Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2019 Jul 11;8(28):e00548-19. doi: 10.1128/MRA.00548-19

Complete Genome Sequence of a Severe Acute Respiratory Syndrome-Related Coronavirus from Kenyan Bats

Ying Tao a, Suxiang Tong a,
Editor: Kenneth M Stedmanb
PMCID: PMC6624766  PMID: 31296683

We identified a strain of betacoronavirus BtKY72/Rhinolophus sp./Kenya/2007 (here BtKY72) from rectal swab samples in Kenyan bats. This paper reports the complete genomic sequence of BtKY72, which is closely related to BtCoV/BM48-31/Bulgaria/2008, a severe acute respiratory syndrome (SARS)-related virus from Rhinolophus bats in Europe.

ABSTRACT

We identified a strain of betacoronavirus BtKY72/Rhinolophus sp./Kenya/2007 (here BtKY72) from rectal swab samples in Kenyan bats. This paper reports the complete genomic sequence of BtKY72, which is closely related to BtCoV/BM48-31/Bulgaria/2008, a severe acute respiratory syndrome (SARS)-related virus from Rhinolophus bats in Europe.

ANNOUNCEMENT

The 2002 and 2003 outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV) infection was a significant public health threat at the beginning of the 21st century (16). Initial identification of SARS-CoV in civet cats and other wild animals in live animal markets suggests zoonosis (7). Later, Rhinolophus sp. bats were identified as harboring severe acute respiratory syndrome-related CoV at high frequencies and were believed to be a natural reservoir host for SARS-CoV (8, 9).

During a 5-year bat coronavirus (CoV) surveillance study (2006 to 2010) in Kenya, we identified five bat betacoronaviruses by pan-CoV reverse transcription-PCR (RT-PCR) from fecal samples of Chaerephon and Rhinolophus bats (10, 11). The Institutional Animal Care and Use Committee (IACUC) of the Centers for Disease Control and Prevention and Kenya Wildlife Services approved all protocols related to the animal experiments in this study. These bat betacoronaviruses shared >98% nucleotide identity with each other and were clustered with other known bat SARS-related CoVs identified from Rhinolophus bats in China and Europe (8, 9, 1215) based on a short amplicon sequence of open reading frame 1b (ORF1b) (121 bp). We selected RNA from the BtKY72 bat, which was one of the five betacoronavirus-positive bats from a previous study (11), for full genome sequencing. To determine the full genome sequence, consensus degenerate primers were designed from conserved sequences based on all known SARS-related CoVs (Table 1). Several small islands of sequences scattered throughout the genome were first determined from a Kenyan Rhinolophus bat using sets of seminested or nested consensus RT-PCR primers by Sanger sequencing. Then, sets of sequence-specific primers were used to fill the gaps and generate the full genome sequence, named BtKY72/Rhinolophus sp./Kenya/2007 (Table 1). The 5′ and 3′ ends of genome sequences were determined using a 5′/3′ rapid amplification of cDNA ends (RACE) kit (Roche). Complete genome sequencing was not performed due to limited viral loads in fecal samples from the other four betacoronavirus-positive bats.

TABLE 1.

Genomic PCR primers used in this study

PCR or primer no. First-round PCR primer
Nested-round PCR primer
Name Sequence (5′→3′) Nucleotide positiona Name Sequence (5′→3′) Nucleotide positiona
Consensus degenerate PCR primers
    1 F20_Fwd TACCCAGGAAAAGCCAACCAACC 15–37 F20_Fwd TACCCAGGAAAAGCCAACCAACC 15–37
R328new_Rev TGTAAAACAGGTAAACTGAGTTGGACGTG 296–324 R300_Rev TGAAACCAGGGACAAGGCTCTCC 254–284
    2 F180_Fwd AGACTGCAGACTGCTTACGGTTTCG 174–198 F220_Fwd CATCAGCATACCTAGGTTTCGTCCG 216–240
R700_Rev CACCTAACTCATAAGACTTTAGATCGATGCC 668–698 R490_Rev CATCAGATCGTTTAATGAACACATAGGGC 457–485
    3 F1440_Fwd ATTGAAACTCGACTCCGCAAGGG 1436–1458 F1470_Fwd GGTAGGACTARATGTTTTGGRGGYTGTG 1460–1487
R2090_Rev TACAAGACCACCWGTIACATAYGCCATRA 2050–2079 R2090_Rev TACAAGACCACCWGTIACATAYGCCATRA 2050–2079
    4 F5810_Fwd CAGAATATAAAGGACCAGTGACTGATGTTTTC 5691–5722 F5810_Fwd CAGAATATAAAGGACCAGTGACTGATGTTTTC 5691–5722
R6580_Rev GCTCGTTAGGTTTCTTAATGGTAATGCTTG 6429–6458 R6580_Rev GCTCGTTAGGTTTCTTAATGGTAATGCTTG 6429–6458
    5 F8330_Fwd ATGCCCAAGTAGCAARAAGYCACAATG 8220–8246 F8330_Fwd ATGCCCAAGTAGCAARAAGYCACAATG 8220–8246
R9580_Rev TGGTGAAATAGAATGTCAAGTACAAGTAAAAGA 9441–9473 R9470_Rev TAGCAGCAACTACATGGTTGTACTCACC 9345–9372
    6 F10290_Fwd GGCTTAAAGTTGATACYTCTAAYCCTAAGACACC 10183–10216 F10290_Fwd GGCTTAAAGTTGATACYTCTAAYCCTAAGACACC 10183–10216
R11440_Rev GCCCACATGGAAATAGCTTGATCTAARG 11308–11335 R11480_Rev AACGACACCAGAATAGTTAGAGGTTACAGAA 11345–11375
    7 F11190_Fwd TCTACATGCCTGCTAGYTGGGTGATG 11079–11104 F11220_Fwd CGTATTATGACATGGCTYGAATTGGC 11105–11130
R12390_Rev CGTGCATTGTTGATAATGTTGTTAAGTGC 12252–12280 R12390_Rev CGTGCATTGTTGATAATGTTGTTAAGTGC 12252–12280
    8 F15280_Fwd ACAGGRCTATGCCTAACATGCTTAG 15170–15198 F15300_Fwd ATTATGGCTTCTCTTGTCCTTGCTCG 15200–15225
R15980_Rev TTTCAATCATRAGTGTACCATCTGTTTTGAC 15849–15879 R15980_Rev TTTCAATCATRAGTGTACCATCTGTTTTGAC 15849–15879
    9 F15830_Fwd GACCTCAYGAATTTTGCTCWCAGC 15729–15752 F15850_Fwd TCTCAGCAYACRAATGCTAGTTAAACAAGG 15746–15775
R16850_Rev GTAGTACCTCTGTACACAACAGCATCWCC 16718–16746 R16840_Rev GTACACAACAGCATCACCATAGTCACC 16709–16735
    10 F16455_Fwd TTGTGTGCTAATGGTCAGGTTTTTGG 16347–16372 F16455_Fwd TTGTGTGCTAATGGTCAGGTTTTTGG 16347–16372
R17560_Rev GTGTCRACAATTTCRGCAGGACAACG 17427–17452 R17510_Rev ATGTCWGGACCTATTGTTTTCATRAGTCTGC 17377–17407
    11 F17990_Fwd CGMAATGTGGCTACKTTACARGCAGAA 17874–17903 F17990_Fwd CGMAATGTGGCTACKTTACARGCAGAA 17874–17903
R19170_Rev TTACAATTCCAAAACAARCARACACCATC 19038–19066 R19195_Rev CATTGGCYGGRTAACGATCAACG 19069–19091
    12 F18870_Fwd CGCGTTGATTGGTCTGTTGAATAYC 18768–18792 F18870_Fwd CGCGTTGATTGGTCTGTTGAATAYC 18768–18792
R20100_Rev ATGTGACTCCATTGACRCTWGCTTG 19959–19983 R20110_Rev TTTTACTGATTCTCCAATTAATGTGACTCC 19974–20004
    13 F19880_Fwd TTTCTACAATAGGTRTCTGYACAATGACTG 19773–19802 F19900_Fwd TGACTGACATTGMCAAGAAACCTACTG 19797–19823
R20730_Rev GCGTTTCACCATAATTCTGAAGGTC 20600–20625 R20730_Rev GCGTTTCACCATAATTCTGAAGGTC 20600–20625
    14 F20580_Fwd GGTGTAAGGATGGACATGYTGAAACC 20479–20504 F20580_Fwd GGTGTAAGGATGGACATGYTGAAACC 20479–20504
R21200_Rev CCACCATGAGAAATRKCCCATAAGC 21070–21096 R21210_Rev TTGTAACAAARGCTGTCCACCATGAG 21083–21107
    15 F24200_Fwd TGGCATATAGGTTYAATGGCATTGGAG 24089–24033 F24220_Fwd GGCATTGGAGTTRCYCAAAATGTTCTC 24109–24126
R25345_Rev CTCATAACAAATCCATTAAGTTCGTTTATGTG 25197–25229 R25345_Rev CTCATAACAAATCCATTAAGTTCGTTTATGTG 25197–25229
    16 F24970_Fwd CAAAAATCATACATCACCWGATGTTGATC 24854–24882 F25005_Fwd TTTCAGGCATTAAYGCTTCWGTCG 24894–24918
R26290_Rev CGCAGTAAGGATGGCTAGTGTGACTA 26127–26152 R26235_Rev AAAGAAGTACGCTATTAACTATTAACGTACCTG 26070–26102
    17 F26065_Fwd ACACAATCGACGGCTCTTCAGGAG 25945–25968 F26120_Fwd TGAGCCGACGACGACTACTAGCGT 25988–26011
R26890_Rev GATCACAGCNCCAATGACAAGTTCAC 26726–26751 R26870_Rev CAAGTTCACTTTCCARGAGCGGTCTG 26709–26734
Specific PCR primers
    1 contig10F1_Fwd GGTAAGATGGAGAGCCTTGTCCCTG 254–278 contig10F2_Fwd AACGAGAAAACTCACGTCCAACTCAG 284–309
contig10R1_Rev CTGACATAGAAGCAAGAATAATTACTACTTCCTC 1670–1703 contig10R1_Rev CTGACATAGAAGCAAGAATAATTACTACTTCCTC 1670–1703
    2 contig9-F1_Fwd CACAAGCTGCTTGCGTGGTTAGG 1872–1894 contig9-F1_Fwd CACAAGCTGCTTGCGTGGTTAGG 1872–1894
contig9-R1_Rev AGAGTTTCCATTCCTTGTGCGTCATC 6212–6237 contig9-R2_Rev GACAACGCAAACACCACATATTGGG 6134–6158
    3 contig11F1_Fwd AGTCAAACACTTGTCTCTGAAGAAGTAGTGG 6248–6278 contig11F2_Fwd GAAGTAGTGGAAACTCCTACCATACAGAAGG 6269–6299
contig8-R1_Rev GCATGATAATGTAAAACAGACTAGCAACTAATACC 8462–8495 contig8-R2_Rev CATGTGTTATTCAATTTACCACCCTTAAGTG 8397–8427
    4 contig5-F1_Fwd TTCTACCACGTGTGTTTAGTGCTGTTG 8772–8798 contig5-F1_Fwd TTCTACCACGTGTGTTTAGTGCTGTTG 8772–8798
R10475_Rev GTTAAAACCAACACTACCACATGANCCATT 10334–10363 R10410_Rev ATTAGGTCTCATGGCACACTGRTAAACWC 10281–10309
    5 Contig7-F1_Fwd AAAATGGCAGATCAGGCTATGACCC 12129–12153 Contig7-F2_Fwd ACAGGCTAGGTCTGAAGACAAGAGGG 12164–12189
contig14R1_Rev TTGTAGATTGCGGACATACTTGTCGG 15444–15469 contig14R2_Rev CCATCAGTAGATAAGAGTGCATTCACATTAGC 15401–15432
    6 500-c1-F1_Fwd TCGATGGCCACTAATTATGACCTGAG 17229–17254 500-c1-F1_Fwd TCGATGGCCACTAATTATGACCTGAG 17229–17254
500-c2-R1_Rev AGCCCAAAGGACAAACACGACTC 18369–18392 500-c2-R2_Rev ACGCACTATGTTCCAAGGCAGACC 18442–18464
    7 500-c3-F1_Fwd AAGTTGGCATTAGGTGGTTCTGTGG 21000–21024 contig3-F2_Fwd GCCATAAAGATTACAGAGCATTCGTGG 21024–21050
500-R22790_Rev CAGGTCCGATAGGTATATCACACTCATAGG 23378–23406 500-R22740_Rev TGGCTCCTAGAAGACAACCAGCTTG 23338–23362
    8 F23200_Fwd CCGTGCTCTTTTGGTGGTGTKAGTG 23161–23185 F23200_Fwd CCGTGCTCTTTTGGTGGTGTKAGTG 23161–23185
500-c4-R1_Rev CTGACATTTTAGTAGCAGCAAGATTAGCAG 24334–24361 500-c4-R2_Rev TCTGGACTTCAGCCTCAACTTTATCAAG 24446–24475
    9 500C4F1_Fwd GCTTAGCTACTTTGTTGCATCATTCAGG 26593–26620 500C4F2_Fwd ATTGGTGCTCATGATCATTCGTGGTT 26735–26760
oligodT anchor_Rev GTTTCCCAGTCACGATATTTTTTTTTTTTTTTTV 29273–29289 oligodT anchor_Rev GTTTCCCAGTCACGATATTTTTTTTTTTTTTTTV 29273–29289
a

Positions relative to the genome of BtKY72/Rhinolophus sp./Kenya/2007 (GenBank accession no. KY352407).

The genome of BtKY72 was 29,259 nucleotides long, including the poly(A) tail, with 39% G+C content. Sequence alignment and a BLAST search analysis of the full-length genome sequences showed that the BtKY72 genome shared an 81% overall nucleotide identity to its nearest relative, BtCoV/BM48-3, which was identified from a Rhinolophus bat in Europe (15), and that it has 93 to 94% amino acid identity in the seven concatenated, conserved replicase domains (ADP-ribose-1″-phosphatase [ADRP], nonstructural protein 5 [nsp5], and nsp12 to nsp16) to BtCoV/BM48-31 (Fig. 1). Phylogenetic analysis suggested that BtKY72 belongs to the subgenus Sarbecovirus of the genus Betacoronavirus (Fig. 1). The genome organization contained the following gene order: 5′ UTR-ORF1ab-S-ORF3a-E-M-ORF6-ORF7a-ORF7b-N-3′ UTR. Unlike SARS-CoV and other known SARS-CoV-related bat viruses, both ORF3b and ORF8 were absent in BtKY72. ORF8 was also missing in its closest neighbor, BtCoV/BM48-31 (15).

FIG 1.

FIG 1

Phylogenetic analysis of whole-genome sequences of betacoronaviruses. The phylogenetic tree is inferred using the maximum likelihood (ML) method available in PhyML version 3.0 (16), assuming a general time-reversible (GTR) model with a discrete gamma-distributed rate variation among sites (Γ4) and a subtree pruning and regrafting (SPR) tree-swapping algorithm. The sequences are labeled with accession number, strain name, geographic (three-letter country code), and host (species) information. BtKY72/Rhinolophus sp./Kenya/2007, sequenced in this study, is highlighted with a solid circle. The genus taxonomy information is shown to the right side of the phylogeny. The maximum likelihood bootstrap is indicated next to the nodes. The scale bar indicates the estimated number of nucleotide substitutions per site. KEN, Kenya; CHN, China; BGR, Bulgaria; NGA, Nigeria; MERS-CoV, Middle East respiratory syndrome coronavirus; HCoV, human coronavirus; MHV, mouse hepatitis virus; ZBCoV, Zaria bat coronavirus.

In conclusion, our study demonstrates that the SARS-related CoVs that were identified from Rhinolophus bats in China and Europe were also present in Kenyan Rhinolophus bats (Fig. 1). The discovery of SARS-related CoVs in Kenyan bats adds to the diversity and geographic range of CoVs in Rhinolophus bats. The genome data for BtKY72 will facilitate understanding of the molecular evolutionary characteristics of bat SARS-related CoV.

Data availability.

The complete genome sequence of BtKY72 is available in GenBank under the accession number KY352407.

ACKNOWLEDGMENTS

We thank Ivan Kuzmin and Michael Niezgoda from the Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, GA, and Bernard Agwanda from the National Museum, Kenya Wildlife Service, Nairobi, Kenya, for excellent technical and logistical assistance and field study.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

REFERENCES

  • 1.Cherry JD, Krogstad P. 2004. SARS: the first pandemic of the 21st century. Pediatr Res 56:1–5. doi: 10.1203/01.PDR.0000129184.87042.FC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJ. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348:1986–1994. doi: 10.1056/NEJMoa030685. [DOI] [PubMed] [Google Scholar]
  • 3.Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, members of the SARS Study Group . 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Zhong N, Ding Y, Mao Y, Wang Q, Wang G, Wang D, Cong Y, Li Q, Liu Y, Ruan L, Chen B, Du X, Yang Y, Zhang Z, Zhang X, Lin J, Zheng J, Zhu Q, Ni D, Xi X, Zeng G, Ma D, Wang C, Wang W, Wang B, Wang J, Liu D, Li X, Liu X, Chen J, Chen R, Min F, Yang P, Zhang Y, Luo H, Lang Z, Hu Y, Ni A, Cao W, Lei J, Wang S, Wang Y, Tong X, Liu W, Zhu M, Zhang Y, Zhang Z, Zhang X, Li X, Chen W, Xhen X, Lin L, Luo Y, Zhong J, Weng W, Peng S, Pan Z, Wang Y, Wang R, Zuo J, Liu B, Zhang N, Zhang J, Zhang B, Zhang Z, Wang W, Chen L, Zhou P, Luo Y, Jiang L, Chao E, Guo L, Tan X, Pan J, Chinese Medical Association , China Association of Chinese Medicine. 2003. Consensus for the management of severe acute respiratory syndrome. Chin Med J (Engl) 116:1603–1635. [PubMed] [Google Scholar]
  • 5.Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, Group SW. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
  • 6.Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
  • 7.Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276–278. doi: 10.1126/science.1087139. [DOI] [PubMed] [Google Scholar]
  • 8.Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102:14040–14045. doi: 10.1073/pnas.0506735102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679. doi: 10.1126/science.1118391. [DOI] [PubMed] [Google Scholar]
  • 10.Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, Niezgoda M, Haynes L, Agwanda B, Breiman RF, Anderson LJ, Rupprecht CE. 2009. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg Infect Dis 15:482–485. doi: 10.3201/eid1503.081013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin IV, Holmes EC, Tong S. 2017. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e01953-16. doi: 10.1128/JVI.01953-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y, Xia L, Zhou J, Zhen W, Feng Y, Guo H, Zhang H, Tu C. 2014. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol 88:7070–7082. doi: 10.1128/JVI.00631-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu W, Cheung CL, Xu KM, Song WJ, Vijaykrishna D, Poon LL, Peiris JS, Smith GJ, Chen H, Guan Y. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J Virol 80:7481–7490. doi: 10.1128/JVI.00697-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Yuan J, Hon CC, Li Y, Wang D, Xu G, Zhang H, Zhou P, Poon LL, Lam TT, Leung FC, Shi Z. 2010. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J Gen Virol 91:1058–1062. doi: 10.1099/vir.0.016378-0. [DOI] [PubMed] [Google Scholar]
  • 15.Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, Seebens A, Niedrig M, Pfefferle S, Yordanov S, Zhelyazkov L, Hermanns U, Vallo P, Lukashev A, Muller MA, Deng H, Herrler G, Drosten C. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 84:11336–11349. doi: 10.1128/JVI.00650-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The complete genome sequence of BtKY72 is available in GenBank under the accession number KY352407.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES