mAChR increase spontaneous activity (Foster et al., 2014). Other effects on dopamine release mediated by other mAChR subtypes appear related to the stimulation of receptors located in non‐dopaminergic neurons (Zhang et al., 2002a).

Using optogenetic stimulation of dopaminergic terminals in vitro, a biphasic modulatory action on ChIs was similar to the pause‐rebound response of putative ChIs recorded in vivo. This consisted in a decrease in spike rate and a delayed excitatory response that peaked 0.4–0.6 s after stimulation (Straub et al., 2014).

Although presynaptic D2 receptors on ChIs limit ACh release through voltage‐gated CaV2 channels, an important control of downstream processes is also provided by the regulators of G‐protein signals (RGS) (Anderson et al., 2009). Ding et al. (2006) observed that following dopamine depletion, M4 rather than D2 receptors alter signaling in ChI. In the absence of dopamine, M4 autoreceptors suffer the attenuation of Cav2 channel opening and pacemaking by upregulation of the expression of RGS9. Consistently, significant decreases of RGS9 protein concentration and mRNA were observed in dopamine depleted animals following L‐DOPA treatment (Yin et al., 2011).

Other afferents

Axon terminals releasing serotonin, histamine, or adenosine are known to modulate the activity of ChIs. Serotonin afferents from the dorsal raphe nucleus (Miguelez et al., 2014) induce a direct excitatory effect on ChIs through 5‐HT2 (Blomeley & Bracci, 2005) and 5‐HT6 receptors (Bonsi et al., 2007). Similarly, histamine‐containing afferents from the hypothalamic tuberomamillary nucleus (Bolam & Ellender, 2016) depolarize ChIs by the activation of GPCR histamine receptor type 1 (H1) (Bell et al., 2000). In nucleus accumbens, the activation of ChI H3 receptors decreases their spontaneous activity, but this effect can only be observed in accumbens since striatum does not seem to express this histamine receptor subtype (Varaschin et al., 2018). The purine nucleoside, adenosine, is released by neurons and glia. Of the four subtypes of GPCR adenosine receptors in brain, the A2A subtype is mostly expressed in striatum (Dunwiddie & Masino, 2001). Striatal A1 and A2A receptors in ChI are potent regulators of striatal ACh release with opposite effects (Preston et al., 2000; Song et al., 2000). Concomitant dopamine D2 and A2A receptor stimulation inhibits ACh release (Song & Haber, 2000; Tozzi et al., 2011). Moreover, adenosine reverses N‐type calcium currents in ChIs and both MSNs through membrane G‐protein pathways (Song et al., 2000; Hernandez‐Gonzalez et al., 2014).

Influence of cholinergic interneurons within striatal microcircuits

In spite of their relative small number, ChIs within the striatal microcircuits form enmeshed axonal projections with an extensive neuromodulatory presynaptic and postsynaptic effect (Descarries et al., 1997; Descarries & Mechawar, 2000) and most likely, interact with all neuronal elements through synaptic and volume transmission (Threlfell & Cragg, 2011). The modulation of striatal microcircuits by ChIs is exemplified in studies involving neuronal excitability and neurotransmitter release (Figs 2 and 3).

Figure 3.

Figure 3

Presynaptic muscarinic and nicotinic control of striatal glutamate release. Illustrated are the effects of ACh release within striatal microcircuits as discussed in the sections ‘dopaminergic terminals’ and ‘glutamatergic terminals’. The cartoon depicts Right: An increase in glutamate release mediated by presynaptic α7 nAChR on glutamate terminals. Left: A decrease in glutamate release mediated by two mechanisms: (i) a direct effect of ACh on presynaptic mAChRs (M2, M3, and M4), or (ii) an indirect effect of ACh mediated by an increase in dopamine due to activation of α4β2* nAChRs on dopamine terminals. Dopamine action on inhibitory D2 receptors on glutamate terminals reduces glutamate release. Such a complex action on the same terminal as depicted in (Fig. 2) [if indeed the receptors are coexpressed on single terminals] suggests either that fine control of the concentration of glutamate or the precise timing of it is important for MSN activity. The second, more indirect, inhibition by α4β2* nAChRs on dopamine terminals may be an important source of the increased activity in striatum in the absence of dopamine when such inhibition would be removed. The symbol code depicts the receptor types and their location.

Medium spiny neurons

ChIs synapse onto dendritic spines (Hersch & Levey, 1995; Alcantara et al., 2001) of iMSN and dMSNs (Izzo & Bolam, 1988; Bernard et al., 1992; Yan et al., 2001; Goldberg et al., 2012). In electrophysiologically identified MSNs, ACh evokes complex excitatory actions by direct modulation of several ionic currents, mainly potassium, sodium, and calcium (Pineda et al., 1995; Perez‐Rosello et al., 2005; Shen et al., 2007; Carrillo‐Reid et al., 2009). Both dMSNs and iMSNs express M1 receptors, and their activation increases neuronal excitability by the enhancement of the persistent sodium conductance and by directly or indirectly depressing potassium currents (Akins et al., 1990; Galarraga et al., 1999; Figueroa et al., 2002; Perez‐Rosello et al., 2005; Shen et al., 2005, 2007; Carrillo‐Reid et al., 2009; Goldberg et al., 2012; Perez‐Ramirez et al., 2015). Both M1, M4 receptors are expressed in dMSNs (Santiago & Potter, 2001; Yan et al., 2001; Goldberg et al., 2012), and the activation of M4 with muscarine increases MSN excitability by enhancing CaV1 channels (Hernandez‐Flores et al., 2015).

A strong depolarization induced by glutamatergic striatal afferents triggers a postsynaptic release of endocannabinoids (eCB). CB1 receptors are one of the most abundant GPCRs in the central nervous system and are located at excitatory and inhibitory presynaptic and axonal compartments. CB2 receptors are primarily localized in microglia (Kendall & Yudowski, 2016). CB1 receptors are coupled to pertussis toxin‐sensitive Gi/o type G‐proteins, and their striatal activation results in a presynaptic long‐term depression in corticostriatal synapses (Adermark & Lovinger, 2007).

ChIs are also important regulators of striatal eCB. ACh produces an indirect modulatory effect in the regulation of striatal plasticity through the eCB system (Oldenburg & Ding, 2011). At inhibitory synapses, M1 receptor stimulation promotes eCB production and retrograde activation of CB1R that suppresses the inhibitory synaptic transmission. In contrast, at excitatory glutamatergic synapses, an M1 agonist reduces postsynaptic Cav1.3 currents that, in turn, decrease eCB production and activation of presynaptic CB1R (Wang et al., 2006; Narushima et al., 2007). Low to moderate activation of corticostriatal afferents in vitro (5 Hz/60 s) produces a long‐lasting disinhibition of synaptic input that complies with all the requisites for the induction of striatal high‐frequency stimulation‐induced LTD (Calabresi et al., 1992; Adermark & Lovinger, 2007; Kreitzer & Malenka, 2008).

The in vitro long‐lasting disinhibition of synaptic input induced by corticostriatal afferents can be prevented with an antagonist to the non‐α7 nAChR; moreover, a nicotine‐induced facilitation of eCB‐LTD is occluded by the dopamine receptor agonist quinpirole and by the mAChR antagonist scopolamine (Adermark et al., 2018). Using a slightly different paradigm to induce LTD in MSNs (i.e., direct activation of mGlu1 with the agonist (S)‐3,5‐Dihydroxy‐phenylglycine (50 μm) plus postsynaptic depolarization to −50 mV), selective optogenetic stimulation of cortical or thalamic afferents revealed that cortical, but not thalamic afferent stimulation, induces a significant eCB‐LTD accompanied by a decreased probability of presynaptic release. Double immunohistochemistry of CB1R and vGLUT1 or vGLUT2 indicates cortical vGLUT1 terminals colocalize ≈4 times more with CB1 (Wu et al., 2015).

Long‐term changes in striatal excitability by cortical and thalamic axonal stimulation could be related to their different proposed functions: goal‐directed behavior for cortical afferents (Graybiel, 1995) and attention and arousal for thalamic afferents (Alloway et al., 2017).

The interrelation between MSNs, glutamatergic cortical afferents, ChIs, and presynaptic action on dopamine terminals opens deliberation as to whether other receptors located in these microcircuits have a direct or indirect effect on MSNs (see Fig. 3).

GABAergic interneurons

Symmetrical synapses between labeled MSNs and interneurons are observed in striatum (Bennett & Bolam, 1994). GABAergic interneurons may not only be influenced by cortical or thalamic inputs but also by local ChIs. For example, excitatory activation of GABAergic interneurons by nAChR are frequently reported (Sullivan et al., 2008; English et al., 2012; Luo et al., 2013; Ibanez‐Sandoval et al., 2015; Munoz‐Manchado et al., 2016).

Within striatal microcircuits, there is a neuronal chain that follows glutamatergic input to ChIs, then inputs to NPY‐NGF interneurons, and finally GABAergic input to MSNs evidenced in vitro following multicellular recordings and calcium imaging. The activation of nAChRs on GABAergic interneurons induces a global decrease in neuronal activity indicating a general activation of inhibitory GABAergic interneurons (Plata et al., 2013). Similarly following synchronized activation of ChIs, the GABAergic NPY‐NGF subtype produces the inhibition of MSNs mediated by ChI to GABAeric interneuronal synapses and then to MSN (Faust et al., 2015, 2016). The recurrent inhibition of ChIs is sensitive to nicotinic antagonists therefore not mediated by the GABAergic interneuron (Sullivan et al., 2008; English et al., 2012). Optogenetic activation of glutamatergic thalamic afferents to ChIs provides a nicotinic excitatory input to NPY‐NGF interneurons that in turn modulate MSN activity (Assous et al., 2017). Within this neuronal chain, it is still unknown if other interneurons such as the FA subtype also participate.

Additionally, persistent low‐threshold spiking (PLTS) interneurons are highly excited by cortical afferents (Assous et al., 2017) and are directly and indirectly modulated by both nACh and mACh receptors. The amplitude of striatal intracellular responses mediated by GABA decreases in the presence of muscarine and ACh (Sugita et al., 1991).

A mutual excitatory interaction exits between ChIs and PLTS: ChIs acting on nAChR directly excite PLTS interneurons and indirectly through mAChR on unidentified GABAergic terminals. The net effect of a tonic cholinergic action on the GABAergic interneurons is inhibitory as both nicotinic and muscarinic antagonists reverse the inhibition (Elghaba et al., 2016). This evidence suggests that interconnected ChIs and GABAergic interneurons form a subcircuit that could allow flow of information independent of classical inputs such as MSNs to FSI (Luo et al., 2013; Faust et al., 2015, 2016).

Dopaminergic terminals

It is clear that synaptic release modulated at the terminal level, independent of the cell body, is a major component of the striatal microcircuits (Rice & Cragg, 2008). It has been calculated that within a sphere of striatal tissue of 20 μm in diameter, point‐to‐point synaptic communication for dopamine and ACh terminals takes place. Axons of dopamine and cholinergic neurons contribute each ≈ 400 terminals that are intermingled with other 2000–4000 unidentified terminals (Descarries et al., 1997). Such observations led Agnati et al. (1986), as quoted by Fuxe et al. (2013), to propose the concept of volume transmission as a non‐junctional mode of intercellular communication. By modeling striatal dopamine spillover after quantal release, Rice & Cragg (2008) concluded that uptake does not limit the initial overflow from an extrasynaptic or synaptic release site, resulting in the formation of a cloud of dopamine that can reach extrasynaptic dopamine receptors which are more abundant than the synaptic receptors.

Studies of cholinergic modulation of dopaminergic terminals suggest that ACh diminishes dopamine release via nAChRs located on dopamine terminals (Rice et al., 2011); however, when dopamine release and the activity of ChIs could be simultaneously monitored with fast scan voltammetry, a synchronous activation of ChIs increased striatal dopamine release; for references, see Cachope & Cheer (2014). Therefore, endogenous release of ACh directly triggers striatal dopamine release (Cachope et al., 2012) and ChIs synchronized by their thalamic input promote dopamine release (Threlfell et al., 2012). The prolonged debate about the interrelation between dopamine and ACh release has been slowly resolving, as more data are gathered. We now know that presynaptic nAChRs are highly expressed on striatal dopaminergic terminals (Jones et al., 2001; Zhou et al., 2001; Zoli et al., 2002; Salminen et al., 2004; Gotti et al., 2009; Livingstone & Wonnacott, 2009; Garcao et al., 2014; Wang et al., 2014; Gonzales & Smith, 2015; Howe et al., 2016), and that their activation facilitates dopamine release (Exley & Cragg, 2008).

Combined light activation of dopamine terminals and chemogenetic stimulation of ChI potentiates dopamine release (Aldrin‐Kirk et al., 2018). Moreover, a neurotoxic dopamine depletion plus chemogenetic activation of ChIs in vivo increases the use of previously akinetic forelimbs induced by a low dose of L‐DOPA; however, the activation of ChI combined with a D2 agonist (quinpirole), but not a D1 agonist, increases the L‐DOPA‐induced abnormal involuntary movements (Aldrin‐Kirk et al., 2018). This is congruent with other observations of exacerbation of dyskinesias by D2 agonists in mice (Alcacer et al., 2017) and increases in dyskinesias seen by the activation of M1 receptors on dMSN in combination with presynaptic M2 blockade (Bernard et al., 1992; Yan et al., 2001).

When considering microcircuits, different affinities or the complete absence of ACh (in knockout mice) can produce different modulatory effects. For example, a low affinity α7‐containing nAChR will quickly become desensitized with a resulting decrease in cholinergic modulation; on the contrary, a high affinity α4β2*‐containing nAChR will desensitize more slowly, with a resulting increase in modulatory effect of ACh. Moreover, a ChAT knockout results in mice with no ChIs and produces increased phasic‐to‐tonic dopamine signal with altered dopaminergic and glutamatergic tone (Patel et al., 2012).

The participation of corticostriatal and thalamostriatal afferents on dopamine release has been clarified using selective optogenetic activation; increases in dopamine release by the corticostriatal terminal field are mediated by nAChR but modulated by mAChR. Moreover, the increase in dopamine release results from the action of AMPA receptors on ChIs that promote short‐latency action potentials. Dopamine release driven by thalamostriatal afferents involves additional activation of NMDA receptors and action potential generation over longer timescales (Kosillo et al., 2016).

If the presence of NMDA receptors in thalamic afferents is observed, it would be interesting to know if they act as ‘sniffers’ of spillover glutamate release, have neurotrophic/neuroprotective function, or are involved in the modulation of postsynaptic responses.

Glutamatergic terminals

As mentioned before, striatal glutamatergic afferents arrive from cortex and thalamus (Ding et al., 2010; Doig et al., 2014), and presynaptic mAChRs (subtypes M1, M2, M3, M4) are located on axon terminals (Hersch et al., 1994). Electrophysiological in vitro recordings of striatal slices have been useful to clarify their inhibitory role in the modulation of presynaptic release from excitatory terminals to MSNs and their participation in striatal microcircuits.

Stimulated release of glutamate reduces responses to field pair‐pulse stimulation (Barral et al., 1999) and random synaptic events (Hernandez‐Echeagaray et al., 1998). Furthermore, pair recordings of interactions between ChIs and MSNs indicate that spontaneous activity of ChIs decreases the amplitude of the MSN intracellularly induced EPSC and that M2/M4 antagonists prevents the decrease (Pakhotin & Bracci, 2007). Similarly, the activation of M4 presynaptic receptors with a positive allosteric modulator decreases glutamate release with a consequent reduction in postsynaptic excitatory currents in both types of MSNs (Pancani et al., 2014). Moreover, mAChR induce presynaptic inhibition of striatal glutamatergic terminals through an action on Cav2 channels (Barral et al., 1999) with a consequent decrease in glutamate release at both corticostriatal (Hernandez‐Echeagaray et al., 1998; Barral et al., 1999; Higley et al., 2009) and thalamostriatal terminals on dMSN and iMSN (Ding et al., 2010), (Fig. 3).

Apart from the muscarinic action, nAChRs play a bidirectional modulation on corticostriatal glutamate release due to the presynaptic location of α7‐containing nicotinic heteroreceptors on corticostriatal afferents and presynaptic α4β2*‐containing nicotinic heteroreceptors on dopamine afferents that in turn contact corticostriatal terminals. The activation of α7‐containing nicotinic heteroreptors on cortical afferents increases glutamate release (Campos et al., 2010; Howe et al., 2016), whereas the activation of presynaptic α4β2‐containing nicotinic heteroreceptors on dopamine afferents produces a two‐link chain reaction: first, enhanced dopamine release stimulates presynaptic D2 heteroreceptors that in turn produce a decrease in glutamate or ‘brake’ effect (Campos et al., 2010; Howe et al., 2016). Certainly the affinity of nAChRs and mAChR, their location, physiological properties, and activation state of the terminal field have already begun to explain the spectrum of pre‐ and postsynaptic responses to ACh and for that matter to other neurotransmitter receptors.

The variety of auto‐ and heteroreceptors located presynaptically at synaptic and non‐synaptic locations can selectively affect the spatial and temporal control of spontaneous and action potential‐driven neurotransmitter release, depending on the terminal subtype and their intrinsic activity (Banerjee et al., 2016; Pittaluga, 2016). After coincident presynaptic activation, short‐ and long‐term changes in neurotransmitter release can also occur (Atwood et al., 2014), but most importantly, the controls on release described in this section reflect a precise receptor‐mediated regulation (Fig. 3).

Co‐release from cholinergic interneurons

Although it goes against the Dale's principle of one neurotransmitter per neuron, the concept of corelease is now more accepted (Hnasko & Edwards, 2012). The presence of the glutamate type 3 vesicular transporter (vGLUT3) in neurons typically indicates the possibility of corelease (Kljakic et al., 2017). In striatum, a high expression of the glutamate transporter vGLUT3 is seen in a population of vesicles that express both vGLUT3 and vesicular acetylcholine transporter (vAChT) (Gras et al., 2002; Amilhon et al., 2010; Kljakic et al., 2017). Striatal corelease of ACh and glutamate has been determined following two main strategies: electrophysiological and genetic manipulation. Following the electrophysiological approach, there are two studies: one reports that optical stimulation of ChIs induces in MSNs two glutamate‐dependent responses (Higley et al., 2011) and another reports that ACh release following synchronous ChIs triggers an action potential‐independent presynaptic release of GABA colocalized in dopaminergic terminals (Nelson et al., 2014). With the genetic approach, it was observed that following the deletion of the vAChT gene and subsequent elimination of ACh release, alterations in gross motor skills and in performance attributed to ACh, are still present most likely as a consequence of coreleased glutamate (Guzman et al., 2011).

Several questions must be answered regarding this topic: Does corelease for both neurotransmitters occur at the same time? Is release differentially regulated? Is release spatially coupled? How does the presence of two neurotransmitters contribute to microcircuits function? Does the ratio neurotransmitters change?

Striosome and matrix compartments

Almost 40 years ago, Graybiel & Ragsdale (1978) reported two distinct densities or compartments in the distribution of AChE in the striatum of primates and cats. These two compartments are called striosomes or patches, and matrix. Striosomes receive dopamine afferents from SNc and glutamatergic afferents from medial prefrontal, anterior cingulate, orbitofrontal, and anterior insular cortices (Benarroch, 2016). Stereological analysis in humans finds a differential distribution of ChIs with most of them located in the periphery of the striosomes (Bernacer et al., 2007). Similarly in rodents, ChIs are found in the border of striosomes (Kubota & Kawaguchi, 1993) with extended processes into both compartments (Kubota & Kawaguchi, 1993). In recent reviews, ChIs are described as preferentially located in the matrix (Crittenden & Graybiel, 2011; Crittenden et al., 2017). Using new tools, attempts to exclusively stimulate one compartment in vitro are clarifying the location of ChIs. Whole‐cell patch recordings of ChIs with a posteriori identification of their compartment location revealed that GABAergic currents mediated by nAChRs are more frequently observed in the matrix than the striosome (Inoue et al., 2016), and the photoactivation of the matrix compartment with independent local stimulation and patch‐clamp recordings revealed lack of synaptic connectivity between matrix and striosomes (Lopez‐Huerta et al., 2016). The presence of ChIs in the areas high in calbindin‐D28K and ChAT (Prensa et al., 1999) referred to as the ‘peristriosomal boundary’ reaffirm the location of ChIs between as well as within matrix and striosome compartments (Brimblecombe & Cragg, 2017).

A separation between matrix and striosomes has been established in rats by their different thalamic afferents. Unzai et al. (2017) reported that striatum and nucleus accumbens receive afferents to the striosome compartment mostly from thalamic midline nuclei, whereas the intralaminar nuclei innervate the matrix compartment. Moreover, whereas most terminal fields form en passant boutons, clusters or plexus containing many boutons are observed on terminal fields of the parafascicular nucleus. From the functional point of view, information from these two thalamic areas support the function previously inferred (Vertes et al., 2015): limbic (emotional) control for the striosomes and sensorimotor associative for the matrix (White & Hiroi, 1998; Crittenden & Graybiel, 2011; Buot & Yelnik, 2012).

Participation of cholinergic interneurons in striatal plasticity

It is broadly believed that long‐lasting changes in synaptic efficiency at corticostriatal synapses are the cellular basis of motor learning (Pisani et al., 2007; Fino & Venance, 2011; Deffains & Bergman, 2015). These plastic changes have been shown as LTD or as long‐term potentiation (LTP). Early reports of striatal long‐term changes indicated that either LTP or LTD could be produced by high frequency stimulation of cortical or thalamic glutamatergic inputs along with postsynaptic depolarization (Calabresi et al., 1992; Lovinger et al., 1993; Wickens et al., 1996; Centonze et al., 2001).

Further studies revealed that the precise timing and order between presynaptic and postsynaptic action potentials dictate the occurrence of either LTP or LTD in the paradigm of spike‐timing‐dependent plasticity (STDP) (Markram et al., 2011). As in the case of long‐term changes induced by high‐frequency stimulation, STDP‐induced LTD and LTP was also induced in corticostriatal synapses (Fino et al., 2008; Pawlak & Kerr, 2008; Shen et al., 2008; Fino & Venance, 2011; Shindou et al., 2011; Jedrzejewska‐Szmek et al., 2017). Two variables are important for corticostriatal STDP: the frequent in vivo bombardment of pre‐ and postsynaptic inputs onto striatal neurons, and the presence of modulators like ACh, dopamine, or serotonin. Extracellular ACh and the level of M1 receptor stimulation control the direction of LTP or LTD (Calabresi et al., 1999a; Centonze et al., 1999). Additionally, cholinergic modulation of eCB synthesis has been linked to these long‐lasting processes (Wang et al., 2006; Narushima et al., 2007).

The interaction between dopamine and ACh is important in the regulation of MSN excitability and plasticity. It appears that in vitro cortical inputs first activate striatal GABAergic FS interneurons, then ChIs, and finally MSNs (Fino et al., 2008). This order of events provides a facilitating effect on the MSNs while they receive cortical information and so define the direction of the plasticity (Deffains & Bergman, 2015).

High‐frequency stimulation of cortical or thalamic afferents that synapse onto ChIs leads to an early monosynaptic glutamate‐dependent depolarization (EPSP) followed by an intrastriatal disynaptic GABAergic hyperpolarization (IPSP). In the presence of a GABAergic antagonist, induction of LTP depends on a rise in intracellular calcium and the activation of dopamine D1/D5 but not D2 receptors (Suzuki et al., 2001; Bonsi et al., 2004; Oswald et al., 2015). Moreover, in the absence of a GABAergic antagonist, the LTP of IPSPs recorded in ChIs is presynaptically mediated. The amplitude of each unitary induced IPSP is the same whereas their frequency increases (Suzuki et al., 2001; Miura et al., 2002). Other experiments suggest that the direction of STDP is determined by the rheobase of the ChIs. If the minimal current amplitude to evoke an action potential is low, LTD is observed in the recorded ChI, whereas LTP is induced if the ChI has a high rheobase (Fino et al., 2008; Fino & Venance, 2011).

The study of plasticity of cortical input to striatal GABAergic interneurons is limited due to their low population prevalence and cellular variability. So far, there are a few studies describing STDP on FS or PLTS‐NOS expressing interneurons (Fino et al., 2008, 2009). However, with the help of transgenic mice targeting specific interneurons, in the near future, the knowledge in this field will grow.

ACh and striatal microcircuits

Tonically active ChIs are central in any analysis of the striatal microcircuits and perhaps should be considered within a functional relevant microcircuit. In order to be able to clearly isolate neuronal microcircuits in behaving animals, technical advances are needed. The study of neuronal ensembles was originated by the analysis of the spatiotemporal organization of groups of neurons. To perform the mathematical analyses to reveal interacting neuronal ensembles as multidimensional microcircuits, many neurons should be recorded at once (Yuste, 2015; Carrillo‐Reid et al., 2017). Although single cell studies have been valuable revealing direct postsynaptic actions, sometimes conflicting interpretations can occur using the recordings of many interacting cells (Carrillo‐Reid et al., 2011). In recent years, these calcium‐imaging techniques have provided the most powerful tool to study spontaneous or drug‐induced neuronal modulation of ≈60–80 striatal neurons for at least 20 min without losing the single cell resolution (Carrillo‐Reid et al., 2008).

In the section Influence of cholinergic interneurons…GABAergic interneurons’, we described that the stimulation of striatal ChIs through nAChRs activation excites GABAergic interneurons that in turn induce recurrent inhibition in themselves and nearby ChIs (Sullivan et al., 2008). This effect could conceivably impact the activity in the whole population of striatal neurons. To study this possibility, Plata et al. (2013) artificially increased activity in the whole population of striatal neurons by bath application of NMDA or a previous chronic dopamine depletion. Under these conditions, it is clear that bath application of 1 μm nicotine clearly inhibits the hyperactive microcircuits.

Excitatory striatal activation of MSNs mediated by mAChRs has also been reported (Lv et al., 2017). The activation of M1 receptors enhances a persistent sodium current that can synchronize a large population of MSNs (Carrillo‐Reid et al., 2009). Moreover, M1 receptor activation inhibits the persistent KV7‐potassium or the M‐current in the dendritic/spine compartment of MSNs (Perez‐Ramirez et al., 2015) and as expected, a specific antagonist of M1 receptors also decreases striatal neuronal activity (Hernandez‐Flores et al., 2015). The influence of ChI on Kv7 channels is relevant, since these channels are widely expressed and are known to control neuronal excitability, the resting membrane potential, the spiking threshold, and to set the firing frequency within the burst and the subsequent hyperpolarization that follows a burst (Greene & Hoshi, 2017).

Movement disorders related to cholinergic interneurons

Impairment of striatal ChIs is central in the production of movement disorders (Pisani et al., 2007); altered cholinergic signaling is seen in a diverse class of syndromes that include Parkinson's disease (PD; Brichta et al., 2013; Kalia et al., 2013; Ztaou et al., 2016), dystonia (Peterson et al., 2010; Eskow Jaunarajs et al., 2015; Scarduzio et al., 2017), Tourette's syndrome (Xu et al., 2015; Albin et al., 2017), and Huntington's disease (Di Filippo et al., 2007).

Parkinson's disease is a common neurological disorder characterized by a decreased dopamine level. Early clinical and experimental studies revealed that PD was also characterized by increased striatal extracellular levels of ACh (Barbeau, 1962; Cachope & Cheer, 2014). Indeed, the earliest pharmacological treatment of PD consisted of administration of anti‐cholinergic agents (e.g., weak antimuscarinic diphenylhydramine, benztropine, orphenadrine; Fahn, 2014). However, the cumulative effect of anti‐cholinergic medication ‘anti‐cholinergic burden’, and the ‘anti‐cholinergic risk’ associated with a decrease in the use of anti‐cholinergic in old hospitalized patients. In a study of databases reporting side effects of anti‐cholinergics, Salahudeen et al. (2015) compiled a list of those anti‐cholinergics frequently prescribed and indicated that medicated patients suffer more frequent falls and hip fractures, increased dyskinesias, and suffer from hallucinations, blurry vision, and memory impairment than non‐medicated patients.

The elevation of cholinergic signaling in PD is directly related to the alterations in ChI spiking (Tanimura et al., 2018). As described before, M4 autoreceptors in ChIs slow firing rate and ACh release (Zhang et al., 2002b). In the rodent model of PD, dopamine depletion induces an upregulation of RGS4‐dependent processes that result in decreased M4 signaling in ChI (Ding et al., 2006). Alternative RGS modulation of ACh release might aid future treatment of patients. Experiments using the same animal model of PD report that halorhodopsin photoinhibition of ChIs in mice reduces akinesia, bradykinesia, and sensory motor neglect; however, in wild‐type mice, the specific striatal blockade of M1 and M4 receptors has a similar effect. This suggests that the main participants in the absence of ACh are likely the M1 and M4 receptors since specific striatal blockade of M1 and M4 receptors has a similar effect (Ztaou et al., 2016). These results agree with the electrophysiological studies of muscarinic and dopaminergic interactions described in (Hernandez‐Flores et al., 2015).

Recently Burbulla et al. (2017), using long‐term cultures of human‐induced pluripotent stem cells‐derived dopamine neurons, has demonstrated a toxic cascade triggered by dysfunctional mitochondria that can induce neuronal pathological changes and cellular dysfunctions observed in PD. Now, research is centered on whether the same toxic mitochondrial intracellular cascade is present in the genetic and idiopathic forms of the disease. More work may eventually demonstrate the primary cause of SNc dopamine neuron death.

Dystonia involves intermittent or sustained abnormal involuntary muscle contractions that produce twisting postures in the absence of other neurological signs. Repetitive movement and uncontrolled muscle contractions can start early in childhood (Valente et al., 1998; Klein & Fahn, 2013). Early onset of dystonia is a genetically determined mutation in the gene TOR1A (Sciamanna et al., 2012). As in PD, the reciprocal modulation between dopamine and ACh is at the center of dystonia. For instance, high doses of anti‐cholinergics (trihexyphenidyl) are used in the treatment of this disease (Burke et al., 1986). Electrophysiological experiments in ChIs of mice overexpressing mutant torsin A show that the sensitivity of a D2 agonist‐mediated inhibition of Cav2.2 N‐type current is increased. Following D2 agonists, a reduction in mAHP and threshold for action potentials is expected (Sciamanna et al., 2011). In mice with a conditional knockout of the dystonia 1 protein, the activation of thalamostriatal inputs induces a short pause and increased rebound activity in ChIs that could result from a postsynaptic increase and a presynaptic decrease in M1 and M2‐dependent currents (Sciamanna et al., 2012).

Gilles de la Tourette's syndrome is a neurodevelopmental disorder characterized by motor and phonic tics, usually measured by the Yale Global Tic Severity Scale (Leckman et al., 1989). In the last few years, several advances have been achieved toward the understanding of the neuropathology of this syndrome.

The participation of ChIs in this syndrome is supported by postmortem findings of a significant 49% loss of cholinergic and 42% loss of parvalbumin‐positive FS interneurons with a no significant change in ≈ 20% in DARPP‐32 expression in MSNs (Kataoka et al., 2010); however, targeted toxin lesion of ChIs in the dorsolateral striatum of adult mice fails to show any abnormal stereotypes (Xu et al., 2015). Moreover, the radiotracer [18F] fluoroethoxy‐benzovesamicol that is successfully used to image overexpressed vAChT in mice (Janickova et al., 2017) failed to detect changes in the number of ChIs in Tourette's syndrome patients (Albin et al., 2017), perhaps obscured by the pedunculopontine cholinergic afferents.

Since stereotypy is regarded as a predominant aspect of this syndrome, using cocaine‐induced stereotyped behaviors to test the function of ChIs, it is observed that a lesion of ChI or blockade of mAChR (scopolamine) prolongs the time course of the stereotypy, whereas blockade of dopamine D2 receptors (raclopride) stops the stereotypy presumably by increasing the extracellular cholinergic concentration (Aliane et al., 2011). These results suggest that a restoration of cholinergic transmission may have important consequences in the arrest of stereotypy. This is supported by a decrease in stereotyped behaviors in children following the administration of a cholinesterase inhibitor (donepezil) (Cubo et al., 2008).

Pharmacological animal models of the syndrome have been produced following blockade of striatal GABAA receptors. In mice, rats, and monkeys, intrastriatal administration of specific GABAA antagonists (picrotoxin or bicuculine) induces increased activity in striatum and its outputs (i.e., subthalamic nucleus and thalamus) and motor abnormalities similar to tics (McCairn et al., 2009; Bronfeld et al., 2013), for review, see Yael et al. (2015).

Huntington's is a progressive late‐onset neurodegenerative disease characterized by psychiatric symptoms and cognitive deficit. It is caused by a CAG trinucleotide repeat in the gene encoding huntingtin. The resulting huntingtin accumulates forming inclusion bodies with other proteins, initially in neurons of striatal and cortical motor and prefrontal areas (Shepherd, 2013). In postmortem human tissue and rodent models of the disease, there is a striatal pre‐ and postsynaptic loss of GABA, glutamate, dopamine, and muscarinic acetylcholine receptors (Penney & Young, 1982; Dure et al., 1991) and a preferential degeneration of MSNs (Reiner et al., 1988) with a faster loss in iMSNs (Cha et al., 1998; Deng et al., 2004; Starr et al., 2008). Although the number of ChIs is relatively normal (Ferrante et al., 1987), these interneurons have decreased the levels of vAChT and ChAT (Smith et al., 2006). In an animal model of the disease (Q140 huntington‐like mice), Deng & Reiner (2016) studied the specific vGLUT2 thalamic inputs to ChIs. They observed a reduction in the extension of the dendritic trees, with a subsequent loss of synapses, as also reported before (Deng et al., 2013). The authors propose that a reduced thalamic excitatory drive onto iMSNs could be responsible for an initial observed hyperkinesia in mice. Then, a subsequent loss of dMSNs could lead to the permanent hypokinesia in this animal model.

In recent years, interest has shifted in somewhat different directions. Two examples: (i) attention to the posttranslational modifications of huntingtin by the covalent attachment of a small ubiquitin modifier (SUMO) protein (PIAS1). PIAS1 participates in the huntingtin accumulation of inclusion bodies and as expected, a reduction in PIAS1 prevents the formation of inclusion bodies and reduces inflammation (Ochaba et al., 2016). (ii) Attention to the participation of NMDA receptors in neuronal degeneration pointing to the molecular link between mutant huntingtin and the synaptic retrieval of the GluN3A subunit of the NMDA receptors. Mutant huntingtin redirects an intracellular store of juvenile NMDA+GluN3A to the surface of the neurons favoring neuronal loss. Overexpression of GluN3A in normal mice induced synapse loss. Moreover, as expected, the genetic ablation of GluN3A subunits improves motor performance and decreases cell loss in mutant mice (Marco et al., 2013).

Conclusions and future directions

There is an emerging idea that like dopamine, ACh is necessary at a minimum concentration to maintain striatal function. The complex distribution of the receptors for ACh and the tonic activity in the cells themselves suggests a ‘maintenance’ role. The input to these interneurons from cortex and thalamus allows them access to goal‐directed behavioral contexts (from cortex?) and to attentional and arousal internal signals (from thalamus?). The pause in firing that accompanies newly learned cues is similar in timing with the burst of dopamine activity that itself may generate the later burst of activity in the ChIs.

It is easy to imagine that these temporary changes in extracellular transmitter concentrations are a mechanism to remodel striatal functional microcircuits to adjust to the change in circumstances that initiated the pause. The intimate involvement of ACh in the long‐term changes in excitability in striatal cells in vitro is also an indication that such a scheme might be involved in the response to novel cues that are recognized as significant by the animal. In this scenario, the distribution of receptors on both cells and terminals suggests that the organization of synaptic microcircuits in the striatum might underlie the changes in functional assemblies that result in changes in behavior.

Methods to identify these functional assemblies and demonstrate their sensitivity to local transmitter concentrations are being developed. They will provide information about the detailed physiology of such changes in function and perhaps begin to make sense of the detailed receptor localizations in the striatal microcircuitry. Work on optogenetic manipulation of the ‘maintenance transmitters’ is already leading to direct tests of their role. Moreover, methods to image activity, at single cell resolution, in groups of related neurons in freely moving animals are developing. We are reaching a time when such ideas cease to be speculation and become testable hypotheses about the role of acetylcholine in animal behavior.

Conflict of interest

The authors declare no conflict of interest, financial, or otherwise.

Author contributions

N.A. and T.H.F. wrote the manuscript; M.G.M. wrote some sections and edited the manuscript; T.H.F. made the figures. G.W.A. reviewed the manuscript and provided formulation of comprehensive research goals, mentorship, and leadership.

Supporting information

 

Acknowledgements

Funding for this work was provided by the Government of Japan.

Edited by Paul Bolam. Reviewed by Paul Apiella, Jose Bargas and Margaret E. Rice.

All peer review communications can be found with the online version of the article.

References

  1. Abdi, A. , Mallet, N. , Mohamed, F.Y. , Sharott, A. , Dodson, P.D. , Nakamura, K.C. , Suri, S. , Avery S.V. et al (2015) Prototypic and arkypallidal neurons in the dopamine‐intact external globus pallidus. J. Neurosci., 35, 6667–6688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adermark, L. & Lovinger, D.M. (2007) Combined activation of L‐type Ca2+ channels and synaptic transmission is sufficient to induce striatal long‐term depression. J. Neurosci., 27, 6781–6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adermark, L. , Morud, J. , Lotfi, A. , Ericson, M. & Soderpalm, B. (2018) Acute and chronic modulation of striatal endocannabinoid‐mediated plasticity by nicotine. Addict. Biol. 10.1111/adb.12598 [Epub ahead of print]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Agnati, L.F. , Fuxe, K. , Zoli, M. , Ozini, I. , Toffano, G. & Ferraguti, F. (1986) A correlation analysis of the regional distribution of central enkephalin and beta‐endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol. Scand., 128, 201–207. [DOI] [PubMed] [Google Scholar]
  5. Akins, P.T. , Surmeier, D.J. & Kitai, S.T. (1990) Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons. Nature, 344, 240–242. [DOI] [PubMed] [Google Scholar]
  6. Albin, R.L. , Minderovic, C. & Koeppe, R.A. (2017) Normal striatal vesicular acetylcholine transporter expression in tourette syndrome. eNeuro, 4, ENEURO.0178‐17.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alcacer, C. , Andreoli, L. , Sebastianutto, I. , Jakobsson, J. , Fieblinger, T. & Cenci, M.A. (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. J. Clin. Invest., 127, 720–734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Alcantara, A.A. , Mrzljak, L. , Jakab, R.L. , Levey, A.I. , Hersch, S.M. & Goldman‐Rakic, P.S. (2001) Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto‐striatal pathways. J. Comp. Neurol., 434, 445–460. [DOI] [PubMed] [Google Scholar]
  9. Alcantara, A.A. , Chen, V. , Herring, B.E. , Mendenhall, J.M. & Berlanga, M.L. (2003) Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res., 986, 22–29. [DOI] [PubMed] [Google Scholar]
  10. Aldrin‐Kirk, P. , Heuer, A. , Rylander Ottosson, D. , Davidsson, M. , Mattsson, B. & Bjorklund, T. (2018) Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol. Dis., 109, 148–162. [DOI] [PubMed] [Google Scholar]
  11. Aliane, V. , Perez, S. , Bohren, Y. , Deniau, J.M. & Kemel, M.L. (2011) Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies. Brain, 134, 110–118. [DOI] [PubMed] [Google Scholar]
  12. Alloway, K.D. , Smith, J.B. , Mowery, T.M. & Watson, G.D.R. (2017) Sensory processing in the dorsolateral striatum: the contribution of thalamostriatal pathways. Front. Syst. Neurosci., 11, 53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Amilhon, B. , Lepicard, E. , Renoir, T. , Mongeau, R. , Popa, D. , Poirel, O. , Miot, S. , Gras C. et al (2010) VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J. Neurosci., 30, 2198–2210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Anderson, G.R. , Posokhova, E. & Martemyanov, K.A. (2009) The R7 RGS protein family: multi‐subunit regulators of neuronal G protein signaling. Cell Biochem. Biophys., 54, 33–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Aosaki, T. & Kawaguchi, Y. (1996) Actions of substance P on rat neostriatal neurons in vitro . J. Neurosci., 16, 5141–5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Aosaki, T. , Kimura, M. & Graybiel, A.M. (1995) Temporal and spatial characteristics of tonically active neurons of the primate's striatum. J. Neurophysiol., 73, 1234–1252. [DOI] [PubMed] [Google Scholar]
  17. Aosaki, T. , Kiuchi, K. & Kawaguchi, Y. (1998) Dopamine D1‐like receptor activation excites rat striatal large aspiny neurons in vitro. J. Neurosci., 18, 5180–5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Apicella, P. (2002) Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events. Eur. J. Neurosci., 16, 2017–2026. [DOI] [PubMed] [Google Scholar]
  19. Apicella, P. (2017) The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals? Neuroscience, 360, 81–94. [DOI] [PubMed] [Google Scholar]
  20. Arbuthnott, G.W. & Wickens, J. (2007) Space, time and dopamine. Trends Neurosci., 30, 62–69. [DOI] [PubMed] [Google Scholar]
  21. Assous, M. , Kaminer, J. , Shah, F. , Garg, A. , Koos, T. & Tepper, J.M. (2017) Differential processing of thalamic information via distinct striatal interneuron circuits. Nat. Commun., 8, 15860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Atallah, H.E. , McCool, A.D. , Howe, M.W. & Graybiel, A.M. (2014) Neurons in the ventral striatum exhibit cell‐type‐specific representations of outcome during learning. Neuron, 82, 1145–1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Atwood, B.K. , Lovinger, D.M. & Mathur, B.N. (2014) Presynaptic long‐term depression mediated by G‐coupled receptors. Trends Neurosci., 37, 663–673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Azam, L. , Winzer‐Serhan, U. & Leslie, F.M. (2003) Co‐expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons. Neuroscience, 119, 965–977. [DOI] [PubMed] [Google Scholar]
  25. Aznavour, N. , Mechawar, N. , Watkins, K.C. & Descarries, L. (2003) Fine structural features of the acetylcholine innervation in the developing neostriatum of rat. J. Comp. Neurol., 460, 280–291. [DOI] [PubMed] [Google Scholar]
  26. Banerjee, A. , Larsen, R.S. , Philpot, B.D. & Paulsen, O. (2016) Roles of Presynaptic NMDA Receptors in Neurotransmission and Plasticity. Trends Neurosci., 39, 26–39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Barbeau, A. (1962) The pathogenesis of Parkinson's disease: a new hypothesis. Can. Med. Assoc. J., 87, 802–807. [PMC free article] [PubMed] [Google Scholar]
  28. Barral, J. , Galarraga, E. & Bargas, J. (1999) Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q‐type Ca2+ channels. Brain Res. Bull., 49, 285–289. [DOI] [PubMed] [Google Scholar]
  29. Beatty, J.A. , Sullivan, M.A. , Morikawa, H. & Wilson, C.J. (2012) Complex autonomous firing patterns of striatal low‐threshold spike interneurons. J. Neurophysiol., 108, 771–781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Beatty, J.A. , Song, S.C. & Wilson, C.J. (2015) Cell‐type‐specific resonances shape the responses of striatal neurons to synaptic input. J. Neurophysiol., 113, 688–700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bell, M.I. , Richardson, P.J. & Lee, K. (1998) Characterization of the mechanism of action of tachykinins in rat striatal cholinergic interneurons. Neuroscience, 87, 649–658. [DOI] [PubMed] [Google Scholar]
  32. Bell, M.I. , Richardson, P.J. & Lee, K. (2000) Histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)‐receptor mediated action. Br. J. Pharmacol., 131, 1135–1142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Bell, M.I. , Richardson, P.J. & Lee, K. (2002) Functional and molecular characterization of metabotropic glutamate receptors expressed in rat striatal cholinergic interneurones. J. Neurochem., 81, 142–149. [DOI] [PubMed] [Google Scholar]
  34. Benarroch, E.E. (2016) Intrinsic circuits of the striatum: complexity and clinical correlations. Neurology, 86, 1531–1542. [DOI] [PubMed] [Google Scholar]
  35. Bennett, B.D. & Bolam, J.P. (1994) Synaptic input and output of parvalbumin‐immunoreactive neurons in the neostriatum of the rat. Neuroscience, 62, 707–719. [DOI] [PubMed] [Google Scholar]
  36. Bennett, B.D. & Wilson, C.J. (1998) Synaptic regulation of action potential timing in neostriatal cholinergic interneurons. J. Neurosci., 18, 8539–8549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Bennett, B.D. & Wilson, C.J. (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J. Neurosci., 19, 5586–5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Bennett, B.D. , Callaway, J.C. & Wilson, C.J. (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci., 20, 8493–8503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Bergson, C. , Mrzljak, L. , Smiley, J.F. , Pappy, M. , Levenson, R. & Goldman‐Rakic, P.S. (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci., 15, 7821–7836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Berke, J.D. (2008) Uncoordinated firing rate changes of striatal fast‐spiking interneurons during behavioral task performance. J. Neurosci., 28, 10075–10080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Bernacer, J. , Prensa, L. & Gimenez‐Amaya, J.M. (2007) Cholinergic interneurons are differentially distributed in the human striatum. PLoS One, 2, e1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Bernard, V. , Normand, E. & Bloch, B. (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J. Neurosci., 12, 3591–3600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Bernard, V. , Laribi, O. , Levey, A.I. & Bloch, B. (1998) Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J. Neurosci., 18, 10207–10218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Bevan, M.D. , Booth, P.A. , Eaton, S.A. & Bolam, J.P. (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J. Neurosci., 18, 9438–9452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Blomeley, C. & Bracci, E. (2005) Excitatory effects of serotonin on rat striatal cholinergic interneurones. J. Physiol., 569, 715–721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Bock, A. , Schrage, R. & Mohr, K. (2017) Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology, 136, 427–437. [DOI] [PubMed] [Google Scholar]
  47. Bolam, J.P. & Ellender, T.J. (2016) Histamine and the striatum. Neuropharmacology, 106, 74–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Bolam, J.P. , Ingham, C.A. & Smith, A.D. (1984a) The section‐Golgi‐impregnation procedure–3. Combination of Golgi‐impregnation with enzyme histochemistry and electron microscopy to characterize acetylcholinesterase‐containing neurons in the rat neostriatum. Neuroscience, 12, 687–709. [DOI] [PubMed] [Google Scholar]
  49. Bolam, J.P. , Wainer, B.H. & Smith, A.D. (1984b) Characterization of cholinergic neurons in the rat neostriatum – a combination of choline‐acetyltransferase immunocytochemistry, golgi‐impregnation and electron‐microscopy. Neuroscience, 12, 711–718. [DOI] [PubMed] [Google Scholar]
  50. Bolam, J.P. , Ingham, C.A. , Izzo, P.N. , Levey, A.I. , Rye, D.B. , Smith, A.D. & Wainer, B.H. (1986) Substance P‐containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res., 397, 279–289. [DOI] [PubMed] [Google Scholar]
  51. Bonsi, P. , De Persis, C. , Calabresi, P. , Bernardi, G. & Pisani, A. (2004) Coordinate high‐frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons. Learn Memory, 11, 755–760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Bonsi, P. , Cuomo, D. , Ding, J. , Sciamanna, G. , Ulrich, S. , Tscherter, A. , Bernardi, G. , Surmeier D.J. et al (2007) Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5‐HT 2C, 5‐HT6, and 5‐HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology, 32, 1840–1854. [DOI] [PubMed] [Google Scholar]
  53. Bradfield, L.A. , Bertran‐Gonzalez, J. , Chieng, B. & Balleine, B.W. (2013) The thalamostriatal pathway and cholinergic control of goal‐directed action: interlacing new with existing learning in the striatum. Neuron, 79, 153–166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Brichta, L. , Greengard, P. & Flajolet, M. (2013) Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems. Trends Neurosci., 36, 543–554. [DOI] [PubMed] [Google Scholar]
  55. Brimblecombe, K.R. & Cragg, S.J. (2017) The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci., 8, 235–242. [DOI] [PubMed] [Google Scholar]
  56. Brittain, J.S. & Brown, P. (2014) Oscillations and the basal ganglia: motor control and beyond. NeuroImage, 85(Pt 2), 637–647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Bronfeld, M. , Yael, D. , Belelovsky, K. & Bar‐Gad, I. (2013) Motor tics evoked by striatal disinhibition in the rat. Front. Syst. Neurosci., 7, 50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Buot, A. & Yelnik, J. (2012) Functional anatomy of the basal ganglia: limbic aspects. Rev. Neurol. (Paris), 168, 569–575. [DOI] [PubMed] [Google Scholar]
  59. Burbulla, L.F. , Song, P. , Mazzulli, J.R. , Zampese, E. , Wong, Y.C. , Jeon, S. , Santos, D.P. , Blanz J. et al (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 357, 1255–1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Burke, R.E. , Fahn, S. & Marsden, C.D. (1986) Torsion dystonia: a double‐blind, prospective trial of high‐dosage trihexyphenidyl. Neurology, 36, 160–164. [DOI] [PubMed] [Google Scholar]
  61. Burke, D.A. , Rotstein, H.G. & Alvarez, V.A. (2017) Striatal local circuitry: a new framework for lateral inhibition. Neuron, 96, 267–284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Cabrera‐Vera, T.M. , Hernandez, S. , Earls, L.R. , Medkova, M. , Sundgren‐Andersson, A.K. , Surmeier, D.J. & Hamm, H.E. (2004) RGS9‐2 modulates D2 dopamine receptor‐mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proc. Natl. Acad. Sci. USA, 101, 16339–16344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Cachope, R. , Mateo, Y. , Mathur, B.N. , Irving, J. , Wang, H.L. , Morales, M. , Lovinger, D.M. & Cheer, J.F. (2012) Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep., 2, 33–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Cachope, R. & Cheer, J.F. (2014) Local control of striatal dopamine release. Front. Behav. Neurosci., 8, 188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Calabresi, P. , Lacey, M.G. & North, R.A. (1989) Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br. J. Pharmacol., 98, 135–140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Calabresi, P. , Maj, R. , Pisani, A. , Mercuri, N.B. & Bernardi, G. (1992) Long‐term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci., 12, 4224–4233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Calabresi, P. , Centonze, D. , Gubellini, P. , Pisani, A. & Bernardi, G. (1998a) Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses. Eur. J. Neurosci., 10, 3020–3023. [DOI] [PubMed] [Google Scholar]
  68. Calabresi, P. , Centonze, D. , Gubellini, P. , Pisani, A. & Bernardi, G. (1998b) Endogenous ACh enhances striatal NMDA‐responses via M1‐like muscarinic receptors and PKC activation. Eur. J. Neurosci., 10, 2887–2895. [DOI] [PubMed] [Google Scholar]
  69. Calabresi, P. , Centonze, D. , Pisani, A. , Sancesario, G. , North, R.A. & Bernardi, G. (1998c) Muscarinic IPSPs in rat striatal cholinergic interneurones. J. Physiol., 510(Pt 2), 421–427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Calabresi, P. , Centonze, D. , Gubellini, P. & Bernardi, G. (1999a) Activation of M1‐like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology, 38, 323–326. [DOI] [PubMed] [Google Scholar]
  71. Calabresi, P. , Centonze, D. , Gubellini, P. , Marfia, G.A. & Bernardi, G. (1999b) Glutamate‐triggered events inducing corticostriatal long‐term depression. J. Neurosci., 19, 6102–6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Calabresi, P. , Centonze, D. , Gubellini, P. , Marfia, G.A. , Pisani, A. , Sancesario, G. & Bernardi, G. (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog. Neurogibol., 61, 231–265. [DOI] [PubMed] [Google Scholar]
  73. Campos, F. , Alfonso, M. & Duran, R. (2010) In vivo modulation of alpha7 nicotinic receptors on striatal glutamate release induced by anatoxin‐A. Neurochem. Int., 56, 850–855. [DOI] [PubMed] [Google Scholar]
  74. Carrillo‐Reid, L. , Tecuapetla, F. , Tapia, D. , Hernandez‐Cruz, A. , Galarraga, E. , Drucker‐Colin, R. & Bargas, J. (2008) Encoding network states by striatal cell assemblies. J. Neurophysiol., 99, 1435–1450. [DOI] [PubMed] [Google Scholar]
  75. Carrillo‐Reid, L. , Tecuapetla, F. , Vautrelle, N. , Hernandez, A. , Vergara, R. , Galarraga, E. & Bargas, J. (2009) Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons. J. Neurophysiol., 102, 682–690. [DOI] [PubMed] [Google Scholar]
  76. Carrillo‐Reid, L. , Hernandez‐Lopez, S. , Tapia, D. , Galarraga, E. & Bargas, J. (2011) Dopaminergic modulation of the striatal microcircuit: receptor‐specific configuration of cell assemblies. J. Neurosci., 31, 14972–14983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Carrillo‐Reid, L. , Yang, W. , Kang Miller, J.E. , Peterka, D.S. & Yuste, R. (2017) Imaging and optically manipulating neuronal ensembles. Ann. Rev. Biophys., 46, 271–293. [DOI] [PubMed] [Google Scholar]
  78. Caulfield, M.P. (1993) Muscarinic receptors–characterization, coupling and function. Pharmacol. Ther., 58, 319–379. [DOI] [PubMed] [Google Scholar]
  79. Centonze, D. , Gubellini, P. , Bernardi, G. & Calabresi, P. (1999) Permissive role of interneurons in corticostriatal synaptic plasticity. Brain Res. Brain Res. Rev., 31, 1–5. [DOI] [PubMed] [Google Scholar]
  80. Centonze, D. , Picconi, B. , Gubellini, P. , Bernardi, G. & Calabresi, P. (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci., 13, 1071–1077. [DOI] [PubMed] [Google Scholar]
  81. Centonze, D. , Grande, C. , Saulle, E. , Martin, A.B. , Gubellini, P. , Pavon, N. , Pisani, A. , Bernardi G. et al (2003a) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci., 23, 8506–8512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Centonze, D. , Grande, C. , Usiello, A. , Gubellini, P. , Erbs, E. , Martin, A.B. , Pisani, A. , Tognazzi N. et al (2003b) Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J. Neurosci., 23, 6245–6254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Cepeda, C. , Itri, J.N. , Flores‐Hernandez, J. , Hurst, R.S. , Calvert, C.R. & Levine, M.S. (2001) Differential sensitivity of medium‐ and large‐sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur. J. Neurosci., 14, 1577–1589. [DOI] [PubMed] [Google Scholar]
  84. Cha, J.H. , Kosinski, C.M. , Kerner, J.A. , Alsdorf, S.A. , Mangiarini, L. , Davies, S.W. , Penney, J.B. , Bates G.P. et al (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc. Natl. Acad. Sci. USA, 95, 6480–6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Chang, H.T. & Kita, H. (1992) Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res., 574, 307–311. [DOI] [PubMed] [Google Scholar]
  86. Chuhma, N. , Tanaka, K.F. , Hen, R. & Rayport, S. (2011) Functional connectome of the striatal medium spiny neuron. J. Neurosci., 31, 1183–1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Chuhma, N. , Mingote, S. , Moore, H. & Rayport, S. (2014) Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron, 81, 901–912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Conn, P.J. , Battaglia, G. , Marino, M.J. & Nicoletti, F. (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat. Rev. Neurosci., 6, 787–798. [DOI] [PubMed] [Google Scholar]
  89. Consolo, S. , Baronio, P. , Guidi, G. & Di Chiara, G. (1996) Role of the parafascicular thalamic nucleus and N‐methyl‐D‐aspartate transmission in the D1‐dependent control of in vivo acetylcholine release in rat striatum. Neuroscience, 71, 157–165. [DOI] [PubMed] [Google Scholar]
  90. Contant, C. , Umbriaco, D. , Garcia, S. , Watkins, K.C. & Descarries, L. (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience, 71, 937–947. [DOI] [PubMed] [Google Scholar]
  91. Coppola, J.J. , Ward, N.J. , Jadi, M.P. & Disney, A.A. (2016) Modulatory compartments in cortex and local regulation of cholinergic tone. J. Physiol. Paris, 110, 3–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Crittenden, J.R. & Graybiel, A.M. (2011) Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat., 5, 59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Crittenden, J.R. , Lacey, C.J. , Weng, F.J. , Garrison, C.E. , Gibson, D.J. , Lin, Y. & Graybiel, A.M. (2017) Striatal cholinergic interneurons modulate spike‐timing in striosomes and matrix by an amphetamine‐sensitive mechanism. Front. Neuroanat., 11, 20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Cubo, E. , Fernandez Jaen, A. , Moreno, C. , Anaya, B. , Gonzalez, M. & Kompoliti, K. (2008) Donepezil use in children and adolescents with tics and attention‐deficit/hyperactivity disorder: an 18‐week, single‐center, dose‐escalating, prospective, open‐label study. Clin. Ther., 30, 182–189. [DOI] [PubMed] [Google Scholar]
  95. Dautan, D. , Huerta‐Ocampo, I. , Witten, I.B. , Deisseroth, K. , Bolam, J.P. , Gerdjikov, T. & Mena‐Segovia, J. (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J. Neurosci., 34, 4509–4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Deffains, M. & Bergman, H. (2015) Striatal cholinergic interneurons and cortico‐striatal synaptic plasticity in health and disease. Mov. Disord., 30, 1014–1025. [DOI] [PubMed] [Google Scholar]
  97. Dencker, D. , Thomsen, M. , Wortwein, G. , Weikop, P. , Cui, Y. , Jeon, J. , Wess, J. & Fink‐Jensen, A. (2012) Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse and Parkinson's disease. ACS Chem. Neurosci., 3, 80–89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Deng, Y.P. , Albin, R.L. , Penney, J.B. , Young, A.B. , Anderson, K.D. & Reiner, A. (2004) Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study. J. Chem. Neuroanat., 27, 143–164. [DOI] [PubMed] [Google Scholar]
  99. Deng, P. , Zhang, Y. & Xu, Z.C. (2007) Involvement of I(h) in dopamine modulation of tonic firing in striatal cholinergic interneurons. J. Neurosci., 27, 3148–3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Deng, Y.P. & Reiner, A. (2016) Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input. J. Comp. Neurol., 524, 3518– 3529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Deng, Y.P. , Shelby, E. & Reiner, A.J. (2010) Immunohistochemical localization of AMPA‐type glutamate receptor subunits in the striatum of rhesus monkey. Brain Res., 1344, 104–123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Deng, Y.P. , Wong, T. , Bricker‐Anthony, C. , Deng, B. & Reiner, A. (2013) Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice. Neurobiol. Dis., 60, 89–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Descarries, L. , Gisiger, V. & Steriade, M. (1997) Diffuse transmission by acetylcholine in the CNS. Prog. Neurogibol., 53, 603–625. [DOI] [PubMed] [Google Scholar]
  104. Descarries, L. & Mechawar, N. (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res., 125, 27–47. [DOI] [PubMed] [Google Scholar]
  105. Di Chiara, G. , Morelli, M. & Consolo, S. (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci., 17, 228–233. [DOI] [PubMed] [Google Scholar]
  106. Di Filippo, M. , Tozzi, A. , Picconi, B. , Ghiglieri, V. & Calabresi, P. (2007) Plastic abnormalities in experimental Huntington's disease. Curr. Opin. Pharmacol., 7, 106–111. [DOI] [PubMed] [Google Scholar]
  107. Digby, G.J. , Shirey, J.K. & Conn, P.J. (2010) Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders. Mol. BioSyst., 6, 1345–1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Ding, J. , Guzman, J.N. , Tkatch, T. , Chen, S. , Goldberg, J.A. , Ebert, P.J. , Levitt, P. , Wilson C.J. et al (2006) RGS4‐dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci., 9, 832–842. [DOI] [PubMed] [Google Scholar]
  109. Ding, J.B. , Guzman, J.N. , Peterson, J.D. , Goldberg, J.A. & Surmeier, D.J. (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron, 67, 294–307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Ding, Y. , Won, L. , Britt, J.P. , Lim, S.A. , McGehee, D.S. & Kang, U.J. (2011) Enhanced striatal cholinergic neuronal activity mediates L‐DOPA‐induced dyskinesia in parkinsonian mice. Proc. Natl. Acad. Sci. USA, 108, 840–845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Doig, N.M. , Moss, J. & Bolam, J.P. (2010) Cortical and thalamic innervation of direct and indirect pathway medium‐sized spiny neurons in mouse striatum. J. Neurosci., 30, 14610–14618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Doig, N.M. , Magill, P.J. , Apicella, P. , Bolam, J.P. & Sharott, A. (2014) Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J. Neurosci., 34, 3101–3117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Dube, L. , Smith, A.D. & Bolam, J.P. (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium‐size spiny neurons in the rat neostriatum. J. Comp. Neurol., 267, 455–471. [DOI] [PubMed] [Google Scholar]
  114. Dunant, Y. & Gisiger, V. (2017) Ultrafast and slow cholinergic transmission. different involvement of acetylcholinesterase molecular forms. Molecules, 22, 1–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Dunwiddie, T.V. & Masino, S.A. (2001) The role and regulation of adenosine in the central nervous system. Ann. Rev. Neurosci., 24, 31–55. [DOI] [PubMed] [Google Scholar]
  116. Dure, L.S. , Young, A.B. & Penney, J.B. (1991) Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease. Ann. Neurol., 30, 785–793. [DOI] [PubMed] [Google Scholar]
  117. Eglen, R.M. (2006) Muscarinic receptor subtypes in neuronal and non‐neuronal cholinergic function. Auton. Autacoid Pharmacol., 26, 219–233. [DOI] [PubMed] [Google Scholar]
  118. Elghaba, R. , Vautrelle, N. & Bracci, E. (2016) Mutual control of cholinergic and low‐threshold spike interneurons in the striatum. Front. Cell. Neurosci., 10, 111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. English, D.F. , Ibanez‐Sandoval, O. , Stark, E. , Tecuapetla, F. , Buzsaki, G. , Deisseroth, K. , Tepper, J.M. & Koos, T. (2012) GABAergic circuits mediate the reinforcement‐related signals of striatal cholinergic interneurons. Nat. Neurosci., 15, 123–130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Eskow Jaunarajs, K.L. , Bonsi, P. , Chesselet, M.F. , Standaert, D.G. & Pisani, A. (2015) Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog. Neurogibol., 127–128, 91–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Exley, R. & Cragg, S.J. (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br. J. Pharmacol., 153(Suppl. 1), S283–S297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Fahn, S. (2014) The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov. Disord., 30, 4–18. [DOI] [PubMed] [Google Scholar]
  123. Faust, T.W. , Assous, M. , Shah, F. , Tepper, J.M. & Koos, T. (2015) Novel fast adapting interneurons mediate cholinergic‐induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur. J. Neurosci., 42, 1764–1774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Faust, T.W. , Assous, M. , Tepper, J.M. & Koos, T. (2016) Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons. J. Neurosci., 36, 9505–9511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Feingold, J. , Gibson, D.J. , DePasquale, B. & Graybiel, A.M. (2015) Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc. Natl. Acad. Sci. USA, 112, 13687–13692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Ferrante, R.J. , Beal, M.F. , Kowall, N.W. , Richardson, E.P. Jr & Martin, J.B. (1987) Sparing of acetylcholinesterase‐containing striatal neurons in Huntington's disease. Brain Res., 411, 162–166. [DOI] [PubMed] [Google Scholar]
  127. Figueroa, A. , Galarraga, E. & Bargas, J. (2002) Muscarinic receptors involved in the subthreshold cholinergic actions of neostriatal spiny neurons. Synapse, 46, 215–223. [DOI] [PubMed] [Google Scholar]
  128. Fino, E. & Venance, L. (2011) Spike‐timing dependent plasticity in striatal interneurons. Neuropharmacology, 60, 780–788. [DOI] [PubMed] [Google Scholar]
  129. Fino, E. , Deniau, J.M. & Venance, L. (2008) Cell‐specific spike‐timing‐dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J. Physiol., 586, 265–282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Fino, E. , Paille, V. , Deniau, J.M. & Venance, L. (2009) Asymmetric spike‐timing dependent plasticity of striatal nitric oxide‐synthase interneurons. Neuroscience, 160, 744–754. [DOI] [PubMed] [Google Scholar]
  131. Foster, D.J. , Gentry, P.R. , Lizardi‐Ortiz, J.E. , Bridges, T.M. , Wood, M.R. , Niswender, C.M. , Sulzer, D. , Lindsley C.W. et al (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J. Neurosci., 34, 3253–3262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Freund, T.F. , Powell, J.F. & Smith, A.D. (1984) Tyrosine hydroxylase‐immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience, 13, 1189–1215. [DOI] [PubMed] [Google Scholar]
  133. Fuxe, K. , Borroto‐Escuela, D.O. , Romero‐Fernandez, W. , Diaz‐Cabiale, Z. , Rivera, A. , Ferraro, L. , Tanganelli, S. , Tarakanov A.O. et al (2012) Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal‐glial networks. Front. Physiol., 3, 136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Fuxe, K. , Borroto‐Escuela, D.O. , Romero‐Fernandez, W. , Zhang, W.B. & Agnati, L.F. (2013) Volume transmission and its different forms in the central nervous system. Chin. J. Integr. Med., 19, 323–329. [DOI] [PubMed] [Google Scholar]
  135. Galarraga, E. , Hernandez‐Lopez, S. , Reyes, A. , Miranda, I. , Bermudez‐Rattoni, F. , Vilchis, C. & Bargas, J. (1999) Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J. Neurosci., 19, 3629–3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Garcao, P. , Oliveira, C.R. , Cunha, R.A. & Agostinho, P. (2014) Subsynaptic localization of nicotinic acetylcholine receptor subunits: a comparative study in the mouse and rat striatum. Neurosci. Lett., 566, 106–110. [DOI] [PubMed] [Google Scholar]
  137. Girasole, A.E. & Nelson, A.B. (2015) Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov. Disord., 30, 1306–1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Gittis, A.H. , Nelson, A.B. , Thwin, M.T. , Palop, J.J. & Kreitzer, A.C. (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J. Neurosci., 30, 2223–2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Goldberg, J.A. & Wilson, C.J. (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium‐activated potassium currents in striatal cholinergic interneurons. J. Neurosci., 25, 10230–10238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Goldberg, J.A. & Reynolds, J.N. (2011) Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience, 198, 27–43. [DOI] [PubMed] [Google Scholar]
  141. Goldberg, J.A. & Wilson, C.J. (2017). The cholinergic interneuron of the striatum In Steiner H. & Tseng K.Y. (Eds), Handbook of Basal Ganglia Structure and Function, 2nd edn Academic Press, Cambridge, MA, pp. 137–155. [Google Scholar]
  142. Goldberg, J.A. , Ding, J.B. & Surmeier, D.J. (2012) Muscarinic modulation of striatal function and circuitry In Fryer A. & Christopoulos A.N.N. (Eds), Handbook of Experimental Pharmacology. Springer, Berlin, pp. 223–241. [DOI] [PubMed] [Google Scholar]
  143. Gonzales, K.K. , Pare, J.F. , Wichmann, T. & Smith, Y. (2013) GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J. Comp. Neurol., 521, 2502–2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Gonzales, K.K. & Smith, Y. (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann. N. Y. Acad. Sci., 1349, 1–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Gotti, C. , Clementi, F. , Fornari, A. , Gaimarri, A. , Guiducci, S. , Manfredi, I. , Moretti, M. , Pedrazzi P. et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol., 78, 703–711. [DOI] [PubMed] [Google Scholar]
  146. Govindaiah, G. , Wang, Y. & Cox, C.L. (2010) Substance P selectively modulates GABA(A) receptor‐mediated synaptic transmission in striatal cholinergic interneurons. Neuropharmacology, 58, 413–422. [DOI] [PubMed] [Google Scholar]
  147. Gras, C. , Herzog, E. , Bellenchi, G.C. , Bernard, V. , Ravassard, P. , Pohl, M. , Gasnier, B. , Giros B. et al (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci., 22, 5442–5451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Graybiel, A.M. & Ragsdale, C.W. Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl. Acad. Sci. USA, 75, 5723–5726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Graybiel, A.M. (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol., 5, 733–741. [DOI] [PubMed] [Google Scholar]
  150. Greene, D.L. & Hoshi, N. (2017) Modulation of Kv7 channels and excitability in the brain. Cell. Mol. Life Sci., 74, 495–508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Guo, Q. , Wang, D. , He, X. , Feng, Q. , Lin, R. , Xu, F. , Fu, L. & Luo, M. (2015) Whole‐brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One, 10, e0123381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Guzman, M.S. , De Jaeger, X. , Raulic, S. , Souza, I.A. , Li, A.X. , Schmid, S. , Menon, R.S. , Gainetdinov R.R. et al (2011) Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic‐glutamatergic co‐transmission. PLoS Biol., 9, e1001194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Haga, T. (2013) Molecular properties of muscarinic acetylcholine receptors. Proc. Jpn Acad. Ser. B Phys. Biol. Sci., 89, 226–256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Hernandez‐Echeagaray, E. , Galarraga, E. & Bargas, J. (1998) 3‐Alpha‐chloro‐imperialine, a potent blocker of cholinergic presynaptic modulation of glutamatergic afferents in the rat neostriatum. Neuropharmacology, 37, 1493–1502. [DOI] [PubMed] [Google Scholar]
  155. Hernandez‐Flores, T. , Hernandez‐Gonzalez, O. , Perez‐Ramirez, M.B. , Lara‐Gonzalez, E. , Arias‐Garcia, M.A. , Duhne, M. , Perez‐Burgos, A. , Prieto G.A. et al (2015) Modulation of direct pathway striatal projection neurons by muscarinic M(4)‐type receptors. Neuropharmacology, 89, 232–244. [DOI] [PubMed] [Google Scholar]
  156. Hernandez‐Gonzalez, O. , Hernandez‐Flores, T. , Prieto, G.A. , Perez‐Burgos, A. , Arias‐Garcia, M.A. , Galarraga, E. & Bargas, J. (2014) Modulation of Ca2+‐currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons. Purinergic Signal., 10, 269–281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Hersch, S.M. , Gutekunst, C.A. , Rees, H.D. , Heilman, C.J. & Levey, A.I. (1994) Distribution of m1‐m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype‐specific antibodies. J. Neurosci., 14, 3351–3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Hersch, S.M. & Levey, A.I. (1995) Diverse pre‐ and post‐synaptic expression of m1‐m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum. Life Sci., 56, 931–938. [DOI] [PubMed] [Google Scholar]
  159. Higley, M.J. , Soler‐Llavina, G.J. & Sabatini, B.L. (2009) Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nat. Neurosci., 12, 1121–1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Higley, M.J. , Gittis, A.H. , Oldenburg, I.A. , Balthasar, N. , Seal, R.P. , Edwards, R.H. , Lowell, B.B. , Kreitzer A.C. et al (2011) Cholinergic interneurons mediate fast VGluT3‐dependent glutamatergic transmission in the striatum. PLoS One, 6, e19155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Hnasko, T.S. & Edwards, R.H. (2012) Neurotransmitter corelease: mechanism and physiological role. Ann. Rev. Physiol., 74, 225–243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Howe, W.M. , Young, D.A. , Bekheet, G. & Kozak, R. (2016) Nicotinic receptor subtypes differentially modulate glutamate release in the dorsal medial striatum. Neurochem. Int., 100, 30–34. [DOI] [PubMed] [Google Scholar]
  163. Huerta‐Ocampo, I. , Mena‐Segovia, J. & Bolam, J.P. (2014) Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct. Funct., 219, 1787–1800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Ibanez‐Sandoval, O. , Tecuapetla, F. , Unal, B. , Shah, F. , Koos, T. & Tepper, J.M. (2010) Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase‐expressing neurons in adult mouse striatum. J. Neurosci., 30, 6999–7016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Ibanez‐Sandoval, O. , Tecuapetla, F. , Unal, B. , Shah, F. , Koos, T. & Tepper, J.M. (2011) A novel functionally distinct subtype of striatal neuropeptide Y interneuron. J. Neurosci., 31, 16757–16769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Ibanez‐Sandoval, O. , Xenias, H.S. , Tepper, J.M. & Koos, T. (2015) Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons. Neuropharmacology, 95, 468–476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Imperato, A. , Mulas, A. & Di Chiara, G. (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur. J. Pharmacol., 132, 337–338. [DOI] [PubMed] [Google Scholar]
  168. Inokawa, H. , Yamada, H. , Matsumoto, N. , Muranishi, M. & Kimura, M. (2010) Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Neuroscience, 168, 395–404. [DOI] [PubMed] [Google Scholar]
  169. Inoue, R. , Suzuki, T. , Nishimura, K. & Miura, M. (2016) Nicotinic acetylcholine receptor‐mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum. Neuropharmacology, 105, 318–328. [DOI] [PubMed] [Google Scholar]
  170. Izzo, P.N. & Bolam, J.P. (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J. Comp. Neurol., 269, 219–234. [DOI] [PubMed] [Google Scholar]
  171. Jabourian, M. , Venance, L. , Bourgoin, S. , Ozon, S. , Perez, S. , Godeheu, G. , Glowinski, J. & Kemel, M.L. (2005) Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation. Eur. J. Neurosci., 21, 3301–3309. [DOI] [PubMed] [Google Scholar]
  172. Janickova, H. , Prado, V.F. , Prado, M.A.M. , El Mestikawy, S. & Bernard, V. (2017) Vesicular acetylcholine transporter (VAChT) over‐expression induces major modifications of striatal cholinergic interneuron morphology and function. J. Neurochem., 142, 857–875. [DOI] [PubMed] [Google Scholar]
  173. Jedrzejewska‐Szmek, J. , Damodaran, S. , Dorman, D.B. & Blackwell, K.T. (2017) Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. Eur. J. Neurosci., 45, 1044–1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Jerusalinsky, D. , Kornisiuk, E. , Alfaro, P. , Quillfeldt, J. , Ferreira, A. , Rial, V.E. , Duran, R. & Cervenansky, C. (2000) Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system. Toxicon, 38, 747–761. [DOI] [PubMed] [Google Scholar]
  175. Johnson, K.A. , Mateo, Y. & Lovinger, D.M. (2017) Metabotropic glutamate receptor 2 inhibits thalamically‐driven glutamate and dopamine release in the dorsal striatum. Neuropharmacology, 117, 114–123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Jones, I.W. , Bolam, J.P. & Wonnacott, S. (2001) Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J. Comp. Neurol., 439, 235–247. [DOI] [PubMed] [Google Scholar]
  177. Kalia, L.V. , Brotchie, J.M. & Fox, S.H. (2013) Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials. Mov. Disord., 28, 131–144. [DOI] [PubMed] [Google Scholar]
  178. Karlsson, E. , Jolkkonen, M. , Mulugeta, E. , Onali, P. & Adem, A. (2000) Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie, 82, 793–806. [DOI] [PubMed] [Google Scholar]
  179. Kataoka, Y. , Kalanithi, P.S. , Grantz, H. , Schwartz, M.L. , Saper, C. , Leckman, J.F. & Vaccarino, F.M. (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J. Comp. Neurol., 518, 277–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Kawaguchi, Y. (1992) Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. J. Neurophysiol., 67, 1669–1682. [DOI] [PubMed] [Google Scholar]
  181. Kawaguchi, Y. (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci., 13, 4908–4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Kawaguchi, Y. , Wilson, C.J. , Augood, S.J. & Emson, P.C. (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci., 18, 527–535. [DOI] [PubMed] [Google Scholar]
  183. Kendall, D.A. & Yudowski, G.A. (2016) Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Front. Cell Neurosci., 10, 294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Kepecs, A. & Fishell, G. (2014) Interneuron cell types are fit to function. Nature, 505, 318–326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Kimura, H. , McGeer, P.L. , Peng, J.H. & McGeer, E.G. (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J. Comp. Neurol., 200, 151–201. [DOI] [PubMed] [Google Scholar]
  186. Kimura, M. , Rajkowski, J. & Evarts, E. (1984) Tonically discharging putamen neurons exhibit set‐dependent responses. Proc. Natl. Acad. Sci. USA, 81, 4998–5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Kimura, M. , Kato, M. & Shimazaki, H. (1990) Physiological properties of projection neurons in the monkey striatum to the globus pallidus. Exp. Brain Res., 82, 672–676. [DOI] [PubMed] [Google Scholar]
  188. Kimura, M. , Kato, M. , Shimazaki, H. , Watanabe, K. & Matsumoto, N. (1996) Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey. J. Neurophysiol., 76, 3771–3786. [DOI] [PubMed] [Google Scholar]
  189. Kita, H. (1993) GABAergic circuits of the striatum. Prog. Brain Res., 99, 51–72. [DOI] [PubMed] [Google Scholar]
  190. Kitai, S.T. & Surmeier, D.J. (1993) Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. Adv. Neurol., 60, 40–52. [PubMed] [Google Scholar]
  191. Klein, C. & Fahn, S. (2013) Translation of Oppenheim's 1911 paper on dystonia. Mov. Disord., 28, 851–862. [DOI] [PubMed] [Google Scholar]
  192. Kljakic, O. , Janickova, H. , Prado, V.F. & Prado, M.A.M. (2017) Cholinergic/glutamatergic co‐transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J. Neurochem., 142(Suppl. 2), 90–102. [DOI] [PubMed] [Google Scholar]
  193. Kondabolu, K. , Roberts, E.A. , Bucklin, M. , McCarthy, M.M. , Kopell, N. & Han, X. (2016) Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits. Proc. Natl. Acad. Sci. USA, 113, E3159–E3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Koos, T. & Tepper, J.M. (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci., 2, 467–472. [DOI] [PubMed] [Google Scholar]
  195. Koos, T. & Tepper, J.M. (2002) Dual cholinergic control of fast‐spiking interneurons in the neostriatum. J. Neurosci., 22, 529–535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Kosillo, P. , Zhang, Y.F. , Threlfell, S. & Cragg, S.J. (2016) Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb. Cortex, 26, 4160–4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Kreitzer, A.C. & Malenka, R.C. (2008) Striatal plasticity and basal ganglia circuit function. Neuron, 60, 543–554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Kreitzer, A.C. (2009) Physiology and pharmacology of striatal neurons. Ann. Rev. Neurosci., 32, 127–147. [DOI] [PubMed] [Google Scholar]
  199. Kubota, Y. & Kawaguchi, Y. (1993) Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J. Comp. Neurol., 332, 499–513. [DOI] [PubMed] [Google Scholar]
  200. Kupferschmidt, D.A. & Lovinger, D.M. (2015) Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors. J. Physiol., 593, 2295–2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Landwehrmeyer, G.B. , Standaert, D.G. , Testa, C.M. , Penney, J.B. Jr & Young, A.B. (1995) NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J. Neurosci., 15, 5297–5307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Lapper, S.R. & Bolam, J.P. (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience, 51, 533–545. [DOI] [PubMed] [Google Scholar]
  203. Le Moine, C. , Kieffer, B. , Gaveriaux‐Ruff, C. , Befort, K. & Bloch, B. (1994) Delta‐opioid receptor gene expression in the mouse forebrain: localization in cholinergic neurons of the striatum. Neuroscience, 62, 635–640. [DOI] [PubMed] [Google Scholar]
  204. Leckman, J.F. , Riddle, M.A. , Hardin, M.T. , Ort, S.I. , Swartz, K.L. , Stevenson, J. & Cohen, D.J. (1989) The Yale Global Tic Severity Scale: initial testing of a clinician‐rated scale of tic severity. J. Am. Acad. Child. Adolesc. Psychiat., 28, 566–573. [DOI] [PubMed] [Google Scholar]
  205. Lee, K. , Dixon, A.K. , Freeman, T.C. & Richardson, P.J. (1998) Identification of an ATP‐sensitive potassium channel current in rat striatal cholinergic interneurones. J. Physiol., 510(Pt 2), 441–453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Lehmann, J. , Fibiger, H.C. & Butcher, L.L. (1979) The localization of acetylcholinesterase in the corpus striatum and substantia nigra of the rat following kainic acid lesion of the corpus striatum: a biochemical and histochemical study. Neuroscience, 4, 217–225. [DOI] [PubMed] [Google Scholar]
  207. Lim, S.A. , Kang, U.J. & McGehee, D.S. (2014) Striatal cholinergic interneuron regulation and circuit effects. Front. Synaptic Neurosci., 6, 22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Liu, J.P. , He, Y.T. , Duan, X.L. , Suo, Z.W. , Yang, X. & Hu, X.D. (2017) Enhanced activities of delta subunit‐containing GABAA receptors blocked spinal long‐term potentiation and attenuated formalin‐induced spontaneous pain. Neuroscience, 371, 155–165. [DOI] [PubMed] [Google Scholar]
  209. Livingstone, P.D. & Wonnacott, S. (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem. Pharmacol., 78, 744–755. [DOI] [PubMed] [Google Scholar]
  210. Lopez‐Huerta, V.G. , Nakano, Y. , Bausenwein, J. , Jaidar, O. , Lazarus, M. , Cherassse, Y. , Garcia‐Munoz, M. & Arbuthnott, G. (2016) The neostriatum: two entities, one structure? Brain Struct. Funct., 221, 1737–1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Lovinger, D.M. , Tyler, E.C. & Merritt, A. (1993) Short‐ and long‐term synaptic depression in rat neostriatum. J. Neurophysiol., 70, 1937–1949. [DOI] [PubMed] [Google Scholar]
  212. Luo, R. , Janssen, M.J. , Partridge, J.G. & Vicini, S. (2013) Direct and GABA‐mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. J. Physiol., 591, 203–217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Lv, X. , Dickerson, J.W. , Rook, J.M. , Lindsley, C.W. , Conn, P.J. & Xiang, Z. (2017) M1 muscarinic activation induces long‐lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology, 118, 209–222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Lynch, G.S. , Lucas, P.A. & Deadwyler, S.A. (1972) The demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat. Brain Res., 45, 617–621. [DOI] [PubMed] [Google Scholar]
  215. Mallet, N. , Le Moine, C. , Charpier, S. & Gonon, F. (2005) Feedforward inhibition of projection neurons by fast‐spiking GABA interneurons in the rat striatum in vivo. J. Neurosci., 25, 3857–3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Mallet, N. , Pogosyan, A. , Marton, L.F. , Bolam, J.P. , Brown, P. & Magill, P.J. (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci., 28, 14245–14258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Mallet, N. , Micklem, B.R. , Henny, P. , Brown, M.T. , Williams, C. , Bolam, J.P. , Nakamura, K.C. & Magill, P.J. (2012) Dichotomous organization of the external globus pallidus. Neuron, 74, 1075–1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Marco, S. , Giralt, A. , Petrovic, M.M. , Pouladi, M.A. , Martinez‐Turrillas, R. , Martinez‐Hernandez, J. , Kaltenbach, L.S. , Torres‐Peraza J. et al (2013) Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat. Med., 19, 1030–1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Markram, H. , Gerstner, W. & Sjostrom, P.J. (2011) A history of spike‐timing‐dependent plasticity. Front. Synaptic Neurosci., 3, 4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Martella, G. , Platania, P. , Vita, D. , Sciamanna, G. , Cuomo, D. , Tassone, A. , Tscherter, A. , Kitada T. et al (2009) Enhanced sensitivity to group II mGlu receptor activation at corticostriatal synapses in mice lacking the familial parkinsonism‐linked genes PINK1 or Parkin. Exp. Neurol., 215, 388–396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Martone, M.E. , Armstrong, D.M. , Young, S.J. & Groves, P.M. (1992) Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum. Brain Res., 594, 253–262. [DOI] [PubMed] [Google Scholar]
  222. Mastro, K.J. , Bouchard, R.S. , Holt, H.A. & Gittis, A.H. (2014) Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci., 34, 2087–2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Matamales, M. , Gotz, J. & Bertran‐Gonzalez, J. (2016) Quantitative imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum. PLoS One, 11, e0157682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Matsuda, W. , Furuta, T. , Nakamura, K.C. , Hioki, H. , Fujiyama, F. , Arai, R. & Kaneko, T. (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci., 29, 444–453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Maurice, N. , Mercer, J. , Chan, C.S. , Hernandez‐Lopez, S. , Held, J. , Tkatch, T. & Surmeier, D.J. (2004) D2 dopamine receptor‐mediated modulation of voltage‐dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J. Neurosci., 24, 10289–10301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. McCairn, K.W. , Bronfeld, M. , Belelovsky, K. & Bar‐Gad, I. (2009) The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain, 132, 2125–2138. [DOI] [PubMed] [Google Scholar]
  227. McGeer, P.L. , McGeer, E.G. , Fibiger, H.C. & Wickson, V. (1971) Neostriatal choline acetylase and cholinesterase following selective brain lesions. Brain Res., 35, 308–314. [DOI] [PubMed] [Google Scholar]
  228. Mesulam, M.M. , Mufson, E.J. , Levey, A.I. & Wainer, B.H. (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience, 12, 669–686. [DOI] [PubMed] [Google Scholar]
  229. Miguelez, C. , Morera‐Herreras, T. , Torrecilla, M. , Ruiz‐Ortega, J.A. & Ugedo, L. (2014) Interaction between the 5‐HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front. Neural. Circuits., 8, 21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Mitrano, D.A. & Smith, Y. (2007) Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey. J. Comp. Neurol., 500, 788–806. [DOI] [PubMed] [Google Scholar]
  231. Miura, M. , Suzuki, T. & Aosaki, T. (2002). Dopaminergic Regulation of Synaptic Plasticity of Striatal Cholinergic Interneurons In Nagatsu T., Nabeshima T., McCarty R. & Goldstein D.S. (Eds), Catecholamine Research: From Molecular Insights to Clinical Medicine. Springer US, Boston, MA, pp. 191–194. [Google Scholar]
  232. Mulder, A.H. , Wardeh, G. , Hogenboom, F. & Frankhuyzen, A.L. (1984) Kappa‐ and delta‐opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature, 308, 278–280. [DOI] [PubMed] [Google Scholar]
  233. Munoz‐Manchado, A.B. , Foldi, C. , Szydlowski, S. , Sjulson, L. , Farries, M. , Wilson, C. , Silberberg, G. & Hjerling‐Leffler, J. (2016) Novel striatal GABAergic interneuron populations labeled in the 5HT3a(EGFP) mouse. Cereb. Cortex, 26, 96–105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Narushima, M. , Uchigashima, M. , Fukaya, M. , Matsui, M. , Manabe, T. , Hashimoto, K. , Watanabe, M. & Kano, M. (2007) Tonic enhancement of endocannabinoid‐mediated retrograde suppression of inhibition by cholinergic interneuron activity in the striatum. J. Neurosci., 27, 496–506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Nathanson, N.M. (2000) A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc. Natl. Acad. Sci. USA, 97, 6245–6247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Nelson, A.B. , Bussert, T.G. , Kreitzer, A.C. & Seal, R.P. (2014) Striatal cholinergic neurotransmission requires VGLUT3. J. Neurosci., 34, 8772–8777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Ochaba, J. , Monteys, A.M. , O'Rourke, J.G. , Reidling, J.C. , Steffan, J.S. , Davidson, B.L. & Thompson, L.M. (2016) PIAS1 regulates mutant Huntingtin accumulation and Huntington's disease‐associated phenotypes in vivo. Neuron, 90, 507–520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Oldenburg, I.A. & Ding, J.B. (2011) Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr. Opin. Neurobiol., 21, 425–432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Oswald, M.J. , Schulz, J.M. , Kelsch, W. , Oorschot, D.E. & Reynolds, J.N. (2015) Potentiation of NMDA receptor‐mediated transmission in striatal cholinergic interneurons. Front. Cell Neurosci., 9, 116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Ovsepian, S.V. , O'Leary, V.B. & Zaborszky, L. (2016) Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist, 22, 238–251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Pakhotin, P. & Bracci, E. (2007) Cholinergic interneurons control the excitatory input to the striatum. J. Neurosci., 27, 391–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Pancani, T. , Bolarinwa, C. , Smith, Y. , Lindsley, C.W. , Conn, P.J. & Xiang, Z. (2014) M4 mAChR‐mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS Chem. Neurosci., 5, 318–324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Patel, J.C. , Rossignol, E. , Rice, M.E. & Machold, R.P. (2012) Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat. Commun., 3, 1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Pawlak, V. & Kerr, J.N. (2008) Dopamine receptor activation is required for corticostriatal spike‐timing‐dependent plasticity. J. Neurosci., 28, 2435–2446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Penney, J.B. Jr & Young, A.B. (1982) Quantitative autoradiography of neurotransmitter receptors in Huntington disease. Neurology, 32, 1391–1395. [DOI] [PubMed] [Google Scholar]
  246. Perez, S. , Tierney, A. , Deniau, J.M. & Kemel, M.L. (2007) Tachykinin regulation of cholinergic transmission in the limbic/prefrontal territory of the rat dorsal striatum: implication of new neurokinine 1‐sensitive receptor binding site and interaction with enkephalin/mu opioid receptor transmission. J. Neurochem., 103, 2153–2163. [DOI] [PubMed] [Google Scholar]
  247. Perez‐Ramirez, M.B. , Laville, A. , Tapia, D. , Duhne, M. , Lara‐Gonzalez, E. , Bargas, J. & Galarraga, E. (2015) KV7 channels regulate firing during synaptic integration in GABAergic striatal neurons. Neural. Plast., 2015, Article ID 472676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Perez‐Rosello, T. , Figueroa, A. , Salgado, H. , Vilchis, C. , Tecuapetla, F. , Guzman, J.N. , Galarraga, E. & Bargas, J. (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2 +  channels. J. Neurophysiol., 93, 2507–2519. [DOI] [PubMed] [Google Scholar]
  249. Peterson, D.A. , Sejnowski, T.J. & Poizner, H. (2010) Convergent evidence for abnormal striatal synaptic plasticity in dystonia. Neurobiol. Dis., 37, 558–573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Phelps, P.E. , Houser, C.R. & Vaughn, J.E. (1985) Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J. Comp. Neurol., 238, 286–307. [DOI] [PubMed] [Google Scholar]
  251. Pickel, V.M. , Douglas, J. , Chan, J. , Gamp, P.D. & Bunnett, N.W. (2000) Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens. J. Comp. Neurol., 423, 500–511. [PubMed] [Google Scholar]
  252. Pineda, J.C. , Bargas, J. , Flores‐Hernandez, J. & Galarraga, E. (1995) Muscarinic receptors modulate the afterhyperpolarizing potential in neostriatal neurons. Eur. J. Pharmacol., 281, 271–277. [DOI] [PubMed] [Google Scholar]
  253. Pisani, A. , Bonsi, P. , Catania, M.V. , Giuffrida, R. , Morari, M. , Marti, M. , Centonze, D. , Bernardi G. et al (2002) Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons. J. Neurosci., 22, 6176–6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Pisani, A. , Bernardi, G. , Ding, J. & Surmeier, D.J. (2007) Re‐emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci., 30, 545–553. [DOI] [PubMed] [Google Scholar]
  255. Pittaluga, A. (2016) Presynaptic release‐regulating mGlu1 receptors in central nervous system. Front. Pharmacol., 7, 295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Plata, V. , Duhne, M. , Perez‐Ortega, J. , Hernandez‐Martinez, R. , Rueda‐Orozco, P. , Galarraga, E. , Drucker‐Colin, R. & Bargas, J. (2013) Global actions of nicotine on the striatal microcircuit. Front. Syst. Neurosci., 7, 78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Ponterio, G. , Tassone, A. , Sciamanna, G. , Riahi, E. , Vanni, V. , Bonsi, P. & Pisani, A. (2013) Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum. Neuropharmacology, 75, 78–85. [DOI] [PubMed] [Google Scholar]
  258. Prensa, L. , Gimenez‐Amaya, J.M. & Parent, A. (1999) Chemical heterogeneity of the striosomal compartment in the human striatum. J. Comp. Neurol., 413, 603–618. [PubMed] [Google Scholar]
  259. Prensa, L. & Parent, A. (2001) The nigrostriatal pathway in the rat: a single‐axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J. Neurosci., 21, 7247–7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Preston, Z. , Lee, K. , Widdowson, L. , Freeman, T.C. , Dixon, A.K. & Richardson, P.J. (2000) Adenosine receptor expression and function in rat striatal cholinergic interneurons. Br. J. Pharmacol., 130, 886–890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Reiner, A. , Albin, R.L. , Anderson, K.D. , D'Amato, C.J. , Penney, J.B. & Young, A.B. (1988) Differential loss of striatal projection neurons in Huntington disease. Proc. Natl. Acad. Sci. USA, 85, 5733–5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Reynolds, J.N. , Hyland, B.I. & Wickens, J.R. (2004) Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons. J. Neurosci., 24, 9870–9877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Ribeiro, J.A. (2005) What can adenosine neuromodulation do for neuroprotection? Curr. Drug Targets, 4, 325–329. [DOI] [PubMed] [Google Scholar]
  264. Ribeiro, F.M. , Vieira, L.B. , Pires, R.G. , Olmo, R.P. & Ferguson, S.S. (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol. Res., 115, 179–191. [DOI] [PubMed] [Google Scholar]
  265. Rice, M.E. & Cragg, S.J. (2008) Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev., 58, 303–313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Rice, M.E. , Patel, J.C. & Cragg, S.J. (2011) Dopamine release in the basal ganglia. Neuroscience, 198, 112–137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Richfield, E.K. , Penney, J.B. & Young, A.B. (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30, 767–777. [DOI] [PubMed] [Google Scholar]
  268. Rowan, E.G. & Harvey, A.L. (2011) Snake toxins from mamba venoms: unique tools for the physiologist. Acta Chim. Slov., 58, 689–692. [PubMed] [Google Scholar]
  269. Sadikot, A.F. , Parent, A. & Francois, C. (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA‐L study of subcortical projections. J. Comp. Neurol., 315, 137–159. [DOI] [PubMed] [Google Scholar]
  270. Salahudeen, M.S. , Duffull, S.B. & Nishtala, P.S. (2015) Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: a systematic review. BMC Geriatr., 15, 31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. Salminen, O. , Murphy, K.L. , McIntosh, J.M. , Drago, J. , Marks, M.J. , Collins, A.C. & Grady, S.R. (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol. Pharmacol., 65, 1526–1535. [DOI] [PubMed] [Google Scholar]
  272. Sanchez, G. , Rodriguez, M.J. , Pomata, P. , Rela, L. & Murer, M.G. (2011) Reduction of an afterhyperpolarization current increases excitability in striatal cholinergic interneurons in rat parkinsonism. J. Neurosci., 31, 6553–6564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Santiago, M.P. & Potter, L.T. (2001) Biotinylated m4‐toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons. Brain Res., 894, 12–20. [DOI] [PubMed] [Google Scholar]
  274. Scarduzio, M. , Zimmerman, C.N. , Jaunarajs, K.L. , Wang, Q. , Standaert, D.G. & McMahon, L.L. (2017) Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia. Exp. Neurol., 295, 162–175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Schultz, W. (2007) Multiple dopamine functions at different time courses. Ann. Rev. Neurosci., 30, 259–288. [DOI] [PubMed] [Google Scholar]
  276. Schulz, J.M. & Reynolds, J.N. (2013) Pause and rebound: sensory control of cholinergic signaling in the striatum. Trends Neurosci., 36, 41–50. [DOI] [PubMed] [Google Scholar]
  277. Sciamanna, G. , Tassone, A. , Martella, G. , Mandolesi, G. , Puglisi, F. , Cuomo, D. , Madeo, G. , Ponterio G. et al (2011) Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia. PLoS One, 6, e24261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Sciamanna, G. , Hollis, R. , Ball, C. , Martella, G. , Tassone, A. , Marshall, A. , Parsons, D. , Li X. et al (2012) Cholinergic dysregulation produced by selective inactivation of the dystonia‐associated protein torsinA. Neurobiol. Dis., 47, 416–427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Servent, D. , Blanchet, G. , Mourier, G. , Marquer, C. , Marcon, E. & Fruchart‐Gaillard, C. (2011) Muscarinic toxins. Toxicon, 58, 455–463. [DOI] [PubMed] [Google Scholar]
  280. Sharott, A. , Vinciati, F. , Nakamura, K.C. & Magill, P.J. (2017) A population of indirect pathway striatal projection neurons is selectively entrained to parkinsonian beta oscillations. J. Neurosci., 37, 9977–9998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Shen, W. , Hamilton, S.E. , Nathanson, N.M. & Surmeier, D.J. (2005) Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J. Neurosci., 25, 7449–7458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Shen, W. , Tian, X. , Day, M. , Ulrich, S. , Tkatch, T. , Nathanson, N.M. & Surmeier, D.J. (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat. Neurosci., 10, 1458–1466. [DOI] [PubMed] [Google Scholar]
  283. Shen, W. , Flajolet, M. , Greengard, P. & Surmeier, D.J. (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848–851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Shen, W. , Plotkin, J.L. , Francardo, V. , Ko, W.K. , Xie, Z. , Li, Q. , Fieblinger, T. , Wess J. et al (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L‐DOPA‐induced dyskinesia. Neuron, 88, 762–773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Shepherd, G.M. (2013) Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci., 14, 278–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Shindou, T. , Ochi‐Shindou, M. & Wickens, J.R. (2011) A Ca(2 + ) threshold for induction of spike‐timing‐dependent depression in the mouse striatum. J. Neurosci., 31, 13015–13022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Smith, R. , Chung, H. , Rundquist, S. , Maat‐Schieman, M.L. , Colgan, L. , Englund, E. , Liu, Y.J. , Roos R.A. et al (2006) Cholinergic neuronal defect without cell loss in Huntington's disease. Hum. Mol. Genet., 15, 3119–3131. [DOI] [PubMed] [Google Scholar]
  288. Somogyi, P. , Bolam, J.P. & Smith, A.D. (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi‐peroxidase transport‐degeneration procedure. J. Comp. Neurol., 195, 567–584. [DOI] [PubMed] [Google Scholar]
  289. Song, D.D. & Haber, S.N. (2000) Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. J. Neurosci., 20, 5102–5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Song, W.J. , Tkatch, T. & Surmeier, D.J. (2000) Adenosine receptor expression and modulation of Ca(2 + ) channels in rat striatal cholinergic interneurons. J. Neurophysiol., 83, 322–332. [DOI] [PubMed] [Google Scholar]
  291. Starr, P.A. , Kang, G.A. , Heath, S. , Shimamoto, S. & Turner, R.S. (2008) Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway. Exp. Neurol., 211, 227–233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Straub, C. , Tritsch, N.X. , Hagan, N.A. , Gu, C. & Sabatini, B.L. (2014) Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J. Neurosci., 34, 8557–8569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Straub, C. , Saulnier, J.L. , Begue, A. , Feng, D.D. , Huang, K.W. & Sabatini, B.L. (2016) Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron, 92, 84–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Stuber, G.D. , Hnasko, T.S. , Britt, J.P. , Edwards, R.H. & Bonci, A. (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci., 30, 8229–8233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Sugita, S. , Uchimura, N. , Jiang, Z.G. & North, R.A. (1991) Distinct muscarinic receptors inhibit release of gamma‐aminobutyric acid and excitatory amino acids in mammalian brain. Proc. Natl. Acad. Sci. USA, 88, 2608–2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Sullivan, M.A. , Chen, H. & Morikawa, H. (2008) Recurrent inhibitory network among striatal cholinergic interneurons. J. Neurosci., 28, 8682–8690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Suzuki, T. , Miura, M. , Nishimura, K. & Aosaki, T. (2001) Dopamine‐dependent synaptic plasticity in the striatal cholinergic interneurons. J. Neurosci., 21, 6492–6501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Szydlowski, S.N. , Pollak Dorocic, I. , Planert, H. , Carlen, M. , Meletis, K. & Silberberg, G. (2013) Target selectivity of feedforward inhibition by striatal fast‐spiking interneurons. J. Neurosci., 33, 1678–1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Tanimura, A. , Pancani, T. , Lim, S.A.O. , Tubert, C. , Melendez, A.E. , Shen, W. & Surmeier, D.J. (2018) Striatal cholinergic interneurons and Parkinson's disease. Eur. J. Neurosci., 47, 1148–1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Taverna, S. , Ilijic, E. & Surmeier, D.J. (2008) Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J. Neurosci., 28, 5504–5512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Tepper, J.M. & Koos, T. (2017). Gabaergic interneurons of the Striatum In Steiner H. & Tseng K.Y. (Eds), Handbook of Basal Ganglia Structure and Function, 2nd edn Academic Press, London, UK, pp. 157–178. [Google Scholar]
  302. Testa, C.M. , Standaert, D.G. , Young, A.B. & Penney, J.B. Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci., 14, 3005–3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Threlfell, S. & Cragg, S.J. (2011) Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front. Syst. Neurosci., 5, 11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Threlfell, S. , Lalic, T. , Platt, N.J. , Jennings, K.A. , Deisseroth, K. & Cragg, S.J. (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron, 75, 58–64. [DOI] [PubMed] [Google Scholar]
  305. Tozzi, A. , de Iure, A. , Di Filippo, M. , Tantucci, M. , Costa, C. , Borsini, F. , Ghiglieri, V. , Giampa C. et al (2011) The distinct role of medium spiny neurons and cholinergic interneurons in the D(2)/A(2)A receptor interaction in the striatum: implications for Parkinson's disease. J. Neurosci., 31, 1850–1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Tritsch, N.X. & Sabatini, B.L. (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron, 76, 33–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Tubert, C. , Taravini, I.R.E. , Flores‐Barrera, E. , Sanchez, G.M. , Prost, M.A. , Avale, M.E. , Tseng, K.Y. , Rela L. et al (2016) Decrease of a current mediated by Kv1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism. Cell Rep., 16, 2749–2762. [DOI] [PubMed] [Google Scholar]
  308. Unzai, T. , Kuramoto, E. , Kaneko, T. & Fujiyama, F. (2017) Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum. Cereb. Cortex, 27, 1164–1181. [DOI] [PubMed] [Google Scholar]
  309. Valente, E.M. , Warner, T.T. , Jarman, P.R. , Mathen, D. , Fletcher, N.A. , Marsden, C.D. , Bhatia, K.P. & Wood, N.W. (1998) The role of DYT1 in primary torsion dystonia in Europe. Brain, 121(Pt 12), 2335–2339. [DOI] [PubMed] [Google Scholar]
  310. Varaschin, R.K. , Osterstock, G. , Ducrot, C. , Leino, S. , Bourque, M.J. , Prado, M.A.M. , Prado, V.F. , Salminen O. et al (2018) Histamine H3 receptors decrease dopamine release in the ventral striatum by reducing the activity of striatal cholinergic interneurons. Neuroscience, 376, 188–203. [DOI] [PubMed] [Google Scholar]
  311. Vertes, R.P. , Linley, S.B. & Hoover, W.B. (2015) Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev., 54, 89–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Vorobjev, V.S. , Sharonova, I.N. , Haas, H.L. & Sergeeva, O.A. (2000) Differential modulation of AMPA receptors by cyclothiazide in two types of striatal neurons. Eur. J. Neurosci., 12, 2871–2880. [DOI] [PubMed] [Google Scholar]
  313. Vuillet, J. , Dimova, R. , Nieoullon, A. & Kerkerian‐Le Goff, L. (1992) Ultrastructural relationships between choline acetyltransferase‐ and neuropeptide y‐containing neurons in the rat striatum. Neuroscience, 46, 351–360. [DOI] [PubMed] [Google Scholar]
  314. Wamsley, B. & Fishell, G. (2017) Genetic and activity‐dependent mechanisms underlying interneuron diversity. Nat. Rev. Neurosci., 18, 299–309. [DOI] [PubMed] [Google Scholar]
  315. Wang, Z. , Kai, L. , Day, M. , Ronesi, J. , Yin, H.H. , Ding, J. , Tkatch, T. , Lovinger D.M. et al (2006) Dopaminergic control of corticostriatal long‐term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron, 50, 443–452. [DOI] [PubMed] [Google Scholar]
  316. Wang, L. , Zhang, X. , Xu, H. , Zhou, L. , Jiao, R. , Liu, W. , Zhu, F. , Kang X. et al (2014) Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice. J. Physiol., 592, 3559–3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Weiner, D.M. , Levey, A.I. & Brann, M.R. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. USA, 87, 7050–7054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. White, N.M. & Hiroi, N. (1998) Preferential localization of self‐stimulation sites in striosomes/patches in the rat striatum. Proc. Natl. Acad. Sci. USA, 95, 6486–6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Wickens, J.R. , Begg, A.J. & Arbuthnott, G.W. (1996) Dopamine reverses the depression of rat corticostriatal synapses which normally follows high‐frequency stimulation of cortex in vitro. Neuroscience, 70, 1–5. [DOI] [PubMed] [Google Scholar]
  320. Wilson, C.J. & Groves, P.M. (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J. Comp. Neurol., 194, 599–615. [DOI] [PubMed] [Google Scholar]
  321. Wilson, C.J. & Groves, P.M. (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res., 220, 67–80. [DOI] [PubMed] [Google Scholar]
  322. Wilson, C.J. , Chang, H.T. & Kitai, S.T. (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci., 10, 508–519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Wilson, C.J. (2005) The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron, 45, 575–585. [DOI] [PubMed] [Google Scholar]
  324. Wilson, C.J. & Goldberg, J.A. (2006) Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. J. Neurophysiol., 95, 196–204. [DOI] [PubMed] [Google Scholar]
  325. Wouterlood, F.G. , Hartig, W. , Groenewegen, H.J. & Voorn, P. (2012) Density gradients of vesicular glutamate‐ and GABA transporter‐immunoreactive boutons in calbindinand mu‐opioid receptor‐defined compartments in the rat striatum. J. Comp. Neurol., 520, 2123–2142. [DOI] [PubMed] [Google Scholar]
  326. Wu, Y.W. , Kim, J.I. , Tawfik, V.L. , Lalchandani, R.R. , Scherrer, G. & Ding, J.B. (2015) Input‐ and cell‐type‐specific endocannabinoid‐dependent LTD in the striatum. Cell Rep., 10, 75–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  327. Xu, M. , Kobets, A. , Du, J.C. , Lennington, J. , Li, L. , Banasr, M. , Duman, R.S. , Vaccarino F.M. et al (2015) Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc. Natl. Acad. Sci. USA, 112, 893–898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Yael, D. , Vinner, E. & Bar‐Gad, I. (2015) Pathophysiology of tic disorders. Mov. Disord., 30, 1171–1178. [DOI] [PubMed] [Google Scholar]
  329. Yan, Z. & Surmeier, D.J. (1996) Muscarinic (m2/m4) receptors reduce N‐ and P‐type Ca2 +  currents in rat neostriatal cholinergic interneurons through a fast, membrane‐delimited, G‐protein pathway. J. Neurosci., 16, 2592–2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  330. Yan, Z. & Surmeier, D.J. (1997) D5 dopamine receptors enhance Zn2 + ‐sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron, 19, 1115–1126. [DOI] [PubMed] [Google Scholar]
  331. Yan, Z. , Song, W.J. & Surmeier, J. (1997) D2 dopamine receptors reduce N‐type Ca2 +  currents in rat neostriatal cholinergic interneurons through a membrane‐delimited, protein‐kinase‐C‐insensitive pathway. J. Neurophysiol., 77, 1003–1015. [DOI] [PubMed] [Google Scholar]
  332. Yan, Z. , Flores‐Hernandez, J. & Surmeier, D.J. (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience, 103, 1017–1024. [DOI] [PubMed] [Google Scholar]
  333. Yin, L.L. , Geng, X.C. & Zhu, X.Z. (2011) The involvement of RGS9 in l‐3,4‐dihydroxyphenylalanine‐induced dyskinesias in unilateral 6‐OHDA lesion rat model. Brain Res. Bull., 86, 367–372. [DOI] [PubMed] [Google Scholar]
  334. Yuste, R. (2015) From the neuron doctrine to neural networks. Nat. Rev., 16, 487–497. [DOI] [PubMed] [Google Scholar]
  335. Zhang, W. , Basile, A.S. , Gomeza, J. , Volpicelli, L.A. , Levey, A.I. & Wess, J. (2002a) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock‐out mice. J. Neurosci., 22, 1709–1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Zhang, W. , Yamada, M. , Gomeza, J. , Basile, A.S. & Wess, J. (2002b) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1‐M5 muscarinic receptor knock‐out mice. J. Neurosci., 22, 6347–6352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Zhang, Y.F. & Cragg, S.J. (2017) Pauses in striatal cholinergic interneurons: what is revealed by their common themes and variations? Front. Syst. Neurosci., 11, 80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Zheng, T. & Wilson, C.J. (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J. Neurophysiol., 87, 1007–1017. [DOI] [PubMed] [Google Scholar]
  339. Zhou, F.M. , Liang, Y. & Dani, J.A. (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci., 4, 1224–1229. [DOI] [PubMed] [Google Scholar]
  340. Zhou, F.M. , Wilson, C.J. & Dani, J.A. (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J. Neurobiol., 53, 590–605. [DOI] [PubMed] [Google Scholar]
  341. Zoli, M. , Moretti, M. , Zanardi, A. , McIntosh, J.M. , Clementi, F. & Gotti, C. (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J. Neurosci., 22, 8785– 8789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  342. Ztaou, S. , Maurice, N. , Camon, J. , Guiraudie‐Capraz, G. , Kerkerian‐Le Goff, L. , Beurrier, C. , Liberge, M. & Amalric, M. (2016) Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson's disease. J. Neurosci., 36, 9161–9172. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

 


Articles from The European Journal of Neuroscience are provided here courtesy of Wiley

RESOURCES