Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2017 Mar 30;32(2):147–154. doi: 10.1007/s12250-016-3929-8

Genome analysis of Heliothis virescens ascovirus 3h isolated from China

Guo-Hua Huang 1,2, Dian-Hai Hou 1, Manli Wang 1, Xiao-Wen Cheng 3, Zhihong Hu 1,
PMCID: PMC6598970  PMID: 28382574

Abstract

No ascovirus isolated from China has been sequenced so far. Therefore, in this study, we aimed to sequence the genome of Heliothis virescens ascovirus 3h (HvAV-3h) using the 454 pyrosequencing technology. The genome was found to be 190,519-bp long with a G+C content of 45.5%. We also found that it encodes 185 hypothetical open reading frames (ORFs) along with at least 50 amino acids, including 181 ORFs found in other ascoviruses and 4 unique ORFs. Gene-parity plots and phylogenetic analysis revealed a close relationship between HvAV-3h and three other HvAV-3a strains and a distant relationship with Spodoptera frugiperda ascovirus 1a (SfAV-1a), Trichoplusia ni ascovirus 6a (TnAV-6a), and Diadromus pulchellus ascovirus 4a (DpAV-4a). Among the 185 potential genes encoded by the genome, 44 core genes were found in all the sequenced ascoviruses. In addition, 25 genes were found to be conserved in all ascoviruses except DpAV-4a. In the HvAV-3h genome, 24 baculovirus repeat ORFs (bros) were present, and the typical homologous repeat regions (hrs) were absent. This study supplies information important for understanding the conservation and functions of ascovirus genes as well as the variety of ascoviral genomes.

graphic file with name 12250_2016_3929_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12250-016-3929-8 and is accessible for authorized users.

Keywords: Heliothis virescens ascovirus 3h (HvAV-3h), genome organization, bro genes, phylogenetic relationship

Electronic supplementary material

12250_2016_3929_MOESM1_ESM.pdf (916.7KB, pdf)

Genome analysis of Heliothis virescens ascovirus 3h isolated from China

Acknowledgments

The authors would like to thank Jue Hu, Xing-Shi Gu, Wen-Fei Xian, Hai-Zhou Liu, Lei Zhang, and Shun-Ji Li for their help in virus amplification and data analysis. The authors would also like to acknowledge the technical assistance received from the Core Facility and Technical Support of Wuhan Institute of Virology. This study was supported partly by the National Natural Science Foundation of China (No. 31371995 and 31621061), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB11030400), STS Project of the Chinese Academy of Sciences (grant KFJ-SW-STS- 143-3), and the Hunan Provincial Natural Science Foundation for Distinguished Young Scholar of China (14JJ1023).

Footnotes

ORCID: 0000-0002-1560-0928

These authors contributed equally to this work.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asgari S, Bideshi D, Bigot Y, Federici BA, Cheng XW, ICTV Report Consortium ICTV Virus Taxonomy Profile: Ascoviridae. J Gen Virol. 2017;98:4–5. doi: 10.1099/jgv.0.000677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asgari S, Davis J, Wood D, Wilson P, McGrath A. Sequence and organization of the Heliothis virescens ascovirus genome. J Gen Virol. 2007;88:1120–1132. doi: 10.1099/vir.0.82651-0. [DOI] [PubMed] [Google Scholar]
  4. Bideshi DK, Demattei MV, Rouleux-Bonnin F, Stasiak K, Tan Y, Bigot S, Bigot Y, Federici BA. Genomic sequence of Spodoptera frugiperda ascovirus 1a, an enveloped, doublestranded DNA insect virus that manipulates apoptosis for viral reproduction. J Virol. 2006;80:11791–11805. doi: 10.1128/JVI.01639-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bigot Y, Asgari S, Bideshi DK, Cheng X, Federici BA, Renault S. Family Ascoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, editors. Virus Taxonomy: Ninth Report of the International Committee on the Taxonomy of Viruses, third ed. 2011. pp. 147–152. [Google Scholar]
  6. Bigot Y, Renault S, Nicolas J, Moundras C, Demattei MV, Samain S, Bideshi DK, Federici BA. Symbiotic virus at the evolutionary intersection of three types of large DNA viruses; iridoviruses, ascoviruses, and ichnoviruses. PLoS ONE. 2009;4:e6397. doi: 10.1371/journal.pone.0006397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bigot Y, Stasiak K, Rouleux-Bonnin F, Federici BA. Characterization of repetitive DNA regions and methylated DNA in ascovirus genomes. J Gen Virol. 2000;81:3073–3082. doi: 10.1099/0022-1317-81-12-3073. [DOI] [PubMed] [Google Scholar]
  8. de Castro Oliveira JV, de Brito AF, Braconi CT, de Melo Freire CC, Iamarino A, de Andrade Zanotto PM. Modularity and evolutionary constraints in a baculovirus gene regulatory network. BMC Syst Biol. 2013;7:87. doi: 10.1186/1752-0509-7-87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Federici BA, Vlak JM, Hamm JJ. Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol. 1990;71:1661–1668. doi: 10.1099/0022-1317-71-8-1661. [DOI] [PubMed] [Google Scholar]
  10. Hamm JJ, Styer EL, Federici BA. Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology. J Invertebr Pathol. 1998;72:138–146. doi: 10.1006/jipa.1998.4763. [DOI] [PubMed] [Google Scholar]
  11. Huang GH, Garretson TA, Cheng XH, Holztrager MS, Li SJ, Wang X, Cheng XW. Phylogenetic position and replication kinetics of Heliothis virescensascovirus 3h (HvAV-3h) isolated from Spodoptera exigua. PLoS ONE. 2012;7:e40225. doi: 10.1371/journal.pone.0040225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang GH, Wang YS, Wang X, Garretson TA, Dai LY, Zhang CX, Cheng XW. Genomic sequence of Heliothis virescens ascovirus 3g isolated from Spodoptera exigua. J Virol. 2012;86:12467–12468. doi: 10.1128/JVI.02342-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacob T, Broeke CVD, Favoreel HW. Viral Serine/Threonine Protein Kinases. J Virol. 2011;85:1158–1173. doi: 10.1128/JVI.01369-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Larkin M A, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. [DOI] [PubMed] [Google Scholar]
  15. Li SJ, Hopkins RJ, Zhao YP, Zhang YX, Hu J, Chen XY, Xu Z, Huang GH. Imperfection works: survival, transmission and persistence in the system of Heliothis virescens ascovirus 3h (HvAV-3h), Microplitis similis and Spodoptera exigua. Sci Rep. 2016;6:21296. doi: 10.1038/srep21296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindahl T. DNA repair enzymes. Annu Rev Biochem. 1982;51:61–87. doi: 10.1146/annurev.bi.51.070182.000425. [DOI] [PubMed] [Google Scholar]
  17. Long CM, Rohrmann GF, Merrill GF. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotidelinked sulfhydryl oxidase. Virology. 2009;388:231–235. doi: 10.1016/j.virol.2009.04.006. [DOI] [PubMed] [Google Scholar]
  18. Parsons J. Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci. 1995;11:615–619. doi: 10.1093/bioinformatics/11.6.615. [DOI] [PubMed] [Google Scholar]
  19. Piégu B, Asgari S, Bideshi D, Federici BA, Bigot Y. Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol Phylogenet Evol. 2015;84:44–52. doi: 10.1016/j.ympev.2014.12.013. [DOI] [PubMed] [Google Scholar]
  20. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. [DOI] [PubMed] [Google Scholar]
  21. Silvestro D, Michalak I. Raxml GUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–337. doi: 10.1007/s13127-011-0056-0. [DOI] [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tang Q, Li G, Yao Q, Chen L, Feng F, Yuan Y, Chen K. Bm65 is essential for the propagation of Bombyx mori nucleopolyhedrovirus. Curr Microbiol. 2013;66:22–29. doi: 10.1007/s00284-012-0236-y. [DOI] [PubMed] [Google Scholar]
  24. Wang LH, Xue JL, Seaborn CP, Arif BM, Cheng XW. Sequence and organization of the Trichoplusiani ascovirus 2c (Ascoviridae) genome. Virology. 2006;354:167–177. doi: 10.1016/j.virol.2006.06.029. [DOI] [PubMed] [Google Scholar]
  25. Wei YL, Hu J, Li SJ, Chen ZS, Cheng XW, Huang GH. Genome sequence and organization analysis of Heliothis virescens ascovirus 3f isolated from a Helicoverpa zea larva. J Invertebr Pathol. 2014;122:40–43. doi: 10.1016/j.jip.2014.08.003. [DOI] [PubMed] [Google Scholar]
  26. Wu W, Passarelli AL. The Autographa californica M nucleopolyhedrovirus ac79 gene encodes an early gene product with structural similarities to UvrC and intron-encoded endonucleases that is required for efficient budded virus production. J Virol. 2012;86:5614–5625. doi: 10.1128/JVI.06252-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu W, Passarelli AL. Autographa californica multiple nucleopolyhedrovirus Ac92 (ORF92, P33) is required for budded virus production and multiply enveloped occlusion-derived virus formation. J Virol. 2010;84:12351–12361. doi: 10.1128/JVI.01598-10. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12250_2016_3929_MOESM1_ESM.pdf (916.7KB, pdf)

Genome analysis of Heliothis virescens ascovirus 3h isolated from China


Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES