Skip to main content
Data in Brief logoLink to Data in Brief
. 2019 May 29;25:104080. doi: 10.1016/j.dib.2019.104080

Datasets of mass of phosphorus flows in Zhangzhou city in China

Chu-Long Huang a,b,c, Shenghui Cui a,
PMCID: PMC6614585  PMID: 31334305

Abstract

Compared to currency data which tends to fluctuate with the market and cannot accurately reflect the effects of human activities on resources use efficiency and environmental sustainability, the assessment accuracy of the effects can be further improved by constant mass data of elements contained in materials and products within socioeconomic system, e.g. phosphorus mass data for its use efficiency assessment in the case of Zhangzhou city in China Huang et al., 2019. Firstly, the mass data of products and raw materials were sourced or assessed mainly from government statistical year books or bulletins. Secondly, the phosphorus contents in materials were derived mainly from literature. Finally, the mass of phosphorus flows throughout food production-consumption system in Zhangzhou prefecture, Fujian province, China was accounted by mass balance accounting based on substance flow analysis. These data include the following parts: input/output phosphorus flows across the jurisdiction boundary of Zhangzhou city; phosphorus flows into or out of agricultural production subsystems such as crop farming, livestock, and aquaculture; phosphorus flows into or out of human consumption subsystem; phosphorus flows across subsystems. Part of reference data related to phosphorus mass balance accounting was also presented.


Specifications table

Subject area Environmental management.
More specific subject area Environmental system analysis, element metabolism in socioeconomic system.
Type of data Table.
How data was acquired Survey by local governmental agencies, literature, reports, yearbooks, etc.; Mass balance modeling by substance flow analysis.
Data format Raw, filtered, analyzed, extrapolated.
Experimental factors The mass of phosphorus flows throughout food production-consumption system in Zhangzhou prefecture were assessed.
Experimental features Mass balance thinking and bottom-up assessment method were applied.
Data source location Yearbooks, reports, interviews across the jurisdiction of Zhangzhou City in China and global literature.
Data accessibility The phosphorus mass data is with this article.
Related research article [1]Huang, C.L., Gao, B., Xu, S., Huang, Y.F., Yan, X.M., Cui, S.H.,2019.Changing phosphorus metabolism of a global aquaculture city. Journal of Cleaner Production. 225: p.1118–1133.”
Value of the data
  • Mass data of phosphorus element flows across regional socioeconomic system can be an integrated part of global map of element biogeochemical cycle.

  • Mass data within socioeconomic system is more valuable and convincing for global sustainability assessment, compared to currency data.

  • Analysis of systematic data derived from substance flow analysis of element flows in the interaction between human and the environment will provide viable approach for getting a solution for the dilemma between economic development and environmental protection.

  • Compared with other element data in this city or the same element in other cities, effects of urbanization or industrial structure on element metabolism efficiencies can be verified.

1. Data

The datasets of this article provide information on the phosphorus use of agricultural food production subsystems and urban/rural food consumption subsystems and the phosphorus emission from these subsystems. Table 1, Table 2, Table 3, Table 4 showed the input/output phosphorus flows of each subsystem. Table 5 showed the import/export phosphorus flows across the boundary of the whole system.

Table 1.

Phosphorus flows for crop farming subsystems Unit: tonnes.

Year Fertilizers Pesticides Seeds FP F TS RS Stubble RM RRE RUE
2014 33023 194 55 12193 212 1123 178 321 3818 863 144
2013 31090 196 56 11585 214 1135 186 315 4532 856 147
2012 31673 193 55 11095 215 1114 187 308 4577 849 149
2011 31782 198 56 10793 222 1099 187 301 4582 848 142
2010 31874 198 56 10441 223 1124 196 299 4231 848 141
2009 31590 195 55 10236 228 1132 200 295 3820 837 143
2008 29434 190 51 10270 240 1139 205 295 3797 850 137
2007 28664 178 47 9721 252 1208 218 298 3602 844 134
2006 29544 182 50 9434 266 1222 223 300 3583 844 128
2005 30373 185 73 10883 267 1474 281 362 4502 841 119
2004 30028 172 74 10753 253 1526 291 371 4588 840 118
2003 29393 177 75 10427 274 1591 306 372 4366 842 105
2002 29133 175 78 10337 263 1598 307 374 4343 802 120
2001 29188 178 87 11147 291 1681 337 389 4443 995 72
2000 32232 147 96 11280 290 1669 342 388 4359 1029 76
1999 33825 165 113 11686 282 2178 471 442 4275 1041 75
1998 31473 142 116 11715 296 2697 594 498 4375 1052 79
1997 30739 1218 119 11335 285 2729 612 491 4177 1084 82
1996 28267 686 120 11125 317 2674 599 480 4236 1100 92
1995 25788 153 117 10401 310 2557 582 448 4036 1113 98

Notes: FP, food products from crop farming; F, green fodder; TS, total straw output; RS, recycled straw; RM, recycled livestock manure applied to the field; RRE/RUE, recycled rural/urban residents' excreta applied to the field.

Table 2.

Phosphorus flows for livestock subsystems Unit: tonnes.

Year IFL S F G LP LL RM
2014 3734 317 212 935 588 793 3818
2013 4638 310 214 927 674 883 4532
2012 4653 304 215 931 665 862 4577
2011 4538 298 222 914 640 750 4582
2010 4270 294 223 896 611 842 4231
2009 3991 288 228 865 586 967 3820
2008 3914 286 240 841 573 910 3797
2007 3564 284 252 760 559 700 3602
2006 3785 284 266 749 579 922 3583
2005 4427 347 267 1157 748 948 4502
2004 4476 354 253 1152 755 893 4588
2003 4128 346 274 1085 730 737 4366
2002 4066 346 263 1080 715 697 4343
2001 3877 376 291 1285 722 663 4443
2000 3653 381 290 1378 710 634 4359
1999 3029 425 282 1574 647 388 4275
1998 3011 458 296 1635 648 376 4375
1997 3340 451 285 1023 594 328 4177
1996 2573 442 317 1558 540 114 4236
1995 2342 411 310 1457 474 9 4036

Notes: IFL, imported feed for livestock; S, straw feed; F, green fodder; G, grain feed; LP, livestock products; LL, Loss from livestock; RM, recycled livestock manure applied to the field.

Table 3.

Phosphorus flows for aquaculture subsystems Unit: tonnes.

Year IFSF IFFF MFP APU APR LSA LFA FAP SP SAP SAPF
2014 3358 29882 5236 103 179 2567 27733 2149 6028 3579 791
2013 3016 28180 4965 92 158 2282 26153 2027 5698 3349 733
2012 2874 26896 4773 83 144 2173 24961 1935 5473 3170 701
2011 2423 25283 4696 77 140 1810 23465 1819 5310 3053 613
2010 2282 24116 4577 65 143 1696 22381 1735 5164 2945 587
2009 2301 23473 4493 72 153 1716 21784 1688 5077 2891 585
2008 2188 22535 4410 62 139 1641 20914 1621 4957 2809 547
2007 2041 21074 4399 75 131 1583 19558 1516 4857 2738 458
2006 1902 19431 4327 65 122 1475 18034 1398 4754 2681 427
2005 2165 19439 4909 66 122 1660 18040 1398 5414 3073 505
2004 2162 19516 4737 72 113 1665 18112 1404 5234 2918 497
2003 1968 17138 4645 59 104 1570 15905 1233 5043 2791 398
2002 2047 17266 4407 63 99 1536 16024 1242 4918 2696 511
2001 1909 14821 4486 35 116 1526 13755 1066 4869 2633 383
2000 1490 13467 4468 32 101 1184 12498 969 4774 2549 306
1999 991 12391 4180 26 94 794 11500 891 4378 2260 197
1998 1131 11313 3874 21 91 932 10499 814 4074 1978 200
1997 345 10539 3591 16 87 282 9781 758 3654 1762 63
1996 396 8645 1912 11 91 278 8023 622 2030 632 118
1995 415 7401 1688 6 89 259 6868 532 1844 502 156

Notes: IFSF/IFFF, imported feed for seawater/freshwater fauna; MFP, marine fishing products; APR/APU, aquaculture products for rural/urban residents; LFA/LSA, loss from freshwater/seawater aquaculture; LP, livestock products; FAP, freshwater aquaculture products; SP, seawater products; SAP, seawater aquaculture products; SAPF, seawater aquaculture products on feed.

Table 4.

Phosphorus flows for human consumption subsystems Unit: tonnes.

Year CU CR LPR LPU APU APR SF RRE RUE LR LU UFI
2014 446 1040 378 247 103 179 126 863 144 1252 703 480
2013 370 1067 349 273 92 158 135 856 147 1226 716 500
2012 383 1117 358 306 83 144 129 849 149 1200 729 407
2011 343 1140 345 275 77 140 129 848 142 1184 717 442
2010 326 1149 289 249 65 143 141 848 141 1169 715 512
2009 328 1087 273 248 72 153 150 837 143 1139 749 556
2008 294 1114 259 213 62 139 154 850 137 1143 720 614
2007 352 1120 266 278 75 131 189 844 134 1120 733 420
2006 324 1094 269 285 65 122 194 844 128 1120 727 466
2005 357 1124 271 282 66 122 213 841 119 1118 730 374
2004 378 1271 245 283 72 113 227 840 118 1115 723 207
2003 294 1344 239 274 59 104 265 842 105 1118 706 192
2002 370 1402 227 285 63 99 268 802 120 1066 770 45
2001 242 1812 249 120 35 116 255 995 72 1240 441 (80)
2000 232 1524 228 123 32 101 236 1029 76 1200 431 260
1999 216 1490 212 115 26 94 387 1041 75 1176 395 147
1998 200 1458 204 106 21 91 562 1052 79 1150 387 28
1997 184 1427 196 97 16 87 575 1084 82 1112 372 68
1996 168 1428 196 88 11 91 565 1100 92 1092 347 82
1995 152 1428 196 79 6 89 547 1113 98 1069 329 112

Notes: CR/CU, crop products for rural/urban residents; LPR/LPU, livestock products consumed by rural/urban residents; APU/APR, aquaculture products for urban/rural residents; SF, straw fuel; RRE/RUE, recycled rural/urban residents' excreta applied to the field; LR/LU, loss from rural/urban residents' consumption; UFI, Unknown food inflow.

Table 5.

The import/export phosphorus flows across the boundary of the whole system Unit: tonnes.

Year Import flows
Export flows
Total export Total import
Fertilizers Pesticides Seeds IFSF IFFF IFL EC EL EA
2014 33023 194 55 3358 29882 3734 9771 0 7895 17629 70246
2013 31090 196 56 3016 28180 4638 9221 52 7475 16748 67175
2012 31673 193 55 2874 26896 4653 8665 0 7181 15846 66344
2011 31782 198 56 2423 25283 4538 8396 19 6912 15327 64281
2010 31874 198 56 2282 24116 4270 8069 73 6691 14834 62797
2009 31590 195 55 2301 23473 3991 7957 64 6541 14561 61604
2008 29434 190 51 2188 22535 3914 8022 101 6377 14499 58311
2007 28664 178 47 2041 21074 3564 7489 14 6168 13670 55569
2006 29544 182 50 1902 19431 3785 7268 24 5965 13257 54894
2005 30373 185 73 2165 19439 4427 8245 196 6625 15065 56661
2004 30028 172 74 2162 19516 4476 7951 228 6453 14631 56427
2003 29393 177 75 1968 17138 4128 7704 217 6112 14033 52879
2002 29133 175 78 2047 17266 4066 7485 203 5998 13687 52766
2001 29188 178 87 1909 14821 3877 7809 354 5784 13947 50060
2000 32232 147 96 1490 13467 3653 8146 358 5610 14114 51084
1999 33825 165 113 991 12391 3029 8405 320 5148 13874 50513
1998 31473 142 116 1131 11313 3011 8422 339 4775 13536 47185
1997 30739 1218 119 345 10539 3340 8701 302 4309 13312 46301
1996 28267 686 120 396 8645 2573 7971 256 2550 10777 40688
1995 25788 153 117 415 7401 2342 7365 199 2281 9845 36217

Notes: IFSF/IFFF, imported feed for seawater/freshwater fauna; IFL, imported feed for livestock; EC, exported crop products; EL, exported livestock products; EA, exported aquaculture products.

These datasets were based on the use of phosphorus-containing products, including products for the purposes of production or consumption, and the phosphorus content in the products. The detailed calculation methods can be seen in the Appendix A. Supplementary data for Huang et al. (2019) [1]. Based on these datasets, phosphorus flow chart for each year can be drawn, e.g. the year 1995 and 2014 in Huang et al. (2019) [1].

2. Experimental design, materials, and methods

2.1. Analytical framework and data sources

We applied a coupled system approach, i.e. Substance Flow Analysis (SFA), to account for the phosphorus flows through regional food production and consumption system and its subsystems. Analytical framework and data sources can be seen in Huang et al. (2019) [1].

2.2. Mass balance modeling

The equations of all phosphorus inputs and outputs during production, consumption, and discharge were constructed based on the mass balance principle, see Huang et al. (2019) [1].

Acknowledgments

This research was supported by the Young Talents Projects of Institute of Urban Environment, Chinese Academy of Sciences (Y4L0871D40), China; the Training Program of Fujian Excellent Talents in University, China; National Natural Science Foundation of China (31500391), China; Open Foundation of State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences (SKLECRA2017OFP13; SKLECRA2016OFP23), China; Natural Science Foundation of Fujian Province (2017R0093), China.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  • 1.Huang C.L., Gao B., Xu S., Huang Y.F., Yan X.M., Cui S.H. Changing phosphorus metabolism of a global aquaculture city. J. Clean. Prod. 2019;225:1118–1133. doi: 10.1016/j.jclepro.2019.03.298. 2019. [DOI] [Google Scholar]

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES