Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2019 Jun 24;63(7):e00536-19. doi: 10.1128/AAC.00536-19

Polymorphisms in Plasmodium falciparum Kelch 13 and P. vivax Kelch 12 Genes in Parasites Collected from Three South Pacific Countries Prior to Extensive Exposure to Artemisinin Combination Therapies

Karryn Gresty a,b, Karen Anderson a,b, Cielo Pasay a,c, Norman C Waters d, Qin Cheng a,b,
PMCID: PMC6591608  PMID: 31036683

The South Pacific countries Solomon Islands, Vanuatu, and Papua New Guinea (PNG) adopted artemisinin-based combination therapies (ACTs) in 2008. We examined Kelch 13 and Kelch 12 genes in parasites originating from these countries before or at ACT introduction.

KEYWORDS: Kelch 12, Kelch 13, P. falciparum, artemisinin combination therapy, artemisinin resistance, sequence polymorphism

ABSTRACT

The South Pacific countries Solomon Islands, Vanuatu, and Papua New Guinea (PNG) adopted artemisinin-based combination therapies (ACTs) in 2008. We examined Kelch 13 and Kelch 12 genes in parasites originating from these countries before or at ACT introduction. Four Kelch 13 and two Kelch 12 novel sequence polymorphisms, not associated with artemisinin resistance, were observed in parasites from Solomon Islands and Vanuatu. No polymorphisms were observed in PNG parasites. The findings provide useful baseline information.

TEXT

Artemisinin combination therapies (ACTs) are adopted by all countries where malaria is endemic as first-line treatment for uncomplicated falciparum malaria (1), following WHO treatment guidelines (2), and have become the cornerstone of national malaria control and elimination programs. However, parasites resistant to the artemisinin class of drugs have been reported in western Cambodia since 2008–2009 (3, 4) and in several Southeast Asian countries (58). This has caused treatment failures of some potent ACTs (9), posing a serious threat to case management and malaria control and elimination programs. It is critical to contain resistance within the foci and to conduct surveillance for any spread or emergence of artemisinin-resistant parasites outside the foci.

Surveillance of malarial drug resistance can be achieved by studying molecular markers of resistance. The Plasmodium falciparum Kelch 13 gene was established as a molecular marker for artemisinin resistance in 2014 (10). Twenty-two genetic mutations in Kelch 13 correlated with in vivo delayed parasite clearance after artemisinin treatment (1015), and four mutations have been validated in vitro to confer ring-stage survival after drug exposure (10). The association of Kelch 13 with artemisinin resistance was supported by a large genome-wide association study (16) and confirmed by genetic modification studies (12). After the report of Kelch 13, three large-scale surveillance studies of Kelch 13 mutations were conducted. The first was conducted in 12 sub-Saharan countries by examining 1,212 samples collected between 2013 and 2014 (17). Seven nonsynonymous mutations, not associated with artemisinin resistance, were observed at frequencies of 1% to 3%, the most frequent mutation being A578S.

An examination of 14,037 samples collected from 163 sites in 59 countries in Asia, Africa, South America, and Oceania, mostly after 2012 (18), found >100 nonsynonymous sequence polymorphisms, of which 9 had a frequency of >1% and 72 were only observed once. Artemisinin-resistant mutations were only observed in Southeast Asia and China. The study included 43 samples each from Papua New Guinea (PNG) and Solomon Islands of Oceania and revealed zero and one (G592R) nonsynonymous mutation in PNG and Solomon Islands, respectively.

The third study examined Kelch 13 mutations in 581 isolates from 14 countries, mostly before the introduction of ACTs (19). The number and frequency of mutations observed was low in pre-ACT compared to post-ACT samples, although post-ACT samples came mainly from three Southeast Asian countries where artemisinin resistance has been reported. This sample set included 60, 41, and 49 samples from PNG, Solomon Islands, and Vanuatu, respectively, collected between 1995 and 2003. No nonsynonymous mutations were seen in PNG and Solomon Islands, whereas A481T and N531D mutations were seen in Vanuatu. Other studies have been conducted in Asian (2031), African (3249), and South American countries (50, 51). There are no other reports from Oceania countries apart from the two worldwide studies.

A Kelch 13 homolog in Plasmodium vivax, Kelch 12, was identified, and a V552I polymorphism was observed in 0.7% of isolates from Cambodia (52). Three nonsynonomous polymorphisms were identified in Cambodian isolates in a separate study, and none were orthologs of artemisinin-resistant K13 mutations (53).

In 2008, Solomon Islands, Vanuatu, and PNG adopted ACT as the national policy for treatment of P. falciparum and P. vivax malaria. Although limited information on Kelch 13 is available for limited sites in these countries, no information is available on Kelch 12. To fill this gap, we examined Kelch 13 and Kelch 12 in parasite samples originating from three South Pacific countries before or at the time of ACT introduction.

A total of 169 P. falciparum and 59 P. vivax isolates were examined retrospectively. These were collected through community surveys, therapeutic efficacy studies, and laboratory-adapted parasite lines. Tables 1 and 2 summarize the sources, number, and collection year of P. falciparum and P. vivax samples, respectively.

TABLE 1.

Summary of P. falciparum isolates and nonsynonymous polymorphisms in the Kelch13 observed

Country and area Collection yr(s) Sample source (ref.) No. of isolates Wild-type sequences (n [%]) NS-SNPsa (n [%]) Resistant mutants (n) NS-SNP
PNG
    Madang 1980s (55) 13 13 (100) 0 (0) 0 NAb
    Bougainville 1998–1999 Community survey (56) 61 61 (100) 0 (0) 0 NA
Solomon Islands
    Guadalcanal 1987 Culture adapted (57) 6 6 (100) 0 (0) 0 NA
    Malaita 2008 Therapeutic efficacy study 74 71 (96) 3 (4) 0 I465Fc , F673Yc , M460Kc
Vanuatu
    Tanna 2008 Community survey (58) 18 17 (94) 1 (6) 0 S477F, T677Ic
Total 169 165 (97.6) 4 (2.4) 0
a

NS-SNPs, nonsynonymous sequence polymorphisms.

b

NA, not applicable.

c

Novel sequence polymorphisms.

TABLE 2.

Summary of P. vivax isolates and nonsynonymous sequence polymorphisms (NS-SNP) in Kelch12 observed

Country and area Collection yr Sample source (ref.) No. of isolates Wild-type sequences (n [%]) NS-SNPsa (n [%]) Resistant mutants (n) NS-SNP
Solomon Islands
    Malaita 2008 Therapeutic efficacy study 26 24 (92) 2 (8) 0 V652L
Vanuatu
    Tanna 2008 Community survey (58) 11 11 (100) 0 (0) 0 NA
    Epi Island 2011 Therapeutic efficacy study 22 21 (95) 1 (5) 0 I537V
Total 59 56 (95) 3 (5) 0
a

NS-SNP, nonsynonymous sequence polymorphisms.

The storage and use of samples collected from community surveys in Solomon Islands and Vanuatu were approved by the Australian Defense Human Ethics Committee (ADHREC 505-07). The use of samples collected from Bougainville, PNG, for this study was approved by ADHREC (835-16) and the Government of Papua New Guinea Medical Research Advisory Committee (16.40). The use of culture-adapted parasitic isolates was approved by the Australian Defense Joint Health Command Low Risk Ethics Panel (LREP15-014).

The Kelch 13 gene was amplified and sequenced (codons 435 to 680) using a published protocol to determine genetic polymorphisms (10). All 74 P. falciparum isolates from PNG were of wild-type Kelch 13 sequences (Table 1). The lack of nonsynonymous polymorphisms in PNG samples reinforces earlier observations that P. falciparum parasites in PNG appeared to have few sequence polymorphisms in K13 genes before the introduction of ACTs (19).

Among 74 P. falciparum isolates from Malaita Province, Solomon Islands, three nonsynonymous polymorphisms (I465F, F673Y, and M460K) were observed, each identified only once from a single isolate. One of the 18 P. falciparum isolates from Tanna Island, Vanuatu, carried two nonsynonymous polymorphisms (S477F and T677I). Interestingly, all five nonsynonymous polymorphisms were observed in parasite samples collected in 2008, and all except S477F appeared to be novel. They are not known to be associated with artemisinin resistance.

Sequencing of the Kelch 12 gene was performed for 59 P. vivax samples using published procedures (52). Of the 26 samples collected from Solomon Islands, 2 exhibited nonsynonymous polymorphism V652L (Table 2). Of the 33 samples from Vanuatu, collected in 2012, 4 years after introduction of ACT, 1 carried nonsynonymous polymorphism I537V, and it is not clear whether this polymorphism may have resulted from ACT selective pressure. Both polymorphisms have not been reported elsewhere. Unfortunately, due to a lack of samples, we could not examine Kelch 12 from PNG parasites. The limited polymorphisms observed in this Pacific sample set agree with findings in Southeast Asia (52, 54).

In summary, we observed few genetic polymorphisms in Kelch 13 and Kelch 12 in parasite samples collected from three South Pacific countries mostly before or at the time of ACT introduction. The findings provide baseline information on both Kelch 13 and Kelch 12 in parasite populations before extensive exposure to ACT and will serve as a reference for future molecular surveys of ACT resistance in these countries.

ACKNOWLEDGMENTS

We thank David Smith for performing some of the DNA sequencing.

The work was partially funded by the U.S. Department of Defense Global Emerging Infections Surveillance (GEIS).

We have no conflicts of interest to declare.

The opinions expressed herein are those of the authors and do not necessarily reflect those of the Australian Defense Force Joint Health Command.

K.G., K.A., and C.P. processed and analyzed samples and performed sequence analyses. N.W. and Q.C. conceived the study. Q.C. prepared the manuscript. We all reviewed and approved the manuscript.

REFERENCES

  • 1.WHO. 2018. World malaria report 2018. World Health Organization, Geneva, Switzerland. [Google Scholar]
  • 2.WHO. 2006. Guidelines for the treatment of malaria. World Health Organization, Geneva, Switzerland. [Google Scholar]
  • 3.Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620. doi: 10.1056/NEJMc0805011. [DOI] [PubMed] [Google Scholar]
  • 4.Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467. doi: 10.1056/NEJMoa0808859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Na-Bangchang K, Karbwang J. 2013. Emerging artemisinin resistance in the border areas of Thailand. Expert Rev Clin Pharmacol 6:307–322. doi: 10.1586/ecp.13.17. [DOI] [PubMed] [Google Scholar]
  • 6.Na-Bangchang K, Muhamad P, Ruaengweerayut R, Chaijaroenkul W, Karbwang J. 2013. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar J 12:263. doi: 10.1186/1475-2875-12-263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, Ler Moo C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NP, White NJ, Anderson TJ, Nosten F. 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379:1960–1966. doi: 10.1016/S0140-6736(12)60484-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Thanh NV, Toan TQ, Cowman AF, Casey GJ, Phuc BQ, Tien NT, Hung NM, Biggs BA. 2010. Monitoring for Plasmodium falciparum drug resistance to artemisinin and artesunate in Binh Phuoc Province, Vietnam: 1998-2009. Malar J 9:181. doi: 10.1186/1475-2875-9-181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Leang R, Taylor WR, Bouth DM, Song L, Tarning J, Char MC, Kim S, Witkowski B, Duru V, Domergue A, Khim N, Ringwald P, Menard D. 2015. Evidence of falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother 59:4719–4726. doi: 10.1128/AAC.00835-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale J-C, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55. doi: 10.1038/nature12876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423. doi: 10.1056/NEJMoa1314981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Ménard D, Fidock DA. 2015. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347:428–431. doi: 10.1126/science.1260867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Huang F, Tang L, Yang H, Zhou S, Liu H, Li J, Guo S. 2012. Molecular epidemiology of drug resistance markers of Plasmodium falciparum in Yunnan Province, China. Malar J 11:243. doi: 10.1186/1475-2875-11-243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.WWARN K13 Genotype-Phenotype Study Group. 2019. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments—a WWARN individual patient data meta-analysis. BMC Med 17:1. doi: 10.1186/s12916-018-1207-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Das S, Manna S, Saha B, Hati AK, Roy S. 2018. Novel pfkelch13 gene polymorphism associates with artemisinin resistance in eastern India. Clin Infect Dis doi: 10.1093/cid/ciy1038. [DOI] [PubMed] [Google Scholar]
  • 16.Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, Lim P, Mead D, Oyola SO, Dhorda M, Imwong M, Woodrow C, Manske M, Stalker J, Drury E, Campino S, Amenga-Etego L, Thanh TN, Tran HT, Ringwald P, Bethell D, Nosten F, Phyo AP, Pukrittayakamee S, Chotivanich K, Chuor CM, Nguon C, Suon S, Sreng S, Newton PN, Mayxay M, Khanthavong M, Hongvanthong B, Htut Y, Han KT, Kyaw MP, Faiz MA, Fanello CI, Onyamboko M, Mokuolu OA, Jacob CG, Takala-Harrison S, Plowe CV, Day NP, Dondorp AM, Spencer CC, McVean G, Fairhurst RM, White NJ, Kwiatkowski DP. 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47:226–234. doi: 10.1038/ng.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, Mumba D, Kekre M, Yavo W, Mead D, Bouyou-Akotet M, Apinjoh T, Golassa L, Randrianarivelojosia M, Andagalu B, Maiga-Ascofare O, Amambua-Ngwa A, Tindana P, Ghansah A, MacInnis B, Kwiatkowski D, Djimde AA. 2015. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 211:1352–1355. doi: 10.1093/infdis/jiu608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Menard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen JH, Collet L, Cui L, Thakur GD, Dieye A, Djalle D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino FE, Fandeur T, Ferreira-da-Cruz MF, Fola AA, Fuehrer HP, Hassan AM, Herrera S, Hongvanthong B, Houze S, Ibrahim ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M, Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati JB, Menard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K, Nambozi M, Niare K, Noedl H, Ouedraogo JB, Pillai DR, Pradines B, Quang-Phuc B, Ramharter M, Randrianarivelojosia M, Sattabongkot J, Sheikh-Omar A, Silue KD, Sirima SB, Sutherland C, Syafruddin D, Tahar R, Tang LH, Toure OA, Tshibangu-Wa-Tshibangu P, Vigan-Womas I, Warsame M, Wini L, Zakeri S, Kim S, Eam R, Berne L, Khean C, Chy S, Ken M, Loch K, Canier L, Duru V, Legrand E, Barale JC, Stokes B, Straimer J, Witkowski B, Fidock DA, Rogier C, Ringwald P, Ariey F, Mercereau-Puijalon O. 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374:2453–2464. doi: 10.1056/NEJMoa1513137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mita T, Culleton R, Takahashi N, Nakamura M, Tsukahara T, Hunja CW, Win ZZ, Htike WW, Marma AS, Dysoley L, Ndounga M, Dzodzomenyo M, Akhwale WS, Kobayashi J, Uemura H, Kaneko A, Hombhanje F, Ferreira MU, Bjorkman A, Endo H, Ohashi J. 2016. Little polymorphism at the K13 propeller locus in worldwide Plasmodium falciparum populations prior to the introduction of artemisinin combination therapies. Antimicrob Agents Chemother 60:3340–3347. doi: 10.1128/AAC.02370-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bosman P, Stassijns J, Nackers F, Canier L, Kim N, Khim S, Alipon SC, Chuor Char M, Chea N, Dysoley L, Van den Bergh R, Etienne W, De Smet M, Ménard D, Kindermans J-M. 2014. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study. Malar J 13:394. doi: 10.1186/1475-2875-13-394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Feng J, Li J, Yan H, Feng X, Xia Z. 2015. Evaluation of antimalarial resistance marker polymorphism in returned migrant workers in China. Antimicrob Agents Chemother 59:326–330. doi: 10.1128/AAC.04144-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Feng J, Zhou D, Lin Y, Xiao H, Yan H, Xia Z. 2015. Amplification of pfmdr1, pfcrt, pvmdr1, and K13 propeller polymorphisms associated with Plasmodium falciparum and Plasmodium vivax isolates from the China-Myanmar border. Antimicrob Agents Chemother 59:2554–2559. doi: 10.1128/AAC.04843-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Huang F, Takala-Harrison S, Jacob CG, Liu H, Sun X, Yang H, Nyunt MM, Adams M, Zhou S, Xia Z, Ringwald P, Bustos MD, Tang L, Plowe CV. 2015. A single mutation in K13 predominates in southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. J Infect Dis 212:1629–1635. doi: 10.1093/infdis/jiv249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Mohon AN, Alam MS, Bayih AG, Folefoc A, Shahinas D, Haque R, Pillai DR. 2014. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009–2013). Malar J 13:431. doi: 10.1186/1475-2875-13-431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Nyunt MH, Hlaing T, Oo HW, Tin-Oo LL, Phway HP, Wang B, Zaw NN, Han SS, Tun T, San KK, Kyaw MP, Han ET. 2015. Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Clin Infect Dis 60:1208–1215. doi: 10.1093/cid/ciu1160. [DOI] [PubMed] [Google Scholar]
  • 26.Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, Fukuda MM, Hien TT, Mayxay M, Noedl H, Nosten F, Kyaw MP, Nhien NT, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Ariey F, Mercereau-Puijalon O, Menard D, Newton PN, Khanthavong M, Hongvanthong B, Starzengruber P, Fuehrer HP, Swoboda P, Khan WA, Phyo AP, Nyunt MM, Nyunt MH, Brown TS, Adams M, Pepin CS, Bailey J, Tan JC, Ferdig MT, Clark TG, Miotto O, MacInnis B, Kwiatkowski DP, White NJ, Ringwald P, Plowe CV. 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211:670–679. doi: 10.1093/infdis/jiu491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Talundzic E, Okoth SA, Congpuong K, Plucinski MM, Morton L, Goldman IF, Kachur PS, Wongsrichanalai C, Satimai W, Barnwell JW, Udhayakumar V. 2015. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog 11:e1004789. doi: 10.1371/journal.ppat.1004789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, Lin K, Kyaw MP, Plewes K, Faiz MA, Dhorda M, Cheah PY, Pukrittayakamee S, Ashley EA, Anderson TJ, Nair S, McDew-White M, Flegg JA, Grist EP, Guerin P, Maude RJ, Smithuis F, Dondorp AM, Day NP, Nosten F, White NJ, Woodrow CJ. 2015. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15:415–421. doi: 10.1016/S1473-3099(15)70032-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wang Z, Shrestha S, Li X, Miao J, Yuan L, Cabrera M, Grube C, Yang Z, Cui L. 2015. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007–2012. Malar J 14:168. doi: 10.1186/s12936-015-0672-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Bonnington CA, Phyo AP, Ashley EA, Imwong M, Sriprawat K, Parker DM, Proux S, White NJ, Nosten F. 2017. Plasmodium falciparum Kelch 13 mutations and treatment response in patients in Hpa-Pun District, Northern Kayin State, Myanmar. Malar J 16:480. doi: 10.1186/s12936-017-2128-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Mishra N, Bharti RS, Mallick P, Singh OP, Srivastava B, Rana R, Phookan S, Gupta HP, Ringwald P, Valecha N. 2016. Emerging polymorphisms in falciparum Kelch 13 gene in Northeastern region of India. Malar J 15:583. doi: 10.1186/s12936-016-1636-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Conrad MD, Bigira V, Kapisi J, Muhindo M, Kamya MR, Havlir DV, Dorsey G, Rosenthal PJ. 2014. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9:e105690. doi: 10.1371/journal.pone.0105690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, Nsobya SL, Rosenthal PJ. 2015. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother 59:5061–5064. doi: 10.1128/AAC.00921-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Escobar C, Pateira S, Lobo E, Lobo L, Teodosio R, Dias F, Fernandes N, Arez AP, Varandas L, Nogueira F. 2015. Polymorphisms in Plasmodium falciparum K13-propeller in Angola and Mozambique after the introduction of the ACTs. PLoS One 10:e0119215. doi: 10.1371/journal.pone.0119215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Ouattara A, Kone A, Adams M, Fofana B, Maiga AW, Hampton S, Coulibaly D, Thera MA, Diallo N, Dara A, Sagara I, Gil JP, Bjorkman A, Takala-Harrison S, Doumbo OK, Plowe CV, Djimde AA. 2015. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg 92:1202–1206. doi: 10.4269/ajtmh.14-0605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Plucinski MM, Talundzic E, Morton L, Dimbu PR, Macaia AP, Fortes F, Goldman I, Lucchi N, Stennies G, MacArthur JR, Udhayakumar V. 2015. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uige Provinces, Angola. Antimicrob Agents Chemother 59:437–443. doi: 10.1128/AAC.04181-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Greenwood BM, Tagbor H, Williams J, Bojang K, Njie F, Desai M, Kariuki S, Gutman J, Mathanga DP, Martensson A, Ngasala B, Conrad MD, Rosenthal PJ, Tshefu AK, Moormann AM, Vulule JM, Doumbo OK, Ter Kuile FO, Meshnick SR, Bailey JA, Juliano JJ. 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211:680–688. doi: 10.1093/infdis/jiu467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Torrentino-Madamet M, Fall B, Benoit N, Camara C, Amalvict R, Fall M, Dionne P, Ba Fall K, Nakoulima A, Diatta B, Diemé Y, Ménard D, Wade B, Pradines B. 2014. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J 13:472. doi: 10.1186/1475-2875-13-472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Torrentino-Madamet M, Collet L, Lepère JF, Benoit N, Amalvict R, Ménard D, Pradines B. 2015. K13-propeller polymorphisms in Plasmodium falciparum isolates from patients in Mayotte in 2013 and 2014. Antimicrob Agents Chemother 59:7878–7881. doi: 10.1128/AAC.01251-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Yang C, Zhang H, Zhou R, Qian D, Liu Y, Zhao Y, Li S, Xu B. 2017. Polymorphisms of Plasmodium falciparum k13-propeller gene among migrant workers returning to Henan Province, China from Africa. BMC Infect Dis 17:560. doi: 10.1186/s12879-017-2634-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Isozumi R, Uemura H, Kimata I, Ichinose Y, Logedi J, Omar AH, Kaneko A. 2015. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum. Emerg Infect Dis 21:490–492. doi: 10.3201/eid2103.140898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Boussaroque A, Fall B, Madamet M, Camara C, Benoit N, Fall M, Nakoulima A, Dionne P, Fall KB, Diatta B, Dieme Y, Wade B, Pradines B. 2016. Emergence of mutations in the K13 propeller gene of Plasmodium falciparum Isolates from Dakar, Senegal, in 2013-2014. Antimicrob Agents Chemother 60:624–627. doi: 10.1128/AAC.01346-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Li J, Chen J, Xie D, Eyi UM, Matesa RA, Ondo Obono MM, Ehapo CS, Yang L, Yang H, Lin M. 2016. Limited artemisinin resistance-associated polymorphisms in Plasmodium falciparum K13-propeller and PfATPase6 gene isolated from Bioko Island, Equatorial Guinea. Int J Parasitol Drugs Drug Resist 6:54–59. doi: 10.1016/j.ijpddr.2015.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Bayih AG, Getnet G, Alemu A, Getie S, Mohon AN, Pillai DR. 2016. A unique Plasmodium falciparum K13 gene mutation in northwest Ethiopia. Am J Trop Med Hyg 94:132–135. doi: 10.4269/ajtmh.15-0477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.de Laurent ZR, Chebon LJ, Ingasia LA, Akala HM, Andagalu B, Ochola-Oyier LI, Kamau E. 2018. Polymorphisms in the K13 gene in Plasmodium falciparum from different malaria transmission areas of Kenya. Am J Trop Med Hyg 98:1360–1366. doi: 10.4269/ajtmh.17-0505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Djaman JA, Olefongo D, Ako AB, Roman J, Ngane VF, Basco LK, Tahar R. 2017. Molecular epidemiology of malaria in Cameroon and Cote d'Ivoire. XXXI. Kelch 13 propeller sequences in Plasmodium falciparum isolates before and after implementation of artemisinin-based combination therapy. Am J Trop Med Hyg 97:222–224. doi: 10.4269/ajtmh.16-0889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Tacoli C, Gai PP, Bayingana C, Sifft K, Geus D, Ndoli J, Sendegeya A, Gahutu JB, Mockenhaupt FP. 2016. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010-2015. Am J Trop Med Hyg 95:1090–1093. doi: 10.4269/ajtmh.16-0483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Ocan M, Bwanga F, Okeng A, Katabazi F, Kigozi E, Kyobe S, Ogwal-Okeng J, Obua C. 2016. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis 16:428. doi: 10.1186/s12879-016-1777-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Huang B, Deng C, Yang T, Xue L, Wang Q, Huang S, Su XZ, Liu Y, Zheng S, Guan Y, Xu Q, Zhou J, Yuan J, Bacar A, Abdallah KS, Attoumane R, Mliva AM, Zhong Y, Lu F, Song J. 2015. Polymorphisms of the artemisinin resistant marker (K13) in Plasmodium falciparum parasite populations of Grande Comore Island 10 years after artemisinin combination therapy. Parasit Vectors 8:634. doi: 10.1186/s13071-015-1253-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Carter TE, Boulter A, Existe A, Romain JR, St Victor JY, Mulligan CJ, Okech BA. 2015. Artemisinin resistance-associated polymorphisms at the K13-propeller locus are absent in Plasmodium falciparum isolates from Haiti. Am J Trop Med Hyg 92:552–554. doi: 10.4269/ajtmh.14-0664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Chenet SM, Akinyi Okoth S, Huber CS, Chandrabose J, Lucchi NW, Talundzic E, Krishnalall K, Ceron N, Musset L, Macedo de Oliveira A, Venkatesan M, Rahman R, Barnwell JW, Udhayakumar V. 2016. Independent emergence of the Plasmodium falciparum kelch propeller domain mutant allele C580Y in Guyana. J Infect Dis 213:1472–1475. doi: 10.1093/infdis/jiv752. [DOI] [PubMed] [Google Scholar]
  • 52.Popovici J, Kao S, Eal L, Bin S, Kim S, Menard D. 2015. Reduced polymorphism in the Kelch propeller domain in Plasmodium vivax isolates from Cambodia. Antimicrob Agents Chemother 59:730–733. doi: 10.1128/AAC.03908-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Brazeau NF, Hathaway N, Parobek CM, Lin JT, Bailey JA, Lon C, Saunders DL, Juliano JJ. 2016. Longitudinal pooled deep sequencing of the Plasmodium vivax K12 kelch gene in Cambodia reveals a lack of selection by artemisinin. Am J Trop Med Hyg 95:1409–1412. doi: 10.4269/ajtmh.16-0566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Wang M, Siddiqui FA, Fan Q, Luo E, Cao Y, Cui L. 2016. Limited genetic diversity in the PvK12 Kelch protein in Plasmodium vivax isolates from Southeast Asia. Malar J 15:537. doi: 10.1186/s12936-016-1583-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Chen P, Lamont G, Elliott T, Kidson C, Brown G, Mitchell G, Stace J, Alpers M. 1980. Plasmodium falciparum strains from Papua New Guinea: culture characteristics and drug sensitivity. Southeast Asian J Trop Med Public Health 11:435–440. [PubMed] [Google Scholar]
  • 56.Chen N, Baker J, Ezard N, Burns M, Edstein MD, Cheng Q. 2002. Short report: molecular evaluation of the efficacy of chloroquine treatment of uncomplicated Plasmodium falciparum malaria in East Timor. Am J Trop Med Hyg 67:64–66. doi: 10.4269/ajtmh.2002.67.64. [DOI] [PubMed] [Google Scholar]
  • 57.Prescott N, Stowers AW, Cheng Q, Bobogare A, Rzepczyk CM, Saul A. 1994. Plasmodium falciparum genetic diversity can be characterised using the polymorphic merozoite surface antigen 2 (MSA-2) gene as a single locus marker. Mol Biochem Parasitol 63:203–212. doi: 10.1016/0166-6851(94)90056-6. [DOI] [PubMed] [Google Scholar]
  • 58.Pacific Malaria Initiative Survey Group (PMISG) on behalf of the Ministries of Health of Vanuatu and Solomon Islands. 2010. Malaria on isolated Melanesian islands prior to the initiation of malaria elimination activities. Malar J 9:218. doi: 10.1186/1475-2875-9-218. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES