Skip to main content
Cells logoLink to Cells
. 2019 Jun 22;8(6):631. doi: 10.3390/cells8060631

miR-26a-5p is a Stable Reference Gene for miRNA Studies in Chondrocytes from Developing Human Cartilage

Enrico Ragni 1,*, Paola De Luca 1, Antongiulio Marmotti 2, Laura de Girolamo 1
PMCID: PMC6627695  PMID: 31234552

Abstract

miRNAs are emerging as key regulators of complex biological systems in several developmental processes. qRT-PCR is a powerful tool to quantitatively assess the profiles and modulation of miRNA expression. In the emerging field of cartilage maturation studies, from precursor to hypertrophic chondrocytes, few data about miRNA regulation are available, and no consensus on the best reference gene (RG) has been reached. This is a crucial pitfall since reliable outcomes depend on proper data normalization. The aim of this work was to identify reliable and stable miRNA RGs, basing the analysis on available high throughput qRT-PCR miRNA data (from the NCBI Gene Expression Omnibus database, GSE49152) obtained from human embryonic cartilage tissues enriched in the precursor, differentiated, and hypertrophic chondrocytes. Four normalization approaches were used, and the stability was quantified by combining BestKeeper, delta-Ct, geNorm, and NormFinder statistical tools. An integrated approach allowed to identify miR-26a-5p as the most stable RG and miR-212-3p as the worst one. RNU44, used in original dataset analysis, performed as second best RG. Applications of different normalization strategies significantly impacted the profiles and modulation of miRNA expression. Herein presented results point out the crucial need of a consensus on data normalization studies aimed at dissecting miRNA role in human cartilage development, to avoid the postulation of unreliable biological conclusions.

Keywords: miRNA, cartilage, reference gene, qRT-PCR, development, chondrocyte

1. Introduction

Gene expression regulation is the biological foundation for the specification of every cell type, tissue, and organ in a multicellular organism. Together with transcriptional regulators, miRNAs have emerged as gene expression repressors directing the post-transcriptional modulation that underlies development [1]. miRNAs are evolutionary conserved, single-stranded, 21–24 nucleotide-long non-coding RNA molecules [2]. They are usually transcribed from DNA sequences first into primary miRNAs, then processed into precursor miRNAs and eventually mature molecules. The main mechanism of action is through direct interaction with 3′ untranslated region (3’ UTR) of target mRNAs, which induces mRNA degradation resulting in translational repression [3]. In addition, miRNAs may interact with 5′ UTR, coding sequence, gene promoters, and under certain conditions, they can also activate translation or regulate transcription [2]. To date, 2300 validated human miRNAs have been reported, and new miRNAs are still being discovered with their roles in gene regulation, starting to be fully deciphered [4].

miRNAs are involved in a variety of biological processes regulating human development in different districts. For some of them, a clear picture has been depicted [5]. As a striking example, for neural development, hundreds of miRNAs are involved in determining the fate of the two major cell types of the nervous system, neurons and glia, at both embryonic and early postnatal stages [6]. An advantage of the neural system is that these processes of neuro- and gliogenesis involve many intermediate cell types that have been exhaustively studied in terms of gene expression and non-coding RNAs regulation [7]. Similarly, in the bone system, the precise roles of many miRNAs have been fully deciphered, giving valuable insights into the treatment of developmental disorders of the skeleton [8]. On the contrary, despite an increasing amount of in vitro data, there is still limited information on the expression and function of specific miRNAs in human cartilage development in vivo.

During embryonic development, mesenchymal progenitor cells differentiate into chondrocytes to form cartilage templates for future bones and cartilage. Proliferating chondrocytes produce extracellular matrix, enriched in type II collagen and aggrecan. Further, they differentiate into hypertrophic chondrocytes that express type X collagen and undergo mineralization to be eventually replaced by mineralized bone, leading to longitudinal bone growth [9]. In this process, different signaling molecules and transcription factors have been shown to regulate the progression of chondrocyte-specific gene expression [10,11]. Regarding miRNAs, few data are available in the in vivo settings, and actual knowledge has predominantly come from studies in mice. let-7 miRNA is required for chondrocyte proliferation [12], whereas miR-140 modulates premature hypertrophic chondrocyte differentiation and delays differentiation of resting chondrocytes to proliferating chondrocytes [13,14]. Nevertheless, data of the human model depicting modulations or differences between cells at different stages of differentiation were missing.

To overcome the limitations of these studies, a pivotal work on miRNA expression patterns was performed by high-throughput qRT-PCR technique within human embryonic (gestational day 54–56) cartilage laser dissected fragments, containing either precursor (PC), differentiated (DC), or hypertrophic (HYP) chondrocytes (Gene Expression Omnibus database, GSE49152) [15]. This report was selected being unique in combining miRNA analysis and specific chondrocyte populations directly involved in regulating cartilage and long bone development. Authors were able to identify differentially expressed miRNAs predicted to regulate growth factors (vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGF-β), bone morphogenetic protein (BMP), fibroblast growth factor (FGF)), Hedgehog and Wnt signaling pathways, and interleukin (IL)-8. Despite this fundamental milestone, only around 50 miRNAs were detectable in all the nine donors, leaving room for further studies aimed either at identifying those candidates that were missed for both technical or low expression reasons, or at studying dysregulation of miRNAs modulating developmental processes involved in skeletal disorders, such as osteoarthritis (OA), chondrodysplasias, or delayed endochondral fracture healing.

For a deep analysis of single or few miRNAs, a robust normalization strategy is a fundamental requisite. Therefore, mining qRT-PCR data of McAlinden dataset, through gold-standard statistical tools (BestKeeper [16], geNorm [17], NormFinder [18], and the comparative delta-Ct method [19]), the aim of this work was to identify stable miRNAs to be used as Reference Genes (RGs) in future studies dissecting these small RNAs involved in cartilage developmental or pathologic processes.

2. Results

2.1. miRNA Selection

Mining qRT-PCR data, it was possible to identify 46 miRNAs with positive amplification values in all the 26 samples (8 PC, 9 DC, and 9 HYP). RNU44, used in McAlinden work as normalizer, was also always scored. The distribution of the quantification cycles (Ct) values of the selected reference genes over the whole sample sets is shown in Appendix A Table A1. miRNAs presented different expression values and variability levels in the three datasets. In PC chondrocytes, miR-26a-5p showed the largest expression (mean Ct = 13.04), while miR-362-3p was the least expressed (mean Ct = 23.80). In DC samples, miR-720 (mean Ct = 13.34) and miR-362-3p (mean Ct = 24.24) were poles apart. In HYP tissues, miR-720 (mean Ct = 14.26) was the most abundant, with miR-362-3p being again low expressed (mean Ct = 25.83). RNU44 was scored with low Ct values (mean Ct = 13.97 for PC, 14.42 for DC, and 15.57 for HYP). In terms of variability, miR-769-5p in PC, miR-202-3p in DC and HYP displayed the lowest standard deviation (SD), 0.51, 1.02, and 1.48, respectively. Eventually, correlation analysis was performed between each dataset. The analysis, shown in Figure 1, pointed out the existence of high correlation (R2 > 0.8) for PC/DC and DC/HYP when compared to one another, while PC and HYP had lower interrelationship (R2 = 0.6). This is in agreement with modulation of miRNA expression between precursor and hypertrophic chondrocytes, passing by an intermediate differentiation phase.

Figure 1.

Figure 1

Pearson correlation scatter plots for the 46 miRNAs and RNU44 amplified from precursor (PC), differentiated (DC), and hypertrophic (HYP) tissues. x and y-axis indicate Ct values. R2 stands for the correlation coefficient, with values >0.8 meaning a very strong interrelationship and value <0.6 a fair one.

2.2. Candidate miRNA Ranking

We picked the 46 miRNAs, together with RNU44, and assessed their potential contribution as normalizers following BestKeeper, geNorm, and NormFinder applets and comparative delta-Ct method (Appendix A Table A4, Table A5, Table A6 and Table A7) and Figure 2 for the first fifteen miRNAs in the different rankings). BestKeeper was first used to calculate the Ct standard deviation (SD) in the three datasets. This application ranked: in PC, miR-769-5p (SD of 0.38) and miR-212-3p (5.25) as the best and worst performers, respectively; in DC, miR-202-3p (0.64) and miR-212-3p (3.42); in HYP, miR-373-3p (1.14) and miR-199a-3p (5.03). Based on fold change data, geNorm generated a stability value M by stepwise exclusion of the candidate genes: in PC, miR-296-5p/miR-331-3p as the most stable pair of miRNAs (M of 0.25) and miR-99b-5p (3.37) as the worst RG; in DC, miR-16-5p/miR-26a-5p (0.30) and miR-119a-3p (2.28); in HYP, miR-331-3p/miR-10b-3p (0.51) and miR-520b (3.31). The comparative delta-Ct method identified: in PC, RNU44 (SD of 2.40) and miR-99b-5p (6.85) as best and worst RGs; in DC, miR-331-3p (1.61) and miR-199a-3p (4.22); in HYP, miR-26a-5p (2.33) and miR-520b (6.63). Eventually, NormFinder ranked: in PC, miR-26b-5p (0.45) as the most accurate and miR-99b-5p (6.46) as the less reliable RG; in DC, miR-331-3p (0.18) and miR-199a-3p (4.08); in HYP, miR-26a-5p (0.27) and miR-520b (6.21). Further, because the four applets generated different rankings, a comprehensive stability value was generated (geomean). Following this computation, RNU44 (2.40) for PC, miR-331-3p (2.63) for DC, and miR-26a-5p (2.89) for HYP samples were proposed as the most stable RGs.

Figure 2.

Figure 2

Venn diagrams of the overlap of proposed miRNA reference genes (RGs) through the four algorithms. The most stable 15 miRNAs per each algorithm were considered. PC: precursor; DC: differentiated; HYP: hypertrophic.

Since both single algorithms and overall ranking resulted in different reliable RGs for each dataset, all samples were scored together. In this condition, BestKeeper suggested miR-202-3p (1.04), geNorm miR-26a-5p/miR-331-3p couple (0.58), delta-Ct method miR-26a-5p (2.30), and NormFinder miR-26a-5p (0.56) as the most accurate RGs. The comprehensive ranking of gene stability obtained by combining the four analyses (geomean) assessed miR-26a-5p (1.86) as the most stable miRNA, followed by RNU44 (3.31) and miR-26b-5p (3.98). miR-212-3p was the least stable candidate.

2.3. Impact of Normalization Strategy on miRNA Profiling

The effects of best/worst normalization strategies on target miRNA profiles were evaluated. The expression levels were computed using either the best (miR-26a-5p) or the worst (miR-212-3p) normalizers and compared with the results obtained with the normalization approach used in McAlinden analysis (RNU44) that also demonstrated its suitability in our ranking. Heat maps in Figure 3A clearly show that all three normalization approaches were able to cluster a group composed of H24243-HYP, H23689-PC, H23814-HYP, H23387-PC, and H23731-DC samples. The hierarchy in this group was maintained for miR-26a-5p and RNU44, while changed using miR-212-3p. Further, with the wrong normalization approach, an apparent and erroneous overexpression of almost all miRNAs in H24243-PC/DC samples emerged. Moreover, despite similar gross outcomes for the two most stable RGs, defined by the identification of those samples clearly different from the others, small rearrangement in both samples and miRNAs dendrograms could be observed, confirming that a most refined strategy allows identifying more specific co-regulation.

Figure 3.

Figure 3

Effect of normalization strategy on the miRNAs scored in the precursor (PC), differentiated (DC), and hypertrophic (HYP) tissues. (A) Heat maps of the assayed miRNAs across all samples after miR-26a-5p, RNU44, or miR-212-3p normalization. (B) Effect of miR-26a-5p or RNU44 normalization on miR-335-3p expression in PC, DC, and HYP samples. Values are shown as delta-Ct with respect to normalizing reference genes (RGs). # stands for p-value = 0.1, * for p-value ≤ 0.05, ** for p-value < 0.01, *** for p-value < 0.001, and **** for p-value < 0.0001. (C) Pearson correlation scatter plots for miR-335-3p and miR-26a-5p/RNU44 RGs. x and y-axis indicate Ct values.

To evaluate the crucial impact of the best strategy on the reliable quantification of subtle discrepancies between cartilage regions, a more refined analysis was performed on miR-335-3p levels. miR-335-3p was selected since in McAlinden analysis, performed using RNU44, it was reported as significantly modulated within PC, DC, and HYP samples. In Figure 3B, it clearly appears that in a context of similar outcomes between the two approaches, the use of the most reliable miR-26a-5p does not allow scoring a significant (p-value ≤ 0.05) difference between PC and DC samples. To rule out this variation, correlation analysis for miR-26a-5p, RNU44, and miR-335-3p was performed across all samples. Interestingly, RNU44 and miR-335-3p showed a higher correlation coefficient (R2 = 0.68 vs. 0.53 for miR-26a-5p/miR-335-3p) (Figure 3C), leading to more homogenous ratios with reduced standard deviation and eventually higher statistical significance. Notably, the correlation between miR-26a-5p and RNU44 was high (0.82) as expected for RGs with similar stability profiles, again emphasizing that from small differences, major distortions may arise.

3. Discussion

The present work identified miR-26a-5p as a suitable RG for studies on miRNAs involved in and controlling the developmental process of human cartilage. By a multi-technique quantitative approach, we also demonstrated the good performance of the widely-used normalizer RNU44, in this specific experimental context. The application of different normalization strategies in the exemplary case of miR-335-3p assessment pointed out the criticality of the RG choice to obtain significant information on miRNA modulation in cartilage development.

Normalization strategy is an open question in studies assessing miRNA stability and comparison between samples from different sources or donors. Traditionally, in qRT-PCR studies, the relative quantification method is used, comparing expression levels of target miRNAs with the amount of an endogenous RG. In this context, small nuclear/nucleolar RNAs (snRNAs, e.g., RNU6, RNU44, or RNU48) have been commonly preferred [20]. This approach has some advantages, as well as important pitfalls. In fact, small RNA molecules, such as miRNAs and snRNAs, share similar features, such as stability and size. Further, snRNAs are ubiquitous and abundantly expressed, crucial traits for a reliable RG [21]. Nevertheless, snRNA biogenesis is mechanistically separated from miRNA biogenesis. As an example, RNU6 is not processed by the spliceosome but by the Drosha complex and does not mirror the physicochemical properties of miRNA molecules [22]. Therefore, the selection of the reference RNA on the class of RNAs being investigated is a fundamental issue, suggesting that reference miRNAs would be preferred for miRNAs.

To date, no universal miRNA RGs have been proposed due to high variability between donors, tissues, and developmental stages, making miRNA studies results largely incomparable [23]. Therefore, the selection of RGs that are reliable within the experimental condition under analysis is a pivotal pre-requisite. In this perspective, for large miRNA datasets, the global mean expression value normalization was proposed as highly effective, in terms of both reduction of technical variation and more accurate quantification of biological fluctuations [24]. However, when only a limited number of miRNA molecules are profiled, the selection of specific RGs is mandatory. To answer this need, the identification of invariant miRNAs by algorithms, specifically developed for RG evaluation and selection, resulted in a promising strategy [16,17,18,19].

In the field of developmental biology, such strategy has been successfully applied in a few studies in the plant or animal systems [25,26,27,28,29]. In human studies, a major issue is an availability of starting tissue material, especially when developmental studies are performed at embryonic stages. In the present work, the valuable data regarding miRNA expression in embryonic cartilage fragments, containing either precursor, differentiated, or hypertrophic chondrocytes [15] was mined. RNU44, used by McAlinden group as a normalizer for differentially-expressed miRNAs, was a reliable RG, ranking second when all samples were grouped, and always within the first ten positions in the separated cartilage regions. From our analysis, miR-26a-5p emerged as the most accurate RG, standing first for the analysis of all samples together, and in the top five for disjointed isolates. At present, no reports connecting miR-26a-5p and cartilage development are known, reinforcing its suitability as stable RG, although more focused studies are needed. In a wider context related to cartilage, in human chondrocytes, the downregulation of miR-26a-5p expression by IL-1b through nuclear factor kappa B (NF-kB) enhanced the production of OA-related nitric oxide synthase 2 (iNOS) protein, due to the ability of miR-26a-5p to directly target iNOS mRNA 3’UTR [30]. Therefore, although stable in developing cartilage, miR-26a-5p reliability as chondrocyte miRNA RG in adult tissues under inflammation or OA might be considered carefully, and our suggestion is to verify, through the herein proposed algorithms, a panel of miRNA RGs, if possible selected from studies in the same or similar field.

The marked differences in performance of the tested normalization strategies (miR-26a-5p/RNU44/miR-212-3p) had a significant impact on miRNAs profiling in the different regions of developing cartilage, possibly precluding accurate biological implications. Although all normalization strategies allowed to clearly distinguish a subgroup of markedly different samples, either best or worst RGs completely changed the arrangement of both sample and miRNA dendrograms (Figure 3A). Moreover, even using miR-26a-5p, it was not possible to clearly cluster PC, DC, and HYP regions. This may indicate that overall, or at least for the 46 scored miRNAs, no fingerprinting major transcriptional differences are present. In this context of global high similarity, few miRNAs may be crucial to support biological outcomes, and reliable and refined evaluation of small variations gets decisive, as shown for miR-335-3p, in assessing significant modulations.

In conclusion, this study pointed out for the first time the reliability of miR-26a-5p for future studies aimed at dissecting new or low abundant miRNAs regulation in different regions of human developing cartilage. The main limitation of the report is the lack of validation of the proposed analysis on independent samples. Therefore, future evaluation of miRNA expression from developing cartilage should be performed on the path of herein proposed candidates, possibly from multiple samples for each individual to reduce overall variability [31].

4. Materials and Methods

4.1. Data Retrieval and Ethics Statement

qRT-PCR data can be found in the GEO database [32], with the record GSE49152 [15]. Only miRNAs with reported Ct values in all samples were considered for the analysis (Appendix A Table A1, Table A2 and Table A3). For the donors, briefly, human, normal embryonic tissue samples (limbs) at gestational day 54–56 were obtained from nine donors, and laser capture microdissection was performed to obtain tissue from the precursor chondrocyte (PC), differentiated chondrocyte (DC), or hypertrophic chondrocyte (HYP) regions. After RNA extraction, TaqMan® OpenArray® technology was used to determine microRNA expression profiles starting from 30 ng total RNA for each sample (Thermo Fisher Scientific, Waltham, MA, USA). TaqMan® OpenArray® technology is a fixed-content panel containing 754 validated human TaqMan® MicroRNA Assays derived from Sanger miRBase release v.14. The panel is specifically designed to provide specificity for only the mature miRNA targets. TaqMan MicroRNA Assays incorporate a target-specific stem-loop reverse transcription primer allowing to work despite the short length of mature miRNAs (~22 nucleotides).

As stated in McAlinden work, the Human Research Protection Office (HRPO) at Washington University in St Louis reviewed the request to work with human embryonic tissue, and the original project was deemed exempt since it did not constitute human subjects research and receiving embryonic tissue from the University of Washington would not involve obtaining data through intervention or interaction with a living individual, and, other than gestational age, no identifying information was provided upon receipt of the tissue.

4.2. Assessment of RG Stability

Gene expression stability was evaluated according to four gold-standard statistical approaches: BestKeeper [16], geNorm [17], NormFinder [18], and the comparative delta-Ct method [19]. BestKeeper analysis uses Ct values directly, while geNorm, NormFinder, and delta-Ct method use transformed Ct values of (1 + E) − ΔCt. The ranking of the RGs according to their stability was generated by each algorithm, and a series of continuous integers starting from 1 was assigned to each RG. The overall performance of the miRNA RGs was evaluated by combining the results of the four approaches through a global ranking obtained as the geometric mean of the rankings given by each analysis [33,34].

4.3. Statistical Analyses

Statistical analyses were performed using GraphPad Prism Software version 5 (GraphPad, San Diego, CA, USA). Presence of outliers was scored by Grubbs’ test. When two sets of data (PCvsDC, PCvsHYP, DCvsHYP) were compared, as in McAlinden paper, the comparison was performed by using unpaired Student t-test. Significance level was set at p-value ≤ 0.05. Pearson correlation coefficient (R2) was estimated to determine the linear association between samples or miRNA Ct values. The outcome results were interpreted according to the degree of association [35].

Heatmaps were generated scoring Cycle relative threshold (Crt) values normalized both with stable miR-26a-5p/RNU44 and unstable miR-212-3pwith ClustVis package (https://biit.cs.ut.ee/clustvis/) [36]. After row centering, maps were generated using the following settings for both rows and columns clustering distance and method: correlation and average, respectively.

Acknowledgments

Authors deeply thank all researchers at IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia for discussions and suggestions.

Abbreviations

qRT-PCR Quantitative Real-Time Polymerase Chain Reaction
RG Reference Gene
OA Osteoarthritis
miRNA microRNA
PC precursor chondrocytes
DC differentiated chondrocytes
HYP hypertrophic chondrocytes
VEGF vascular endothelial growth factor
IGF-1 insulin-like growth factor-1
TGF-β transforming growth factor beta
BMP bone morphogenetic protein
FGF fibroblast growth factor

Appendix A

Table A1.

Distribution of the quantification cycles (Crt) values across precursor chondrocytes (PC) samples.

ID_REF H23374 H23387 H23689 H23731 H23804 H24010 H24051 H24243 Mean SD
miR-16-5p 15.76 17.263 14.612 17.995 15.589 16.245 16.118 15.243 16.103 1.088
miR-19a-3p 17.769 12.165 8.759 18.885 16.404 17.197 17.497 16.911 15.698 3.434
miR-25-3p 16.781 13.398 10.264 17.825 16.354 16.019 16.226 14.745 15.202 2.398
miR-26a-5p 13.795 14.585 10.863 14.655 12.569 12.826 12.921 12.091 13.038 1.281
miR-26b-5p 15.127 15.954 11.639 15.812 13.683 13.633 14.025 14.717 14.324 1.407
miR-30d-5p 18.15 18.348 18.033 18.384 16.167 15.424 15.907 16.049 17.058 1.275
miR-99b-5p 13.355 14.608 11.317 14.06 12.283 12.488 12.877 32.047 15.379 6.813
miR-190a 22.433 19.043 16.729 22.04 21.151 20.133 20.519 20.133 20.273 1.802
miR-192-5p 19.521 20.214 17.789 21.362 18.292 19.292 19.359 30.646 20.809 4.122
miR-211-5p 16.856 14.045 15.184 16.354 17.323 16.399 16.815 16.893 16.234 1.088
miR-212-3p 15.3 25.443 21.018 14.492 15.321 15.068 15.161 32.376 19.272 6.565
miR-221-3p 21.038 16.549 12.994 23.498 21.289 19.233 20.512 18.489 19.200 3.251
miR-296-5p 17.126 16.506 12.682 16.368 15.281 15.512 15.894 13.817 15.398 1.479
miR-301a-3p 17.437 24.183 20.688 17.512 15.668 15.564 15.632 15.073 17.720 3.183
miR-328 16.275 20.79 17.911 16.196 15.318 15.291 15.35 16.314 16.681 1.871
miR-331-3p 14.993 14.602 11.136 15.003 13.6 13.86 14.027 12.325 13.693 1.352
miR-369-3p 22.2 25.225 19.24 22.316 20.755 19.644 20.457 21.571 21.426 1.897
miR-373-3p 20.872 17.352 13.565 18.928 20.73 18.879 19.095 16.799 18.278 2.374
miR-365 18.866 26.069 22.047 20.417 18.557 18.724 18.712 20.156 20.444 2.572
miR-520b 22.805 24.426 24.831 22.453 24.983 21.584 21.652 22.462 23.150 1.393
miR-542-3p 21.685 18.276 15.802 22.499 20.563 19.7 20.214 20.529 19.909 2.082
miR-659-3p 24.314 15.082 11.816 22.937 24.641 19.723 20.466 22.921 20.238 4.603
miR-758 19.959 17.303 15.235 22.147 20.961 21.27 20.411 21.351 19.830 2.357
miR-769-5p 20.453 20.809 20.585 21.329 19.666 20.208 20.169 20.087 20.413 0.506
miR-362-3p 21.876 31.59 27.068 23.274 21.24 21.177 21.92 22.259 23.801 3.678
miR-339-3p 21.266 16.579 13.694 22.451 20.253 22.428 21.516 22.011 20.025 3.193
miR-335-3p 18.111 18.732 15.78 17.727 16.023 17.845 17.513 17.737 17.434 1.016
miR-345-5p 18.021 20.615 17.911 19.548 17.585 18.684 18.124 20.252 18.843 1.152
miR-886-5p 18.156 15.614 14.222 18.138 16.017 15.215 14.268 34.51 18.268 6.736
miR-323-3p 17.171 19.577 15.798 18.177 16.057 17.305 17.291 16.15 17.191 1.253
miR-151a-3p 19.206 15.52 14.021 21.469 18.197 19.953 19.181 20.01 18.445 2.484
miR-340-3p 21.096 16.028 14.812 22.218 20.309 21.181 21.625 20.294 19.695 2.733
miR-342-3p 16.005 18.656 16.827 17.393 14.8 17.462 16.833 15.172 16.644 1.272
miR-193a-5p 20.281 19.074 16.07 21.22 20.044 19.475 19.573 20.068 19.476 1.518
miR-138-5p 20.323 17.887 16.26 22.691 20.647 20.028 20.853 19.036 19.716 1.972
miR-199a-3p 12.892 24.971 21.137 14.097 11.852 11.869 12.326 11.159 15.038 5.126
miR-10b-3p 18.889 23.797 20.055 20.166 16.796 18.28 19.337 18.034 19.419 2.088
miR-483-3p 16.064 20.652 18.422 16.133 14.348 16.081 16.253 15.515 16.684 1.958
miR-202-3p 20.34 19.782 16.845 20.327 20.869 20.395 20.38 25.763 20.588 2.442
miR-494 18.156 24.034 20.525 19.472 18.219 19.466 18.362 21.292 19.941 2.000
miR-193b-5p 23.232 15.684 12.657 24.236 22.339 23.219 23.33 24.496 21.149 4.432
miR-543 18.858 21.579 19.426 19.625 17.319 18.876 18.825 17.496 19.001 1.330
miR-155-5p 18.446 21.61 17.761 18.895 18.45 18.053 18.717 15.747 18.460 1.612
miR-1291 20.252 17.87 16.122 20.902 20.273 19.908 18.814 20.51 19.331 1.631
miR-1275 17.891 23.592 23.873 18.257 17.67 17.119 16.898 17.023 19.040 2.933
miR-720 13.546 18.461 18.539 13.048 11.742 11.685 12.233 10.165 13.677 3.141
RNU44 14.806 14.132 12.033 15.060 12.878 14.185 14.610 14.081 13.973 1.023

Table A2.

Distribution of the quantification cycles (Crt) values across differentiated chondrocytes (DC) samples.

ID_REF H23374 H23387 H23689 H23731 H23804 H23814 H24010 H24051 H24243 Mean SD
miR-16-5p 17.12 19.173 13.827 19.497 15.103 17.281 15.051 18.18 17.023 16.917 1.932
miR-19a-3p 19.173 19.646 14.969 14.039 15.501 18.006 16.431 19.486 18.396 17.294 2.108
miR-25-3p 18.26 19.566 14.254 15.571 15.876 18.407 15.604 18.32 17.383 17.027 1.762
miR-26a-5p 14.456 15.767 10.853 16.905 12.028 14.485 12.264 14.734 14.021 13.946 1.915
miR-26b-5p 16.067 17.028 11.617 18.668 13.406 16.199 13.601 16.473 16.741 15.533 2.200
miR-30d-5p 18.621 19.887 14.616 20.917 16.24 18.469 15.931 18.025 18.159 17.874 1.981
miR-99b-5p 14.476 15.482 10.879 17.203 11.883 14.102 12.509 14.976 19.153 14.518 2.604
miR-190a 23.051 22.927 16.937 22.253 21.262 22.594 19.881 21.78 22.958 21.516 1.997
miR-192-5p 21.866 21.433 17.511 22.669 18.409 20.227 18.215 21.526 23.971 20.647 2.206
miR-211-5p 17.132 16.976 14.709 14.849 16.078 17.864 16.124 17.551 18.711 16.666 1.346
miR-212-3p 14.613 13.779 12.999 24.595 13.138 14.085 13.629 16.116 23.3 16.250 4.472
miR-221-3p 20.669 23.643 15.289 17.863 18.2 21.544 17.989 22.264 20.454 19.768 2.622
miR-296-5p 18.069 18.4 14.146 18.503 14.95 16.135 15.305 17.273 17.175 16.662 1.597
miR-301a-3p 18.064 18.517 13.829 23.646 14.813 17.132 14.529 17.745 17.083 17.262 2.926
miR-328 16.475 17.018 14.19 22.472 14.142 15.911 14.684 16.332 17.017 16.471 2.519
miR-331-3p 15.569 16.34 12.158 17.457 12.659 14.506 13.256 15.689 15.093 14.747 1.765
miR-369-3p 22.614 22.705 17.327 25.569 19.288 21.306 18.575 21.924 22.402 21.301 2.520
miR-373-3p 20.674 19.904 16.998 19.633 19.27 21.31 17.897 19.903 20.208 19.533 1.340
miR-365 18.78 19.767 15.079 28.769 16.344 17.797 16.243 18.518 18.977 18.919 3.996
miR-520b 22.799 21.624 19.716 33.414 22.364 23.634 22.654 21.946 20.935 23.232 3.984
miR-542-3p 21.582 23.098 17.779 20.597 19.413 21.347 18.568 21.172 21.577 20.570 1.678
miR-659-3p 23.839 25.276 25.615 18.596 24.974 24.452 20.877 22.417 24.389 23.382 2.334
miR-758 21.995 23.84 18.765 18.623 19.302 20.851 19.586 22.638 22.458 20.895 1.914
miR-769-5p 21.339 22.454 18.869 22.063 19.044 21.069 19.638 22.079 22.089 20.960 1.411
miR-362-3p 23.264 25.611 19.183 30.957 21.065 24.316 21.961 24.489 27.286 24.237 3.503
miR-339-3p 22.631 25.648 19.203 20.886 19.583 21.204 20.602 23.122 23.487 21.818 2.073
miR-335-3p 20.206 20.566 16.702 19.991 16.541 18.369 18.316 21.196 20.954 19.205 1.780
miR-345-5p 19.194 20.928 16.144 23.486 16.185 18.263 17.547 19.926 20.206 19.098 2.367
miR-886-5p 17.998 19.349 15.829 16.404 14.59 17.109 13.063 15.461 20.095 16.655 2.248
miR-323-3p 18.193 21.046 16.7 20.679 15.28 18.114 16.436 20.365 19.267 18.453 2.043
miR-151a-3p 21.498 22.716 17.214 18.35 17.951 20.003 18.789 21.554 21.878 19.995 1.991
miR-340-3p 22.248 23.312 18.799 18.859 19.4 21.991 20.369 23.269 21.824 21.119 1.802
miR-342-3p 17.528 19.571 14.822 30.514 14.624 16.711 16.143 18.977 17.413 18.478 4.811
miR-193a-5p 20.548 23.09 18.877 22.735 19.239 21.038 18.522 20.77 21.864 20.743 1.641
miR-138-5p 17.679 20.05 14.523 21.741 15.573 17.727 14.985 17.7 17.133 17.457 2.335
miR-199a-3p 14.285 15.795 10.526 28.462 11.458 14.423 12.243 14.979 14.41 15.176 5.279
miR-10b-3p 21.266 22.542 16.191 26.342 18.356 20.841 18.43 22.372 21.266 20.845 2.947
miR-483-3p 17.108 18.086 15.868 25.096 15.009 15.966 16.949 18.263 17.59 17.771 2.951
miR-202-3p 20.522 20.408 19.698 20.947 19.797 20.571 19.366 20.643 22.89 20.538 1.022
miR-494 18.3 22.234 16.351 24.418 17.997 18.644 17.753 19.537 20.287 19.502 2.492
miR-193b-5p 22.426 24.428 19.749 14.727 21.926 22.503 20.477 22.748 23.226 21.357 2.849
miR-543 19.725 20.497 16.45 24.05 16.957 19.71 18.215 20.644 19.111 19.484 2.255
miR-155-5p 19.397 19.848 16.905 23.729 17.946 19.621 18.419 19.466 18.209 19.282 1.923
miR-1291 20.157 21.16 18.004 18.882 18.388 20.321 17.279 18.851 19.992 19.226 1.257
miR-1275 18.413 19.438 17.212 23.706 17.532 17.948 16.416 18.798 17.974 18.604 2.107
miR-720 14.054 14.578 10.717 19.77 11.537 12.671 11.917 13.545 11.266 13.339 2.746
RNU44 15.035 15.900 11.991 16.028 12.189 14.030 13.579 15.677 15.308 14.415 1.552

Table A3.

Distribution of the quantification cycles (Crt) values across hypertrohic chondrocytes (HYP) samples.

ID_REF H23374 H23387 H23689 H23731 H23804 H23814 H24010 H24051 H24243 Mean SD
miR-16-5p 18.528 28.879 16.163 21.854 16.735 17.016 17.585 18.541 20.45 19.528 3.951
miR-19a-3p 18.582 21.88 15.871 21.321 16.335 11.963 17.048 18.054 14.71 17.307 3.114
miR-25-3p 18.541 22.189 15.481 21.375 18.069 14.712 17.537 18.427 16.241 18.064 2.496
miR-26a-5p 14.922 18.867 11.822 17.5 13.602 16.324 13.73 14.296 19.241 15.589 2.549
miR-26b-5p 16.391 19.673 12.735 19.524 15.148 17.175 15.39 16.327 19.157 16.836 2.318
miR-30d-5p 18.549 23.304 15.538 21.844 18.124 18.559 17.22 17.752 22.519 19.268 2.651
miR-99b-5p 15.05 18.32 12.083 17.595 13.425 16.828 14.05 15.091 22.232 16.075 3.060
miR-190a 22.098 25.533 18.38 23.351 22.828 18.971 20.521 21.379 29.678 22.527 3.470
miR-192-5p 20.601 24.885 17.834 24.027 18.671 21.408 19.425 19.713 23.936 21.167 2.563
miR-211-5p 16.568 17.604 15.181 17.976 16.704 15.435 16.419 17.368 22.462 17.302 2.146
miR-212-3p 14.257 14.947 12.639 16.028 14.471 20.82 13.94 14.609 22.886 16.066 3.438
miR-221-3p 19.8 30.603 16.157 23.446 18.198 17.511 18.256 19.528 18.71 20.245 4.372
miR-296-5p 19.405 21.089 15.01 19.641 16.887 17.988 16.437 17.111 20.606 18.242 2.058
miR-301a-3p 19.532 23.071 15.956 21.837 17.489 27.545 17.101 18.399 23.971 20.545 3.819
miR-328 16.474 19.028 14.579 18.042 15.126 21.652 15.36 15.923 22.1 17.587 2.812
miR-331-3p 16.127 18.497 12.725 17.333 13.622 18.226 14.236 15.254 21.06 16.342 2.683
miR-369-3p 21.945 27.602 18.699 25.399 21.518 23.821 20.73 21.763 19.457 22.326 2.841
miR-373-3p 19.909 21.263 17.472 21.982 20.496 17.689 18.828 19.719 19.944 19.700 1.506
miR-365 19.141 24.593 15.782 20.998 17.907 26.623 16.523 17.53 30.747 21.094 5.145
miR-520b 22.05 21.389 20.184 23.525 22.721 33.405 21.016 21.654 12.988 22.104 5.230
miR-542-3p 22.391 27.024 19.535 24.99 21.464 18.687 20.502 21.687 22.607 22.099 2.605
miR-659-3p 22.515 30.9 23.112 26.067 25.795 18.229 21.82 22.5 22.353 23.699 3.541
miR-758 27.024 33.204 20.866 27.259 21.531 17.753 21.544 23.32 20.466 23.663 4.709
miR-769-5p 22.031 27.52 19.756 24.831 20.807 21.286 20.802 21.854 24.272 22.573 2.478
miR-362-3p 24.469 27.73 21.842 27.93 23.975 30.514 23.431 24.455 28.147 25.833 2.832
miR-339-3p 22.62 28.911 20.67 25.379 21.062 22.864 21.405 22.889 25.914 23.524 2.705
miR-335-3p 23.272 29.163 19.571 26.107 21.129 18.335 23.277 23.334 22.887 23.008 3.258
miR-345-5p 19.747 24.72 17.445 22.648 18.367 21.434 18.755 19.531 27.505 21.128 3.302
miR-886-5p 16.516 20.772 13.932 17.941 14.419 13.708 12.258 13.314 15.626 15.387 2.665
miR-323-3p 19.445 26.756 17.451 24.573 17.575 14.899 19.091 19.708 21.803 20.145 3.695
miR-151a-3p 22.117 27.1 19.211 24.539 19.054 15.677 19.737 20.356 18.396 20.687 3.432
miR-340-3p 22.684 29.818 20.16 25.137 21.236 16.251 22.248 23.47 19.421 22.269 3.819
miR-342-3p 18.531 22.53 15.9 20.756 15.486 29.993 18.261 18.011 32.656 21.347 6.093
miR-193a-5p 20.491 24.301 18.297 22.426 19.566 21.331 18.856 19.258 25.898 21.158 2.599
miR-138-5p 17.91 21.729 15.212 19.901 16.63 17.693 15.111 16.293 34.84 19.480 6.148
miR-199a-3p 14.901 20.186 11.839 17.593 12.582 25.568 13.809 14.883 31 18.040 6.475
miR-10b-3p 21.556 24.427 18.741 24.167 18.979 23.849 20.676 21.789 27.299 22.387 2.795
miR-483-3p 20.301 22.767 19.374 21.706 18.339 23.61 19.891 20.168 31.851 22.001 4.051
miR-202-3p 19.543 22.099 18.483 21.209 19.729 20.273 19.692 20.053 23.314 20.488 1.477
miR-494 19.363 30.249 18.016 26.464 19.706 22.744 19.094 19.281 23.698 22.068 4.112
miR-193b-5p 23.994 27.276 19.598 24.023 22.118 12.469 20.526 21.713 15.242 20.773 4.568
miR-543 20.536 23.678 18.092 23.71 19.499 24.266 20.128 20.697 26.157 21.863 2.666
miR-155-5p 19.587 18.328 17.54 19.649 17.296 23.726 19.085 19.539 25.65 20.044 2.813
miR-1291 18.728 22.494 17.419 21.682 18.98 19.234 17.506 17.481 19.804 19.259 1.824
miR-1275 18.351 22.249 17.141 20.426 18.859 24.48 17.453 18.348 26.251 20.395 3.248
miR-720 13.064 15.841 11.024 14.008 11.498 17.967 12.458 12.451 20.048 14.262 3.079
RNU44 15.843 18.931 12.639 17.203 13.430 14.392 14.658 15.450 17.585 15.570 2.046

Table A4.

miRNA stability ranking in precursor chondrocytes (PC).

Ranking Geomean BestKeeper geNorm delta-Ct NormFinder
1 RNU44 2.63 miR-769-5p 0.38 miR-296-5p | miR-331-3p 0.25 RNU44 2.4 miR-26b-5p 0.452
2 miR-335-3p 3.6 RNU44 0.76 miR-26a-5p 2.4 miR-335-3p 0.516
3 miR-26b-5p 3.81 miR-335-3p 0.77 miR-26a-5p 0.456 miR-26b-5p 2.41 miR-345-5p 0.594
4 miR-26a-5p 4.26 miR-16-5p 0.8 miR-16-5p 0.629 miR-335-3p 2.42 RNU44 0.597
5 miR-16-5p 4.68 miR-211-5p 0.81 miR-26b-5p 0.711 miR-16-5p 2.42 miR-26a-5p 0.785
6 miR-769-5p 4.88 miR-323-3p 0.9 RNU44 0.755 miR-323-3p 2.47 miR-16-5p 0.798
7 miR-331-3p 5.49 miR-543 0.91 miR-335-3p 0.789 miR-331-3p 2.47 miR-769-5p 0.832
8 miR-296-5p 6.53 miR-193a-5p 0.95 miR-323-3p 0.809 miR-193a-5p 2.48 miR-193a-5p 0.96
9 miR-323-3p 7.14 miR-155-5p 0.96 miR-769-5p 0.875 miR-769-5p 2.48 miR-323-3p 0.97
10 miR-345-5p 7.75 miR-345-5p 0.97 miR-342-3p 0.954 miR-345-5p 2.52 miR-331-3p 1.055
11 miR-193a-5p 9.51 miR-26a-5p 0.98 miR-543 1.003 miR-296-5p 2.55 miR-296-5p 1.217
12 miR-543 11.25 miR-342-3p 0.99 miR-345-5p 1.043 miR-1291 2.62 miR-369-3p 1.255
13 miR-211-5p 12.83 miR-331-3p 1 miR-155-5p 1.092 miR-543 2.66 miR-1291 1.272
14 miR-342-3p 13.23 miR-26b-5p 1.08 miR-30d-5p 1.14 miR-190a 2.66 miR-30d-5p 1.41
15 miR-155-5p 14.71 miR-296-5p 1.1 miR-369-3p 1.184 miR-342-3p 2.69 miR-211-5p 1.426
16 miR-30d-5p 15.2 miR-30d-5p 1.17 miR-193a-5p 1.23 miR-369-3p 2.72 miR-543 1.458
17 miR-1291 15.2 miR-520b 1.2 miR-190a 1.295 miR-30d-5p 2.72 miR-342-3p 1.462
18 miR-369-3p 15.87 miR-190a 1.26 miR-1291 1.347 miR-542-3p 2.74 miR-190a 1.487
19 miR-190a 16.66 miR-1291 1.3 miR-211-5p 1.397 miR-211-5p 2.78 miR-542-3p 1.647
20 miR-542-3p 20.34 miR-328 1.33 miR-542-3p 1.443 miR-155-5p 2.8 miR-155-5p 1.712
21 miR-138-5p 22.15 miR-202-3p 1.36 miR-138-5p 1.477 miR-138-5p 2.81 miR-138-5p 1.792
22 miR-328 22.2 miR-369-3p 1.4 miR-10b-3p 1.537 miR-328 2.94 miR-494 1.87
23 miR-520b 23.07 miR-483-3p 1.43 miR-328 1.588 miR-25-3p 2.95 miR-520b 1.908
24 miR-10b-3p 23.96 miR-10b-3p 1.44 miR-483-3p 1.634 miR-10b-3p 3 miR-328 1.914
25 miR-494 25.17 miR-542-3p 1.49 miR-520b 1.675 miR-758 3 miR-202-3p 1.957
26 miR-483-3p 26.09 miR-138-5p 1.49 miR-494 1.715 miR-494 3.03 miR-10b-3p 2.034
27 miR-202-3p 26.86 miR-494 1.51 miR-25-3p 1.761 miR-151a-3p 3.06 miR-758 2.059
28 miR-25-3p 26.87 miR-373-3p 1.78 miR-373-3p 1.805 miR-483-3p 3.06 miR-25-3p 2.106
29 miR-758 27.45 miR-758 1.78 miR-758 1.847 miR-520b 3.06 miR-151a-3p 2.153
30 miR-373-3p 29.22 miR-25-3p 1.8 miR-151a-3p 1.887 miR-373-3p 3.14 miR-483-3p 2.154
31 miR-151a-3p 29.44 miR-365 1.81 miR-340-3p 1.934 miR-202-3p 3.23 miR-373-3p 2.258
32 miR-340-3p 32.24 miR-151a-3p 1.9 miR-202-3p 1.983 miR-340-3p 3.28 miR-365 2.544
33 miR-365 32.95 miR-340-3p 2.14 miR-221-3p 2.037 miR-365 3.35 miR-340-3p 2.567
34 miR-221-3p 34.73 miR-1275 2.35 miR-339-3p 2.086 miR-339-3p 3.54 miR-339-3p 2.878
35 miR-339-3p 34.96 miR-301a-3p 2.36 miR-19a-3p 2.134 miR-221-3p 3.58 miR-221-3p 2.952
36 miR-301a-3p 36.49 miR-221-3p 2.39 miR-365 2.186 miR-19a-3p 3.67 miR-19a-3p 3.098
37 miR-19a-3p 36.7 miR-720 2.41 miR-301a-3p 2.262 miR-301a-3p 3.88 miR-301a-3p 3.339
38 miR-1275 36.96 miR-339-3p 2.44 miR-1275 2.332 miR-1275 3.92 miR-1275 3.346
39 miR-720 38.49 miR-192-5p 2.6 miR-720 2.399 miR-720 4.08 miR-720 3.574
40 miR-362-3p 40.5 miR-19a-3p 2.62 miR-362-3p 2.472 miR-362-3p 4.26 miR-192-5p 3.659
41 miR-192-5p 40.72 miR-362-3p 2.76 miR-193b-5p 2.562 miR-192-5p 4.5 miR-362-3p 3.775
42 miR-193b-5p 41.75 miR-193b-5p 3.49 miR-659-3p 2.652 miR-193b-5p 4.57 miR-193b-5p 4.137
43 miR-659-3p 42.75 miR-659-3p 3.52 miR-192-5p 2.739 miR-659-3p 4.79 miR-659-3p 4.331
44 miR-199a-3p 44 miR-199a-3p 4.01 miR-199a-3p 2.862 miR-199a-3p 5.67 miR-199a-3p 5.386
45 miR-886-5p 45 miR-886-5p 4.06 miR-886-5p 3.044 miR-886-5p 6.78 miR-886-5p 6.388
46 miR-212-3p 46.25 miR-99b-5p 4.17 miR-212-3p 3.212 miR-212-3p 6.85 miR-212-3p 6.407
47 miR-99b-5p 46.75 miR-212-3p 5.25 miR-99b-5p 3.367 miR-99b-5p 6.85 miR-99b-5p 6.463

Table A5.

miRNA stability ranking in differentiated chondrocytes (DC).

Ranking Geomean BestKeeper geNorm delta-Ct NormFinder
1 miR-331-3p 2.63 miR-202-3p 0.64 miR-16-5p | miR-26a-5p 0.302 miR-331-3p 1.61 miR-331-3p 0.179
2 miR-26a-5p 2.74 miR-373-3p 0.99 miR-26a-5p 1.63 miR-26a-5p 0.309
3 miR-16-5p 3.66 miR-1291 1.05 miR-30d-5p 0.366 miR-16-5p 1.65 miR-30d-5p 0.398
4 miR-30d-5p 4.97 miR-211-5p 1.09 miR-331-3p 0.421 miR-30d-5p 1.66 miR-16-5p 0.414
5 miR-296-5p 6.51 miR-769-5p 1.18 miR-26b-5p 0.493 miR-296-5p 1.67 miR-26b-5p 0.474
6 RNU44 6.96 miR-155-5p 1.26 miR-296-5p 0.564 RNU44 1.68 miR-296-5p 0.492
7 miR-769-5p 7.09 miR-193a-5p 1.29 RNU44 0.614 miR-769-5p 1.68 RNU44 0.542
8 miR-193a-5p 8.21 RNU44 1.3 miR-769-5p 0.652 miR-26b-5p 1.69 miR-193a-5p 0.574
9 miR-26b-5p 8.65 miR-542-3p 1.32 miR-193a-5p 0.692 miR-193a-5p 1.72 miR-769-5p 0.604
10 miR-202-3p 11.73 miR-296-5p 1.36 miR-138-5p 0.75 miR-345-5p 1.79 miR-345-5p 0.776
11 miR-373-3p 13.03 miR-1275 1.36 miR-345-5p 0.798 miR-138-5p 1.82 miR-369-3p 0.832
12 miR-155-5p 13.07 miR-331-3p 1.42 miR-543 0.832 miR-369-3p 1.83 miR-138-5p 0.848
13 miR-138-5p 13.34 miR-190a 1.44 miR-369-3p 0.858 miR-543 1.83 miR-323-3p 0.871
14 miR-345-5p 13.7 miR-26a-5p 1.49 miR-323-3p 0.886 miR-542-3p 1.85 miR-543 0.89
15 miR-1291 14.39 miR-16-5p 1.5 miR-155-5p 0.928 miR-323-3p 1.85 miR-192-5p 1.013
16 miR-543 14.63 miR-25-3p 1.51 miR-494 0.968 miR-335-3p 1.88 miR-335-3p 1.029
17 miR-542-3p 14.9 miR-30d-5p 1.52 miR-10b-3p 1.006 miR-192-5p 1.93 miR-542-3p 1.078
18 miR-369-3p 15.77 miR-335-3p 1.53 miR-1275 1.04 miR-155-5p 1.96 miR-155-5p 1.086
19 miR-323-3p 15.83 miR-340-3p 1.57 miR-328 1.069 miR-494 1.99 miR-494 1.141
20 miR-1275 16.98 miR-328 1.58 miR-301a-3p 1.095 miR-190a 2.02 miR-1275 1.243
21 miR-335-3p 17.64 miR-543 1.6 miR-335-3p 1.13 miR-1275 2.04 miR-190a 1.245
22 miR-190a 19.03 miR-758 1.63 miR-192-5p 1.161 miR-1291 2.04 miR-10b-3p 1.301
23 miR-211-5p 20.06 miR-323-3p 1.68 miR-542-3p 1.192 miR-328 2.05 miR-328 1.31
24 miR-192-5p 20.25 miR-339-3p 1.69 miR-190a 1.228 miR-373-3p 2.05 miR-373-3p 1.335
25 miR-494 21.05 miR-138-5p 1.69 miR-373-3p 1.265 miR-10b-3p 2.06 miR-1291 1.376
26 miR-328 21.17 miR-151a-3p 1.71 miR-1291 1.298 miR-301a-3p 2.13 miR-202-3p 1.399
27 miR-10b-3p 24.73 miR-886-5p 1.76 miR-202-3p 1.331 miR-202-3p 2.13 miR-99b-5p 1.422
28 miR-25-3p 25.42 miR-26b-5p 1.77 miR-99b-5p 1.362 miR-339-3p 2.17 miR-301a-3p 1.466
29 miR-301a-3p 27.27 miR-483-3p 1.81 miR-339-3p 1.396 miR-25-3p 2.17 miR-339-3p 1.607
30 miR-339-3p 27.7 miR-19a-3p 1.83 miR-25-3p 1.426 miR-99b-5p 2.2 miR-25-3p 1.669
31 miR-340-3p 29.6 miR-192-5p 1.83 miR-151a-3p 1.454 miR-151a-3p 2.2 miR-151a-3p 1.726
32 miR-151a-3p 29.67 miR-659-3p 1.83 miR-758 1.487 miR-758 2.34 miR-720 1.75
33 miR-758 29.8 miR-345-5p 1.83 miR-340-3p 1.515 miR-720 2.34 miR-886-5p 1.884
34 miR-99b-5p 30.27 miR-494 1.88 miR-211-5p 1.541 miR-340-3p 2.35 miR-211-5p 1.893
35 miR-886-5p 32.55 miR-720 1.91 miR-886-5p 1.57 miR-211-5p 2.37 miR-758 1.934
36 miR-720 34.43 miR-99b-5p 1.94 miR-221-3p 1.602 miR-886-5p 2.46 miR-340-3p 1.945
37 miR-483-3p 35.74 miR-369-3p 1.94 miR-19a-3p 1.632 miR-483-3p 2.52 miR-362-3p 1.973
38 miR-19a-3p 36.81 miR-301a-3p 1.98 miR-720 1.663 miR-362-3p 2.54 miR-483-3p 2.002
39 miR-221-3p 38.71 miR-193b-5p 2.03 miR-362-3p 1.702 miR-221-3p 2.58 miR-221-3p 2.162
40 miR-362-3p 39.41 miR-10b-3p 2.12 miR-483-3p 1.739 miR-19a-3p 2.63 miR-19a-3p 2.322
41 miR-659-3p 40.48 miR-221-3p 2.16 miR-365 1.802 miR-365 3.05 miR-365 2.738
42 miR-365 41.49 miR-520b 2.35 miR-193b-5p 1.882 miR-520b 3.58 miR-520b 3.301
43 miR-193b-5p 42.19 miR-365 2.39 miR-659-3p 1.958 miR-193b-5p 3.75 miR-659-3p 3.54
44 miR-520b 42.49 miR-362-3p 2.55 miR-520b 2.035 miR-659-3p 3.77 miR-212-3p 3.565
45 miR-342-3p 45.25 miR-342-3p 3.03 miR-342-3p 2.118 miR-342-3p 3.82 miR-193b-5p 3.603
46 miR-212-3p 45.74 miR-199a-3p 3.09 miR-212-3p 2.196 miR-212-3p 3.9 miR-342-3p 3.64
47 miR-199a-3p 46.75 miR-212-3p 3.42 miR-199a-3p 2.282 miR-199a-3p 4.22 miR-199a-3p 4.076

Table A6.

miRNA stability ranking in hypertrophic chondrocytes (HYP).

Ranking Geomean BestKeeper geNorm delta-Ct NormFinder
1 miR-26a-5p 2.89 miR-373-3p 1.14 miR-331-3p | miR-10b-3p 0.512 miR-26a-5p 2.33 miR-26a-5p 0.274
2 miR-192-5p 4.68 miR-202-3p 1.15 miR-192-5p 2.36 miR-192-5p 0.28
3 miR-26b-5p 5.63 miR-211-5p 1.38 miR-543 0.573 miR-30d-5p 2.38 miR-30d-5p 0.414
4 miR-30d-5p 6.43 miR-1291 1.38 miR-99b-5p 0.669 miR-26b-5p 2.4 miR-26b-5p 0.512
5 miR-331-3p 6.72 RNU44 1.62 miR-26a-5p 0.76 miR-769-5p 2.42 miR-296-5p 0.634
6 miR-296-5p 6.93 miR-296-5p 1.73 miR-193a-5p 0.818 miR-193a-5p 2.43 miR-339-3p 0.668
7 miR-10b-3p 7.57 miR-26b-5p 1.82 miR-345-5p 0.863 miR-296-5p 2.44 RNU44 0.708
8 RNU44 7.61 miR-25-3p 1.84 miR-192-5p 0.94 RNU44 2.44 miR-769-5p 0.722
9 miR-202-3p 7.9 miR-542-3p 1.92 miR-26b-5p 0.996 miR-339-3p 2.45 miR-193a-5p 0.73
10 miR-193a-5p 8.06 miR-769-5p 1.98 miR-30d-5p 1.03 miR-331-3p 2.53 miR-202-3p 1.052
11 miR-769-5p 8.65 miR-155-5p 2.06 miR-296-5p 1.077 miR-543 2.57 miR-1291 1.086
12 miR-373-3p 9.56 miR-886-5p 2.07 RNU44 1.125 miR-10b-3p 2.57 miR-331-3p 1.138
13 miR-1291 9.96 miR-193a-5p 2.07 miR-339-3p 1.163 miR-202-3p 2.58 miR-10b-3p 1.198
14 miR-543 10.04 miR-26a-5p 2.13 miR-769-5p 1.193 miR-1291 2.59 miR-543 1.21
15 miR-339-3p 10.29 miR-192-5p 2.13 miR-202-3p 1.224 miR-99b-5p 2.64 miR-345-5p 1.355
16 miR-99b-5p 12.45 miR-339-3p 2.14 miR-1291 1.273 miR-345-5p 2.67 miR-99b-5p 1.364
17 miR-211-5p 13.21 miR-331-3p 2.17 miR-328 1.337 miR-542-3p 2.78 miR-886-5p 1.652
18 miR-345-5p 15.23 miR-30d-5p 2.19 miR-720 1.394 miR-886-5p 2.84 miR-542-3p 1.692
19 miR-542-3p 16.03 miR-369-3p 2.19 miR-362-3p 1.444 miR-328 2.87 miR-373-3p 1.798
20 miR-886-5p 17.05 miR-335-3p 2.25 miR-1275 1.491 miR-373-3p 2.94 miR-362-3p 1.816
21 miR-25-3p 19.89 miR-10b-3p 2.27 miR-211-5p 1.54 miR-362-3p 2.96 miR-211-5p 1.827
22 miR-328 20.11 miR-543 2.3 miR-373-3p 1.607 miR-720 2.97 miR-328 1.832
23 miR-362-3p 21.34 miR-328 2.33 miR-886-5p 1.668 miR-211-5p 2.98 miR-720 2.024
24 miR-720 22.27 miR-19a-3p 2.36 miR-542-3p 1.718 miR-1275 3.05 miR-1275 2.139
25 miR-369-3p 24.39 miR-99b-5p 2.37 miR-190a 1.777 miR-25-3p 3.18 miR-494 2.212
26 miR-155-5p 24.5 miR-362-3p 2.44 miR-369-3p 1.853 miR-335-3p 3.22 miR-190a 2.216
27 miR-1275 24.83 miR-720 2.46 miR-25-3p 1.919 miR-190a 3.25 miR-369-3p 2.253
28 miR-335-3p 25.93 miR-190a 2.51 miR-494 1.979 miR-369-3p 3.26 miR-16-5p 2.366
29 miR-190a 26.48 miR-212-3p 2.57 miR-335-3p 2.037 miR-16-5p 3.28 miR-25-3p 2.37
30 miR-494 30.46 miR-659-3p 2.59 miR-323-3p 2.087 miR-494 3.28 miR-335-3p 2.427
31 miR-16-5p 30.85 miR-151a-3p 2.6 miR-16-5p 2.132 miR-323-3p 3.28 miR-323-3p 2.446
32 miR-323-3p 32.14 miR-345-5p 2.62 miR-155-5p 2.185 miR-155-5p 3.48 miR-155-5p 2.705
33 miR-212-3p 32.67 miR-1275 2.63 miR-301a-3p 2.236 miR-301a-3p 3.54 miR-301a-3p 2.709
34 miR-19a-3p 33.43 miR-340-3p 2.67 miR-212-3p 2.284 miR-212-3p 3.58 miR-212-3p 2.914
35 miR-151a-3p 34.44 miR-483-3p 2.72 miR-483-3p 2.334 miR-151a-3p 3.6 miR-483-3p 3.007
36 miR-301a-3p 34.63 miR-16-5p 2.8 miR-151a-3p 2.395 miR-483-3p 3.68 miR-151a-3p 3.035
37 miR-483-3p 35.25 miR-323-3p 2.82 miR-19a-3p 2.452 miR-19a-3p 3.71 miR-221-3p 3.095
38 miR-659-3p 36.52 miR-520b 2.96 miR-221-3p 2.506 miR-221-3p 3.76 miR-19a-3p 3.15
39 miR-221-3p 37.99 miR-221-3p 3.01 miR-659-3p 2.559 miR-659-3p 3.87 miR-659-3p 3.267
40 miR-340-3p 38.41 miR-301a-3p 3.17 miR-340-3p 2.613 miR-340-3p 3.98 miR-340-3p 3.529
41 miR-365 41.97 miR-494 3.31 miR-365 2.683 miR-365 4.17 miR-365 3.631
42 miR-758 42.25 miR-193b-5p 3.39 miR-758 2.753 miR-758 4.45 miR-758 4.031
43 miR-193b-5p 42.99 miR-758 3.67 miR-193b-5p 2.849 miR-193b-5p 5.18 miR-138-5p 4.816
44 miR-138-5p 43.75 miR-138-5p 4.01 miR-138-5p 2.956 miR-138-5p 5.26 miR-193b-5p 4.893
45 miR-520b 44.57 miR-365 4.15 miR-342-3p 3.061 miR-342-3p 5.28 miR-342-3p 4.979
46 miR-342-3p 45.25 miR-342-3p 4.7 miR-199a-3p 3.162 miR-199a-3p 5.45 miR-199a-3p 5.161
47 miR-199a-3p 46.25 miR-199a-3p 5.03 miR-520b 3.309 miR-520b 6.63 miR-520b 6.208

Table A7.

miRNA stability ranking in all samples (ALL).

Ranking Geomean BestKeeper geNorm delta-Ct NormFinder
1 miR-26a-5p 1.86 miR-202-3p 1.04 miR-26a-5p | miR-331-3p 0.579 miR-26a-5p 2.3 miR-26a-5p 0.555
2 RNU44 3.31 miR-211-5p 1.06 RNU44 2.32 miR-26b-5p 0.56
3 miR-26b-5p 3.98 miR-1291 1.25 miR-26b-5p 0.714 miR-26b-5p 2.33 RNU44 0.591
4 miR-769-5p 4.68 RNU44 1.28 miR-296-5p 0.771 miR-769-5p 2.35 miR-769-5p 0.698
5 miR-331-3p 5.19 miR-769-5p 1.31 RNU44 0.858 miR-296-5p 2.4 miR-30d-5p 0.823
6 miR-296-5p 6.12 miR-373-3p 1.37 miR-769-5p 0.93 miR-30d-5p 2.4 miR-193a-5p 0.836
7 miR-30d-5p 6.59 miR-155-5p 1.51 miR-30d-5p 0.97 miR-331-3p 2.42 miR-296-5p 0.897
8 miR-193a-5p 7.44 miR-193a-5p 1.52 miR-193a-5p 1.019 miR-193a-5p 2.42 miR-331-3p 0.921
9 miR-1291 9.12 miR-30d-5p 1.57 miR-345-5p 1.09 miR-345-5p 2.48 miR-345-5p 0.98
10 miR-202-3p 9.41 miR-296-5p 1.59 miR-543 1.139 miR-543 2.55 miR-543 1.254
11 miR-211-5p 10.81 miR-542-3p 1.65 miR-10b-3p 1.207 miR-542-3p 2.58 miR-542-3p 1.434
12 miR-345-5p 10.99 miR-26a-5p 1.67 miR-323-3p 1.306 miR-1291 2.69 miR-1291 1.447
13 miR-543 11.58 miR-331-3p 1.69 miR-16-5p 1.375 miR-10b-3p 2.7 miR-10b-3p 1.551
14 miR-542-3p 11.68 miR-26b-5p 1.74 miR-542-3p 1.433 miR-16-5p 2.75 miR-369-3p 1.557
15 miR-373-3p 14.56 miR-369-3p 1.8 miR-190a 1.493 miR-323-3p 2.76 miR-16-5p 1.592
16 miR-10b-3p 15.37 miR-328 1.83 miR-1291 1.552 miR-328 2.78 miR-323-3p 1.625
17 miR-16-5p 15.47 miR-25-3p 1.85 miR-373-3p 1.605 miR-369-3p 2.8 miR-202-3p 1.656
18 miR-323-3p 16.21 miR-190a 1.86 miR-211-5p 1.648 miR-190a 2.81 miR-190a 1.665
19 miR-369-3p 16.55 miR-543 1.86 miR-25-3p 1.694 miR-211-5p 2.84 miR-328 1.671
20 miR-155-5p 17.27 miR-345-5p 1.89 miR-339-3p 1.735 miR-373-3p 2.85 miR-211-5p 1.702
21 miR-190a 17.43 miR-16-5p 1.92 miR-369-3p 1.774 miR-202-3p 2.86 miR-494 1.805
22 miR-328 18.29 miR-151a-3p 2.01 miR-202-3p 1.813 miR-25-3p 2.92 miR-373-3p 1.811
23 miR-25-3p 20.53 miR-339-3p 2.02 miR-328 1.857 miR-155-5p 2.93 miR-155-5p 1.893
24 miR-339-3p 22.69 miR-323-3p 2.09 miR-155-5p 1.892 miR-339-3p 2.94 miR-339-3p 1.953
25 miR-494 25.65 miR-340-3p 2.09 miR-494 1.933 miR-494 2.94 miR-25-3p 2.064
26 miR-151a-3p 25.87 miR-19a-3p 2.13 miR-335-3p 1.973 miR-151a-3p 3.09 miR-192-5p 2.114
27 miR-192-5p 28.41 miR-192-5p 2.16 miR-151a-3p 2.011 miR-335-3p 3.13 miR-335-3p 2.214
28 miR-335-3p 28.54 miR-520b 2.19 miR-340-3p 2.058 miR-1275 3.15 miR-1275 2.287
29 miR-340-3p 29.31 miR-1275 2.24 miR-19a-3p 2.104 miR-192-5p 3.17 miR-151a-3p 2.321
30 miR-1275 29.43 miR-10b-3p 2.26 miR-221-3p 2.144 miR-720 3.28 miR-720 2.476
31 miR-19a-3p 31 miR-720 2.26 miR-758 2.186 miR-340-3p 3.33 miR-362-3p 2.508
32 miR-720 31.21 miR-758 2.32 miR-192-5p 2.226 miR-362-3p 3.33 miR-301a-3p 2.62
33 miR-221-3p 32.71 miR-494 2.38 miR-1275 2.276 miR-301a-3p 3.38 miR-221-3p 2.674
34 miR-758 33.9 miR-221-3p 2.44 miR-720 2.324 miR-221-3p 3.4 miR-340-3p 2.683
35 miR-362-3p 34.11 miR-335-3p 2.49 miR-362-3p 2.369 miR-19a-3p 3.43 miR-19a-3p 2.819
36 miR-301a-3p 35.12 miR-886-5p 2.59 miR-301a-3p 2.412 miR-758 3.54 miR-483-3p 2.831
37 miR-483-3p 37.93 miR-659-3p 2.61 miR-483-3p 2.46 miR-483-3p 3.57 miR-758 2.889
38 miR-138-5p 38.75 miR-138-5p 2.65 miR-365 2.516 miR-365 3.69 miR-365 3.023
39 miR-365 39.42 miR-362-3p 2.69 miR-138-5p 2.574 miR-138-5p 3.91 miR-138-5p 3.156
40 miR-659-3p 39.47 miR-301a-3p 2.78 miR-659-3p 2.643 miR-659-3p 4.24 miR-99b-5p 3.645
41 miR-520b 39.97 miR-99b-5p 2.79 miR-342-3p 2.716 miR-342-3p 4.32 miR-659-3p 3.731
42 miR-99b-5p 41.24 miR-483-3p 2.8 miR-99b-5p 2.79 miR-99b-5p 4.32 miR-342-3p 3.774
43 miR-886-5p 41.61 miR-193b-5p 2.98 miR-193b-5p 2.865 miR-193b-5p 4.6 miR-886-5p 4.167
44 miR-342-3p 42.22 miR-365 3.01 miR-886-5p 2.946 miR-886-5p 4.74 miR-193b-5p 4.199
45 miR-193b-5p 43.25 miR-342-3p 3.28 miR-520b 3.031 miR-520b 4.89 miR-520b 4.31
46 miR-199a-3p 46.25 miR-212-3p 3.89 miR-199a-3p 3.121 miR-199a-3p 5.09 miR-199a-3p 4.736
47 miR-212-3p 46.75 miR-199a-3p 4.31 miR-212-3p 3.212 miR-212-3p 5.28 miR-212-3p 4.787

Author Contributions

Conceptualization, E.R.; methodology, E.R.; formal analysis, E.R., P.D.L.; data curation, E.R., P.D.L.; writing—original draft preparation, E.R.; writing—review and editing, L.d.G., A.M.; supervision, L.d.G.; project administration, L.d.G.; funding acquisition, L.d.G.

Funding

This paper was supported by the Italian Ministry of Health “Ricerca Corrente”.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Gebert L.F.R., MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne) 2018;9:402. doi: 10.3389/fendo.2018.00402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. [DOI] [PubMed] [Google Scholar]
  • 4.Alles J., Fehlmann T., Fischer U., Backes C., Galata V., Minet M., Hart M., Abu-Halima M., Grässer F.A., Lenhof H.P., et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–3364. doi: 10.1093/nar/gkz097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Alberti C., Cochella L. A framework for understanding the roles of miRNAs in animal development. Development. 2017;144:2548–2559. doi: 10.1242/dev.146613. [DOI] [PubMed] [Google Scholar]
  • 6.Rajman M., Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development. 2017;144:2310–2322. doi: 10.1242/dev.144337. [DOI] [PubMed] [Google Scholar]
  • 7.Taverna E., Götz M., Huttner W.B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 2014;30:465–502. doi: 10.1146/annurev-cellbio-101011-155801. [DOI] [PubMed] [Google Scholar]
  • 8.Papaioannou G. miRNAs in Bone Development. Curr. Genomics. 2015;16:427–434. doi: 10.2174/1389202916666150817202425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Mirzamohammadi F., Papaioannou G., Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease. Curr. Osteoporos. Rep. 2014;12:410–419. doi: 10.1007/s11914-014-0229-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Liu C.F., Samsa W.E., Zhou G., Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin. Cell Dev. Biol. 2017;62:34–49. doi: 10.1016/j.semcdb.2016.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Nishimura R., Hata K., Takahata Y., Murakami T., Nakamura E., Yagi H. Regulation of Cartilage Development and Diseases by Transcription Factors. J. Bone Metab. 2017;24:147–153. doi: 10.11005/jbm.2017.24.3.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Papaioannou G., Inloes J.B., Nakamura Y., Paltrinieri E., Kobayashi T. let-7 and miR-140 microRNAs coordinately regulate skeletal development. Proc. Natl. Acad. Sci. USA. 2013;110:E3291–3300. doi: 10.1073/pnas.1302797110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Yang J., Qin S., Yi C., Ma G., Zhu H., Zhou W., Xiong Y., Zhu X., Wang Y., He L., et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011;585:2992–2997. doi: 10.1016/j.febslet.2011.08.013. [DOI] [PubMed] [Google Scholar]
  • 14.Nakamura Y., Inloes J.B., Katagiri T., Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol. Cell Biol. 2011;31:3019–3028. doi: 10.1128/MCB.05178-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.McAlinden A., Varghese N., Wirthlin L., Chang L.W. Differentially expressed microRNAs in chondrocytes from distinct regions of developing human cartilage. PLoS ONE. 2013;8:e75012. doi: 10.1371/journal.pone.0075012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47. [DOI] [PubMed] [Google Scholar]
  • 17.Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. [DOI] [PubMed] [Google Scholar]
  • 19.Silver N., Best S., Jiang J., Thein S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006;7:33. doi: 10.1186/1471-2199-7-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Schwarzenbach H., da Silva A.M., Calin G., Pantel K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015;61:1333–1342. doi: 10.1373/clinchem.2015.239459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kozera B., Rapacz M. Reference genes in real-time PCR. J. Appl. Genet. 2013;54:391–406. doi: 10.1007/s13353-013-0173-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Rådmark O., Kim S., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. doi: 10.1038/nature01957. [DOI] [PubMed] [Google Scholar]
  • 23.Meyer S.U., Pfaffl M.W., Ulbrich S.E. Normalization strategies for microRNA profiling experiments: A ’normal’ way to a hidden layer of complexity? Biotechnol. Lett. 2010;32:1777–1788. doi: 10.1007/s10529-010-0380-z. [DOI] [PubMed] [Google Scholar]
  • 24.Mestdagh P., Van Vlierberghe P., De Weer A., Muth D., Westermann F., Speleman F., Vandesompele J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10:R64. doi: 10.1186/gb-2009-10-6-r64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Machado R.D., Christoff A.P., Loss-Morais G., Margis-Pinheiro M., Margis R., Körbes A.P. Comprehensive selection of reference genes for quantitative gene expression analysis during seed development in Brassica napus. Plant Cell Rep. 2015;34:1139–1149. doi: 10.1007/s00299-015-1773-1. [DOI] [PubMed] [Google Scholar]
  • 26.Lin Y.L., Lai Z.X. Evaluation of suitable reference genes for normalization of microRNA expression by real-time reverse transcription PCR analysis during longan somatic embryogenesis. Plant Physiol. Biochem. 2013;66:20–25. doi: 10.1016/j.plaphy.2013.02.002. [DOI] [PubMed] [Google Scholar]
  • 27.Zhu X., Li Y.L., Chen D.X., Wu P., Yi T., Chen T., Zhang J.S., Chu W.Y. Selection of reference genes for microRNA quantitative expression analysis in Chinese perch, Siniperca chuatsi. Int. J. Mol. Sci. 2015;16:8310–8323. doi: 10.3390/ijms16048310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Tang F., Chu L., Shu W., He X., Wang L., Lu M. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. Plant Methods. 2019;15:35. doi: 10.1186/s13007-019-0420-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Yang Y., Li Z., Cao J., Li Y., Li H., Yang Q., Zhang Q., Liu X. Identification and Evaluation of Suitable Reference Genes for Normalization of MicroRNA Expression in Helicoverpa armigera (Lepidoptera: Noctuidae) Using Quantitative Real-Time PCR. J. Insect. Sci. 2017;17 doi: 10.1093/jisesa/iex007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Rasheed Z., Al-Shobaili H.A., Rasheed N., Mahmood A., Khan M.I. MicroRNA-26a-5p regulates the expression of inducible nitric oxide synthase via activation of NF-κB pathway in human osteoarthritis chondrocytes. Arch. Biochem. Biophys. 2016;594:61–67. doi: 10.1016/j.abb.2016.02.003. [DOI] [PubMed] [Google Scholar]
  • 31.Tichopad A., Kitchen R., Riedmaier I., Becker C., Ståhlberg A., Kubista M. Design and optimization of reverse-transcription quantitative PCR experiments. Clin. Chem. 2009;55:1816–1823. doi: 10.1373/clinchem.2009.126201. [DOI] [PubMed] [Google Scholar]
  • 32.Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Ragni E., Perucca Orfei C., De Luca P., Colombini A., Viganò M., Lugano G., Bollati V., de Girolamo L. Identification of miRNA Reference Genes in Extracellular Vesicles from Adipose Derived Mesenchymal Stem Cells for Studying Osteoarthritis. Int. J. Mol. Sci. 2019;20:1108. doi: 10.3390/ijms20051108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ragni E., De Luca P., Perucca Orfei C., Colombini A., Viganò M., Lugano G., Bollati V., de Girolamo L. Insights into Inflammatory Priming of Adipose-Derived Mesenchymal Stem Cells: Validation of Extracellular Vesicles-Embedded miRNA Reference Genes as A Crucial Step for Donor Selection. Cells. 2019;8:369. doi: 10.3390/cells8040369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Akoglu H. User’s guide to correlation coefficients. Turk J. Emerg. Med. 2018;18:91–93. doi: 10.1016/j.tjem.2018.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Metsalu T., Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cells are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES