Skip to main content
Jornal Vascular Brasileiro logoLink to Jornal Vascular Brasileiro
. 2019 May 15;18:e20180084. doi: 10.1590/1677-5449.180084
View full-text in Portuguese

Comparison of the ankle-brachial index with parameters of stiffness and peripheral arterial resistance assessed by photoplethysmography in elderly patients

Kelser de Souza Kock 1,, João Batista Ferreira da Silva 1, Jefferson Luiz Brum Marques 2
PMCID: PMC6634263  PMID: 31320878

Abstract

Background

The ankle-brachial index (ABI) uses the ratio between systolic blood pressures at the ankle and the arm to diagnose peripheral arterial disease (PAD) noninvasively. Photoplethysmography (PPG) measures and records changes to the blood volume in the human body using optical techniques.

Objectives

The objective of this study was to compare ABI with arterial stiffness and peripheral resistance parameters assessed using PPG in elderly patients and to propose a model for prediction of ABI.

Methods

A cross-sectional, quantitative study was conducted. The sample comprised elderly patients seen at a medical specialties clinic at the Universidade do Sul de Santa Catarina (UNISUL), Brazil. Age, sex, body mass index (BMI), comorbidities, smoking, and physical activity were recorded. The variables obtained using PPG and ABI were compared using bivariate and multivariate linear regression, with an α error of 0.05.

Results

A total of 93 elderly patients were assessed, 63.4% of whom were women. In 98.9% of cases, ABI was within normal limits. Comparison of ABI with variables acquired by PPG revealed significant associations with age. However, no significant associations were observed between ABI and PPG. The multivariate model indicated that only age, sex, and smoking were associated with ABI.

Conclusions

In conclusion, ABI and PPG exhibited associations with arterial aging, considering its correlation with age. However, ABI was only related to age, sex, and smoking. More studies are needed to evaluate the potential uses of PPG for screening for vascular diseases in ambulatory settings.

Keywords: photoplethysmography, the elderly, hypertension, atherosclerotic, ankle-brachial index

INTRODUCTION

Biomedical technology seeks new equipment and new techniques that can offer more precise, early, and noninvasive diagnoses for assessment of peripheral arterial disease (PAD).1 Against this background, arterial health, which is related to the greatest cause of morbidity and mortality in the modern world, can be estimated using plethysmography, an examination employing the photoplethysmography (PPG) technique, which measures and records changes to the blood volume in the human body.2 This examination is promising in the global scenario, enabling risk stratification of cardiovascular diseases, nut it is as yet little used in clinical practice.3

The term plethysmography is a combination of two Greek words: “plethysmos”, which means increase, and “graph”, which means write, and it refers to an instrument primarily employed to determine and record variations in blood volume or blood flow in the body with each heartbeat.3 Photoplethysmography employs a light source and a sensor to analyze the cardiovascular pulse wave as it propagates through the body.3 The PPG signal reflects the circulation of the blood, which goes from the heart to the tips of the fingers and toes via the blood vessels in an undulating movement, and can be used to estimate arterial stiffness and cardiovascular aging and, potentially, detect atherosclerosis.3 , 4 It is an optical measurement technique that employs invisible infrared light emitted into the tissues, and the quantity of backscattered light corresponds to the variation in blood volume.3 , 5 , 6

However, capillary blood volume monitored by PPG must be evaluated by mathematical analysis, including differential and integral calculations, to compose the first and second derivatives and the area of the original pulse. This is why analysis is conducted using computational algorithms that are able to identify the characteristics of the pulse, such as systolic peak, dicrotic wave, and diastolic peak. The technique is also used to measure important characteristics of blood flow acceleration in a test known as acceleration plethysmography (APG).3

Considering these characteristics, PPG could be used as a method for early and noninvasive detection of vascular function abnormalities indicative of increased risk of atherosclerosis in certain population groups, such as the elderly.6 In this age group, which comprises people aged 60 years or over,7 , 8 it is common for morbidities to coexist and conditions such as diabetes mellitus, systemic arterial hypertension (SAH), arteriosclerosis, atherosclerosis (all related to arterial stiffness) are of particular concern.9

Thus, noninvasive assessment of subclinical arteriosclerosis in hypertense patients could provide a foundation for therapeutic management and contribute to prevention of secondary cardiovascular complications. Nowadays, there are several different methods that can be used to evaluate changes to the functional properties of the arteries, to determine the arterial stiffness index and, consequently, to detect subclinical atherosclerosis.6

One widely-used method that provides quantitative data for diagnosis of atherosclerotic disease is the ankle-brachial index (ABI).10 This indicator has a robust association with the severity of atherosclerosis in the carotid and coronary arteries and with PAD and thus with risk of mortality from cardiovascular and cerebrovascular problems. The incidence of vascular pathologies is increasing all over the world and is the result of many different factors, such as aging of the population, inactivity, smoking, alcoholism, stress, genetic factors, and hypercaloric nutrition.10 , 11

Operationally, ABI utilizes the ratio between systolic blood pressure (SBP) in the ankle and the arm, and is a simple, noninvasive and low cost method that is very reliable for diagnosing PAD.10 , 12 - 14 In order to calculate ABI, the highest SBP reading from the posterior tibial artery or the dorsal artery of the foot (measured in both limbs or just one, depending on causality) is divided by the highest systolic pressure reading from the brachial arteries.1 , 11 , 14

Many different studies conducted all over the world have demonstrated that ABI can be considered an effective noninvasive tool for diagnosis of carotid atherosclerotic disease, because it has the capacity to detect variations in flow generated by stenosis (moderate or severe). Normal ABI values are in the range of 0.91 to 1.30; results greater than 1.30 or lower than 0.91 are considered strongly predictive of diffuse atherosclerotic disease and demonstrate the presence of arterial stiffness caused by calcification of the tunica media and consequent rigidity of the vessel wall.10 , 15

Against this background, the objective of this study was to compare ABI of elderly patients with parameters of arterial stiffness and peripheral resistance assessed using PPG. A secondary objective was to propose a model for prediction of ABI in elderly people.

METHODOLOGY

A cross-sectional, quantitative study was conducted with patients seen at the medical specialties clinic at the Universidade do Sul de Santa Catarina (UNISUL), Brazil.

People over the age of 60 years who agreed to take part in the study were enrolled from January 2017 to March 2018. Patients with psychomotor agitation that could interfere with the quality of the PPG signal were excluded from the study.

The sample size was estimated at n ≥ 85, based on an α error of 0.05, a β error of 0.20, and a correlation of r = 0.3, according to the following Expression (1) 16:

n{(Z1a/2+Z1b)/1/2*ln1+r/1r}2+3 (1)

People who agreed to take part in the study were invited to attend for data collection at UNISUL and informed about the study before enrollment. They then signed free and informed consent forms. This project was approved by the UNISUL Research Ethics Committee, decision number 1.419.019, and granted approval certificate number 51217515.2.0000.5369.

At data collection, participants were requested to proceed to the study room and lie down in decubitus dorsal for 10 minutes to rest, when personal details were recorded before they were tested. Initially, age, sex, and body mass index (BMI), calculated as weight (kg)/height squared (m2), and presence of comorbidities, such as type 2 Diabetes mellitus (DM 2), SAH, dyslipidemia, heart diseases, and smoking, were recorded. In addition to these details, participants were asked whether or not they engaged in physical activity (PA) for at least 150 minutes per week.17 - 19 No symptoms of PAD were assessed.

Next, blood pressure (BP) was measured. An OMRON HEM 7113 automated oscillometric sphygmomanometer (AOS) was used.20 , 21 Measurements were taken at arms and ankles, starting with the right arm, followed by the left arm, right ankle, and left ankle. The ABI was calculated using the highest brachial SBP and the highest ankle SBP, according to the following Equation (2):14 , 18

ABI=AnkleSBPBrachialSBP (2)

Participants were then examined with a Reflex Aqwave pulse oximeter fitted to the index finger of the right hand, with capacity to store curve values at a sampling frequency of 60 Hz and a duration of 1 minute. Data were exported in a text file to MATLAB (Mathworks Inc., USA) software for analysis computational in.

The systolic peak and the diastolic peak of the pulse wave were identified in order to enable calculation of the stiffness index (SI) and the augmentation index (AI). After manipulation of the signal, the SI and AI were calculated as follows (3,4):

SI=heightmΔTs (3)
AI=DPSP*100% (4)

Where:

• height (m) is the height of the study participant;

• ΔT (s) is the time elapsed between systolic peak and diastolic peak;

• DP is the amplitude of the diastolic peak;

• SP is the amplitude of the systolic peak.

Figure 1 illustrates the shape of a pulse wave and the variables ΔT, DP, and SP, needed to calculate SI and AI.

Figure 1. An example pulse curve obtained using PPG. SP = Systolic peak; DP = Diastolic peak; ΔT = Interval between systolic peak and diastolic peak.

Figure 1

After information had been collected, data were tabulated and analyzed with Microsoft Excel and SPSS version 20.0. Quantitative variables were described using measures of central tendency and dispersion of data. Qualitative variables were described using absolute frequencies and percentages.

Comparisons of variables obtained with PPG (SI, ΔT, and AI) and ABI were performed using bivariate linear regression, considering an α error of 0.05. Multivariate linear regression was used with backward elimination for identification of variables associated with ABI, considering only those with p < 0.2. Residuals were analyzed with the Shapiro-Wilk test. Winsorization was used to exclude an ABI outlier to achieve a better fit.

RESULTS

A total of 100 people were evaluated, 7 of whom were excluded because of poor quality PPG signals. Therefore, the sample comprised 93 people, with a median age of 66 years, the majority of whom were women. Median BMI was in the overweight range and SAH was the most prevalent comorbidity. Additional data are shown in Table 1.

Table 1. Epidemiological profile of the study participants.

Median (P25-P75)
Age (years) 66.6 (62.8-75.1)
Sex#
Male 34 (36.6%)
Female 59 (63.4%)
BMI (kg/m2) 27.0 (23.6-29.5)
HR (bpm) 65.4 (61.0-72.0)
brachial SBP (mmHg) 137.0 (124.5-153.0)
brachial DBP (mmHg) 76.0 (68.0-82.5)
SBP ankle (mmHg) 151.0 (138.5-164.0)
ankle DBP (mmHg) 75.0 (70.0-80.5)
Comorbidities#
SAH 53.0 (57.0%)
DM 10 (10.8%)
Dyslipidemia 35 (37.6%)
Heart disease 22 (23.7%)
Smoking 11 (11.8%)
Physical activity 57 (61.3%)
#

variable expressed as n (%);

BMI = Body mass index; HR = Heart rate; bpm = Beats per minute; SBP = Systolic blood pressure; DBP = Diastolic blood pressure; SAH = Systemic arterial hypertension; DM = Diabetes mellitus; P25: percentile 25; P75: percentile 75.

With regard to ABI values, 92 cases (98.9%) were within the normal range, from 0.9 to 1.3. Just one case had an ABI of 0.56, and was excluded from the sample to standardize the results. Figure 2 shows graphs and medians (p25-p75) for ABI and for the variables obtained using PPG (SI, ΔT, and AI).

Figure 2. Graphs and medians (p25-p75) for ABI, SI, ΔT, and AI. SI = Stiffness Index; ΔT = Change in time; AI = Augmentation index.

Figure 2

Comparison of variables obtained using PPG (SI, ΔT, and AI) and ABI in relation to age detected significant associations for all parameters, showing that the older the subject, the lower the ABI and ΔT and the higher the SI and AI. Comparisons of ABI with BMI and with variables extracted from PPG did not identify any significant correlations (Figure 3).

Figure 3. Correlations between ABI, SI, ΔT, AI, and BMI. BMI = Body mass index; SI = Stiffness index; ΔT = Change in time; AI = Augmentation index. *statistically significant values (p<0.05).

Figure 3

Preparatory to multivariate linear regression for analysis of variables potentially related to ABI, bivariate linear regression was conducted to define which variables would be used in the model. The results showed that only age, sex, and smoking were associated with the outcome ABI (Table 2). An r2 of 0.288 was obtained, with normal residuals (p = 0.296), and no collinearity.

Table 2. Bivariate and multiple linear regressions of variables related to the ABI of the study participants.

β (95%CI) p β (95%CI) p
Age (years) -0.004 (-0.007;-0.002) 0.001 -0.005 (-0.007;-0.003) <0.001
Sex# -0.059 (-0.097;-0.021) 0.003 -0.060 (-0.094;-0.025) 0.001
BMI (kg/m2) -0.001 (-0.006;0.003) 0.551
SI (m/s) -0.006 (-0.021;0.008) 0.404
AI (%) 0.001 (-0.002;0.002) 0.701
SAH* -0.033 (-0.071;0.005) 0.088
DM* -0.032 (-0.094;0.029) 0.300
Dyslipidemia* 0.007 (-0.032;0.047) 0.718
Heart disease* -0.016 (-0.061;0.029) 0.486
Smoking* -0.064 (-0124;-0.004) 0.038 -0.072 (-0.125;-0.018) 0.009
Physical activity* 0.024 (-0.015;0.063) 0.230
#

Male = 1; Female = 2;

*

Absent = 0, Present = 1;

95%CI = 95% confidence interval; BMI = Body mass index; SAH = Systemic arterial hypertension; DM = Diabetes mellitus; AI = Augmentation index; SI = Stiffness index.

DISCUSSION

The sample selected for this study predominantly comprised women, overweight people, and physically active people, and the principal comorbidity was SAH. In general, SAH is one of the most prevalent comorbidities among the elderly, and prevalence is even higher among women. The drop in steroidal hormone production after the menopause causes increased vascular tone of peripheral arteries, leading to SAH.22 The profile of this sample is in line with other studies, in which women seek health services more often than men, who very often only discover that they are hypertensive after a severe clinical event, such as a heart attack or stroke.22 , 23

Smoking is one of the most important risk factors of the principal causes of death among the elderly. The prevalence of smoking in the present study was very similar to the prevalence observed in the city of São Paulo, which was 12.2%.24 It is known that exposure to tobacco predisposes to occurrence of limiting and fatal diseases, such as peripheral vascular disease, cerebrovascular disease, heart diseases, and others. The elderly already have a higher prevalence of chronic conditions and when associated with smoking, the risk of members of this population developing chronic diseases increases.23

Physical inactivity is another factor related to occurrence of cardiovascular diseases.25 In the present study, more than half the sample were physically active, in contrast with global data showing that 70% of the population is sedentary. According to the World Health Organization (WHO), the ideal weekly level of exercise for adults is a minimum of 150 minutes of moderate PA or 75 minutes of intense PA.26 However, in the present study, PA level was not quantified objectively, which is a potential source of bias.

It is known that ABI is an important marker of PAD in both symptomatic and asymptomatic people and functions as a predictor of risk of cardiovascular diseases.12 , 17 In this study, the ABI value was within the normal range, in general. This is because of the profile of the sample studied, among whom there was a high proportion of people who are physically active, which is a protective factor, and many non-smokers, which is also a protective factor. The risk factors most associated with vascular disease are male sex, physical inactivity, smoking, advanced age, and SAH.6 , 17

In general, patients with a tendency to develop PAD can be sent for a noninvasive vascular examination so that they can be stratified more precisely, contributing to better diagnosis of disease.27 Such assessments can be achieved using tests based on physiological aspects, such as ABI, PPG, and pulse wave velocity (PWV), among others, and examinations of the anatomy, such as computed tomography angiography, magnetic resonance angiography, and duplex ultrasonography, which, in addition to anatomic information, also provide hemodynamic information.27

This study focused on tests that assess disease physiology, comparing ABI values with parameters obtained by PPG. The PPG parameters investigated were ΔT, SI, and AI. These indices do not have reference values, but are associated with arterial stiffness.3 Wowerm et al.28 conducted a study in which these and other PPG parameters were compared with AI and PWV obtained by applanation tonometry. The AI obtained by PPG was the variable most related to AI and PWV obtained by tonometry.

Pulse wave velocity can be assessed using the applanation tonometry method, in which pressure sensors are placed in superficial arteries to assess arterial stiffness, for example the carotid, radial, and femoral arteries (the carotid-femoral PWV is considered the gold standard).28 Although PWV is the gold standard for assessment of arterial stiffness, the tonometry method is inconvenient and difficult to operate. One alternative is PPG, which uses a less expensive technology and is not operator-dependent, making it feasible and appropriate for clinical practice.28 , 29

Pulse wave velocity is a biomarker of vascular degeneration. It monitors the cardiac heartbeat cycle, in which a pulse wave is generated and travels through the arterial bed until it meets peripheral resistance. Arterial resistance is dependent on the degree of a vessel’s complacency.29 Millasseau et al. has shown that PWV can be derived from parameters obtained by PPG.30 In younger people, vascular complacency is better because the arteries have greater elasticity, and so the reflected wave is slow, with a longer interval (ΔT) between systolic and diastolic pressure and a dicrotic notch.29 In older patients, vascular aging and comorbidities such as SAH and DM cause increased PWV, with a shorter ΔT and an less perceptible dicrotic notch.29 The SI is a parameter that normalizes ΔT according to a person’s height, with the same order (velocity) and units (m/s) as PWV.3

Thus, PWV is strongly correlated with age and BP, since both reduce vascular complacency, increasing arterial stiffness. Current SAH guidelines recommend using biomarkers to improve the accuracy of cardiovascular risk stratification.29

Comparison with age revealed that the older the patient, the worse the result obtained in relation to ABI reference values and also in relation to parameters obtained from PPG. This result shows that arterial stiffness index increases, demonstrating that these indicators could be used as markers of arterial aging.2

With regard to comparisons between ABI and PPG variables, no significant associations were observed. This is because of the profile of the patients studied, the majority of whom are in a risk group less prone to PAD, since median age was low and, as mentioned above, the older the age, the lower the ABI. Along the same lines, the percentage of smokers was small, and it is known that smoking also leads to reduced ABI.2 This shows that vascular disease has a direct relationship with age, in the sense that the older the person, the greater the tendency to develop atherosclerosis, which was what was observed with ABI and the PPG indices.2

In this study, it had been expected that the comparison between ABI and PPG parameters would reveal a strong correlation, which proved not to be possible because the sample comprised healthy individuals without severe peripheral disease and with ABI within normal limits. Although there was no significant correlation, there were associations between age, ABI, and PPG parameters, showing that PPG also provides evidence of arterial aging and indicating the further studies are needed to confirm these data.

In a manner similar to measuring ABI using AOS, PPG using a pulse oximeter could become an accessible instrument for clinical practice, since it is practical and simple to use, offering a noninvasive method for early detection of cardiovascular disease.20

Multivariate linear regression demonstrated that older women and smokers were more likely to have a lower ABI. These findings are confirmed in the literature, which shows that factors such as aging and a smoking habit are strongly associated with atherosclerosis. Additionally, in contrast with what was believed to be the case, women have PAD rates that are greater than or equal to those among men, primarily after the menopause, because of reduced hormone production.1 , 31 It had been expected that PPG parameters would be involved, but no association with ABI was observed. In contrast, a study by Allen et al.2 that also used techniques for extracting PPG signals, demonstrated good accuracy for stratification of patients with PAD.21

Limitations of this study include the non-prior evaluation of PAD symptoms and the normal ABI results of the majority of the sample, comprising healthy elderly people, which interfered with the comparison with PPG indices. Additionally, use of AOS to obtain BP data may have created a source of bias, although it is recommended and is simple to use.20

CONCLUSIONS

It was demonstrated that the majority of ABI values were within normal limits. Although correlations were found between age, ABI, and PPG parameters, indicating arterial aging, ABI was not associated with PPG indicators. The predictive model showed that women, older people, and smokers had lower ABI.

Notwithstanding, the results of this study show that PPG has potential as a noninvasive technique. However, further studies are needed to standardize vascular assessment using the PPG curve so it can be used for diagnosis and screening of PAD.

Footnotes

How to cite: Kock KS, Silva JBS, Marques JLB. Comparison of the ankle-brachial index with parameters of stiffness and peripheral arterial resistance assessed by photoplethysmography in elderly patients. J Vasc Bras. 2019;18:e20180084. https://doi.org/10.1590/1677-5449.180084

Financial support: None.

The study was carried out at Universidade do Sul de Santa Catarina (UNISUL), Tubarão, SC, Brazil.

REFERENCES

  • 1.Santos RA, Vilas Boas LGDC, Osiro PM, Costa GM, Cordeiro JA, Martins JFV. A importância do índice tornozelo-braquial no diagnóstico da doença carotídea em pacientes hipertensos. Rev Bras Clin Med. 2009;7(17):299–303. [Google Scholar]
  • 2.Allen J, Overbeck K, Nath AF, Murray A, Stansby G. A prospective comparison of bilateral photoplethysmography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease. J Vasc Surg. 2008;47(4):794–802. doi: 10.1016/j.jvs.2007.11.057. [DOI] [PubMed] [Google Scholar]
  • 3.Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012;8(1):14–25. doi: 10.2174/157340312801215782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Pilt K, Ferenets R, Meigas K, Lindberg LG, Temitski K, Viigimaa M. New photoplethysmographic signal analysis algorithm for arterial stiffness estimation. Sci World J. 2013;2013:169035. doi: 10.1155/2013/169035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Elgendi M. Standard terminologies for photoplethysmogram signals. Curr Cardiol Rev. 2012;8(3):215–219. doi: 10.2174/157340312803217184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Silva BC, Deus FM, Santos DV, et al. Idade, tabagismo, hipertensão arterial, altura e sexo feminino são determinantes de envelhecimento vascular avaliados pela segunda derivada da fotopletismografia digital. Revista de Medicina. 2007;86(1):6–13. doi: 10.11606/issn.1679-9836.v86i1p6-13. [DOI] [Google Scholar]
  • 7.Brasil . Lei Federal nº 10.741, de 01 de outubro de 2003. Dispõe sobre o Estatuto do Idoso e dá outras providências. Diário Oficial da União; 2003. p. 1. [Google Scholar]
  • 8.Mendes MRSSB, Gusmão JL, Faro ACM, Leite RCBO. A situação social do idoso no Brasil: uma breve consideração. Acta Paul Enferm. 2005;18(4):422–426. doi: 10.1590/S0103-21002005000400011. [DOI] [Google Scholar]
  • 9.Camarano AA, Kanso S, Mello JL. Como vive o idoso brasileiro? In: Camarano AA, editor. Os novos idosos brasileiros muito além dos 60? Rio de Janeiro: IPEA; 2004. pp. 25–76. [Google Scholar]
  • 10.Giollo LT, Jr, Martin JFV. Índice tornozelo-braquial no diagnóstico da doença aterosclerótica carotídea. Rev Bras Hipertens. 2010;17(2):117–118. [Google Scholar]
  • 11.Gabriel SA, Serafim PH, Freitas CEM, et al. Doença arterial obstrutiva periférica e índice tornozelo-braço em pacientes submetidos à angiografia coronariana. Ver Bras Cir Cardiovasc. 2007;22(1):49–59. doi: 10.1590/S0102-76382007000100011. [DOI] [Google Scholar]
  • 12.Doobay AV, Anand SS. Sensitivity and specificity of the ankle-brachial index to predict future cardiovascular outcomes: a systematic review. Arterioscler Thromb Vasc Biol. 2005;25(7):1463–1469. doi: 10.1161/01.ATV.0000168911.78624.b7. [DOI] [PubMed] [Google Scholar]
  • 13.Aboyans V, Criqui MH, Abraham P, et al. Measurement and interpretation of the Ankle-Brachial Index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–2909. doi: 10.1161/CIR.0b013e318276fbcb. [DOI] [PubMed] [Google Scholar]
  • 14.Paiva DN, Goulart CDL, Machado D, Silva ALG, Silva ALG. Comportamento do índice tornozelo-braquial após exercício submáximo em portadores de doença pulmonar obstrutiva crônica. Fiep Bull Online. 2015;85(1):219–224. doi: 10.16887/85.a1.42. [DOI] [Google Scholar]
  • 15.Nunes FGF, Leão GCS, Exel AL, Diniz MCC. Índice tornozelo-braquial em pacientes de alto risco cardiovascular. Rev Bras Cardiol. 2012;25(2):94–101. [Google Scholar]
  • 16.Machin D. Sample size tables for clinical studies. 2nd. Oxford: Blackwell Science; 2009. [Google Scholar]
  • 17.Torres AGM, Machado EG, Lopes TS, et al. Prevalência de alterações do índice tornozelo-braço em indivíduos portadores assintomáticos de doença arterial obstrutiva periférica. Rev Bras Cardiol. 2012;25(2):87–93. [Google Scholar]
  • 18.Høyer C, Sandermann J, Petersen LJ. The toe-brachial index in the diagnosis of peripheral arterial disease. J Vasc Surg. 2013;58(1):231–238. doi: 10.1016/j.jvs.2013.03.044. [DOI] [PubMed] [Google Scholar]
  • 19.Davies JH, Williams EM. Automated plethysmographic measurement of the ankle-brachial index: a comparison with the doppler ultrasound method. Hypertens Res. 2016;39(2):100–106. doi: 10.1038/hr.2015.124. [DOI] [PubMed] [Google Scholar]
  • 20.Kawamura T. Índice Tornozelo-Braquial (ITB) determinado por esfigmomanômetros oscilométricos automáticos. Arq Bras Cardiol. 2008;90(5):294–298. doi: 10.1590/S0066-782X2008000500003. [DOI] [PubMed] [Google Scholar]
  • 21.Hoyer C, Nielsen NS, Jordansen MKO, Zacho HD. Comparison of two methods based on photoplethysmography for the diagnosis of peripheral arterial disease. Scand J Clin Lab Invest. 2017;77(8):622–627. doi: 10.1080/00365513.2017.1390784. [DOI] [PubMed] [Google Scholar]
  • 22.Mendes GS, Moraes CF, Gomes L. Prevalencia de hipertensão arterial sistêmica em idosos no Brasil entre 2006 e 2010. Rev Bras Med Fam Comunidade. 2014;9(32):273–278. doi: 10.5712/rbmfc9(32)795. [DOI] [Google Scholar]
  • 23.Gomes R, Nascimento EF, Araújo FC. Por que os homens buscam menos os serviços de saúde do que as mulheres? As explicações de homens com baixa escolaridade e homens com ensino superior. Cad Saude Publica. 2007;23(3):565–574. doi: 10.1590/S0102-311X2007000300015. [DOI] [PubMed] [Google Scholar]
  • 24.Zaitune MPA, Barros MBA, Lima MG, et al. Fatores associados ao tabagismo em idosos: inquérito de saúde no Estado de São Paulo (ISA-SP) Cad Saude Publica. 2012;28(3):583–596. doi: 10.1590/S0102-311X2012000300018. [DOI] [PubMed] [Google Scholar]
  • 25.Sousa CA, César CLG, Barros MBA, et al. Prevalência de atividade física no lazer e fatores associados: estudo de base populacional em São Paulo, Brasil, 2008-2009. Cad Saude Publica. 2013;29(2):270–282. doi: 10.1590/S0102-311X2013000200014. [DOI] [PubMed] [Google Scholar]
  • 26.Dias J, Junior MD, Costa MAR, Francisqueti V, Higarashi IH. Prática de atividade física em docentes do ensino superior: foco na qualidade de vida. Esc Anna Nery. 2017;21(4):e20170110 [Google Scholar]
  • 27.Conde ID, Benenati JF. Noninvasive testing in peripheral arterial disease. Interv Cardiol Clin. 2014;3(4):469–478. doi: 10.1016/j.iccl.2014.06.006. [DOI] [PubMed] [Google Scholar]
  • 28.Wowem EV, Östling G, Nilsson PM, Olofsson P. Digital photoplethysmography for assessment of arterial stiffness: repeatability and comparison with applanation tonometry. PLoS One. 2015;10(8):e0135659. doi: 10.1371/journal.pone.0135659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Mikael LR, Paiva AMG, Gomes MM, et al. Envelhecimento vascular e rigidez arterial. Arq Bras Cardiol. 2017;109(3):253–258. doi: 10.5935/abc.20170091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Millasseau SC, Ritter JM, Takazawa K, Chowienczyk PJ. Contour analysis of the photoplethysmographic pulse measured at the finger. J Hypertens. 2006;24(8):1449–1456. doi: 10.1097/01.hjh.0000239277.05068.87. [DOI] [PubMed] [Google Scholar]
  • 31.Srivaratharajah K, Abramson BL. Women and peripheral arterial disease: a review of sex differences in epidemiology, clinical manifestations, and outcomes. Can J Cardiol. 2018;34(4):356–361. doi: 10.1016/j.cjca.2018.01.009. [DOI] [PubMed] [Google Scholar]
J Vasc Bras. 2019 May 15;18:e20180084. [Article in Portuguese]

Comparação do índice tornozelo-braquial com parâmetros de rigidez e resistência arterial periférica avaliados por fotopletismografia em idosos

Kelser de Souza Kock 1,, João Batista Ferreira da Silva 1, Jefferson Luiz Brum Marques 2

Resumo

Contexto

O índice tornozelo-braquial (ITB) utiliza a razão entre a pressão arterial sistólica do tornozelo e do braço para diagnosticar de forma não invasiva a doença arterial periférica (DAP). A fotopletismografia (photoplethysmography, PPG) faz a medição e o registro das modificações de volume sanguíneo do corpo humano por meio de técnicas ópticas.

Objetivos

O objetivo deste estudo foi comparar o ITB com parâmetros de rigidez arterial e resistência periférica avaliados pela PPG em idosos e propor um modelo de predição para o ITB.

Métodos

Foi realizado um estudo transversal quantitativo. A amostra foi composta por idosos atendidos no ambulatório médico de especialidades da Universidade do Sul de Santa Catarina (UNISUL). Foram verificados: idade, sexo, índice de massa corporal (IMC), presença de comorbidades, tabagismo e atividade física. Para comparação das variáveis obtidas com a PPG com o ITB, foi realizada regressão linear bivariada e multivariada, considerando erro α = 0,05.

Resultados

Foram avaliados 93 idosos, sendo 63,4% mulheres. Em 98,9% dos casos, o ITB apresentou-se dentro da normalidade. Na comparação do ITB e variáveis derivadas da PPG em relação à idade, foram demonstradas associações significativas. Contudo, não foram observadas associações significativas entre ITB e PPG. O modelo multivariado indicou que apenas idade, sexo e tabagismo foram associados ao ITB.

Conclusões

Como conclusão, o ITB e a PPG demonstraram associação com o envelhecimento arterial, tendo em vista sua correlação com a idade; contudo, o ITB foi relacionado apenas com idade, sexo e tabagismo. Mais estudos são necessários para avaliar o potencial uso da PPG como rastreio de doenças vasculares em rotinas ambulatórias.

Palavras-chave: fotopletismografia, idoso, hipertensão, aterosclerótica, índice tornozelo-braço

INTRODUÇÃO

A tecnologia biomédica busca novos equipamentos e novas técnicas que permitam um diagnóstico mais preciso, precoce e não invasivo para avaliação da doença arterial periférica (DAP)1. Diante desse panorama, destaca-se a avaliação da saúde arterial, relacionada à principal causa de morbimortalidade do mundo moderno, que pode ser estimada através da pletismografia, exame que usa como técnica a fotopletismografia (photoplethysmography, PPG), a qual faz a medição e registro das modificações de volume sanguíneo do corpo humano2. Esse exame mostra-se promissor no cenário mundial, possibilitando a estratificação de risco das doenças cardiovasculares; contudo, ainda é pouco utilizado na prática clínica3.

A palavra pletismografia é uma combinação de duas palavras gregas: “plethysmos”, que significa aumento, e “graph”, que significa escrita, e é um instrumento usado principalmente para determinar e registrar as variações de volume de sangue ou o fluxo de sangue no corpo que ocorrem com cada batimento cardíaco3. A PPG usa uma fonte de luz e um detector para analisar a onda de pulso cardiovascular que se propaga através do corpo3. O sinal da PPG reflete a circulação do sangue, que vai do coração para as pontas dos dedos das mãos e pés através dos vasos sanguíneos em um movimento ondulatório, que pode ser usado para estimar a rigidez arterial e o envelhecimento cardiovascular e, potencialmente, detectar a aterosclerose3 , 4. É uma técnica de medida óptica que utiliza uma luz infravermelha invisível enviada para o tecido, sendo que a quantidade da luz retrodispersa corresponde à variação do volume de sangue3 , 5 , 6.

No entanto, a avaliação do volume de sangue capilar monitorada pela PPG exige análise matemática, incluindo cálculo diferencial e integral, para composição da primeira e da segunda derivadas e da área do pulso original. Por esse motivo, a análise é realizada por meio de algoritmos computacionais que conseguem identificar as características do pulso, como pico sistólico, onda dicrótica e pico diastólico. Além disso, são mensuradas características importantes da aceleração do fluxo sanguíneo, através de um exame denominado acceleration plethysmography (APG)3.

Nessa perspectiva, a PPG pode ser um método de detecção precoce e não invasivo das alterações funcionais vasculares indicativas de maior risco de aterosclerose em determinados grupos populacionais, como o dos idosos6. Nesse grupo etário, com idade igual ou superior a 60 anos7 , 8, é comum a sobreposição de morbidades, dentre as quais se destacam diabetes melito, hipertensão arterial sistêmica (HAS), arteriosclerose e aterosclerose, todas relacionadas com rigidez arterial9.

A avaliação não invasiva da arteriosclerose subclínica em pacientes hipertensos poderia, portanto, fundamentar bases terapêuticas e prevenir complicações cardiovasculares secundárias. Atualmente existem diferentes métodos que possibilitam avaliar alterações das propriedades funcionais das artérias, determinando-se o índice de rigidez arterial e, consequentemente, a aterosclerose subclínica6.

Um método muito utilizado que estabelece dados quantitativos para diagnóstico da doença aterosclerótica é o índice tornozelo-braquial (ITB)10. Esse indicador possui forte associação com a gravidade da aterosclerose nas artérias carótidas e coronárias e com DAP e risco de mortalidade nos problemas cardiovasculares e cerebrovasculares. O aumento de incidência de patologias vasculares ocorre em nível mundial, e deve-se a vários fatores, tais como envelhecimento da população, sedentarismo, tabagismo, etilismo, estresse, fatores genéticos e alimentação hipercalórica10 , 11.

Operacionalmente, o ITB utiliza a razão entre a pressão arterial sistólica (PAS) do tornozelo e do braço, sendo um método simples, não invasivo, de baixo custo e de grande confiabilidade para diagnosticar DAP10 , 12 - 14. Para o cálculo do ITB, é utilizada a relação da maior PAS da artéria tibial posterior e da artéria dorsal do pé (com obtenção nos dois membros ou em apenas um, dependendo da casualidade) com a maior pressão sistólica das artérias braquiais1 , 11 , 14.

Vários estudos têm demonstrado em todo o mundo que o ITB é considerado uma ferramenta não invasiva eficaz no diagnóstico de doença aterosclerótica carotídea, devido à sua capacidade em detectar variações de fluxo geradas por estenoses (moderadas ou graves). Valores de ITB entre 0,91 a 1,30 são considerados normais; os resultados acima de 1,30 ou abaixo de 0,91 constituem-se em fortes preditores de doença aterosclerótica difusa e demonstram a presença de enrijecimento arterial devido à calcificação da camada média e consequente rigidez da parede vascular10 , 15.

Nesse contexto, o objetivo desta pesquisa foi comparar o ITB de idosos com parâmetros de rigidez arterial e resistência periférica avaliados pela PPG. Além disso, buscou-se propor um modelo de predição para o ITB em idosos.

METODOLOGIA

Foi realizado um estudo transversal, quantitativo com pacientes atendidos no ambulatório médico de especialidades da Universidade do Sul de Santa Catarina (UNISUL).

Foram incluídos indivíduos com idade superior a 60 anos que aceitaram participar do estudo no período de janeiro de 2017 a março de 2018. Foram excluídos do estudo pacientes com agitação psicomotora que pudesse influenciar a qualidade do sinal da PPG.

O tamanho da amostra foi estimado em n ≥ 85, baseando-se em um erro α = 0,05, erro β = 0,20 e nível de correlação r = 0,3, de acordo com a Expressão (1) 16:

n{(Z1a/2+Z1b)/1/2*ln1+r/1r}2+3 (1)

Os participantes que aceitaram participar do estudo foram convocados para a coleta de dados na UNISUL e informados do estudo antes da inclusão. Nesse momento foi realizada a assinatura do Termo de Consentimento Livre e esclarecido (TCLE). Este trabalho foi aprovado pelo Comitê de Ética em Pesquisa da UNISUL, sob o parecer 1.419.019, CAAE 51217515.2.0000.5369.

Na coleta de dados, os participantes eram orientados a irem até a sala de estudos e permanecerem deitados em decúbito dorsal por 10 minutos para um prévio descanso, enquanto seriam coletadas as informações pessoais e logo em seguida fossem submetidos aos testes. Inicialmente foram verificados idade, sexo, índice de massa corporal (IMC), calculado pela fórmula peso (kg)/altura (m2), e presença de comorbidades como diabetes melito tipo 2 (DM 2), HAS, dislipidemias, cardiopatias, tabagismo. Além disso, os participantes foram questionados se realizavam ou não atividade física (AF) durante pelo menos 150 minutos por semana17 - 19. Não foram avaliados sintomas de doença arterial periférica (DAP).

Após, foi realizada a mensuração da pressão arterial (PA). Foi utilizado um esfigmomanômetro oscilométrico automático (EOA) da marca OMRON HEM 711320 , 21. As medidas foram realizadas nos braços e nos tornozelos, iniciando-se a aferição pelo braço direito, seguido pelo braço esquerdo, depois tornozelo direito e por fim tornozelo esquerdo. Para obtenção do ITB, foi considerada a maior PAS braquial e a maior PAS do tornozelo, de acordo com a seguinte Equação (2) 14 , 18:

ITB=PAStornozeloPASbraquial (2)

Em seguida, os participantes foram examinados utilizando oxímetro de pulso da marca Reflex Aqwave no dedo indicador da mão direita, com capacidade de armazenamento dos valores da curva numa frequência amostral de 60 Hz e duração de 1 minuto. Os dados foram exportados em arquivo de texto para análise computacional no software MATLAB (Mathworks Inc., USA).

Para obtenção do índice de rigidez (IR) e do índice de aumento (IA), foram identificados o pico sistólico e o pico diastólico da onda de pulso. Após a manipulação do sinal, o IR e o IA foram calculados da seguinte forma (3,4):

IR=alturamΔTs (3)
IA=PDPS*100% (4)

Onde:

• altura (m) é a altura do indivíduo participante do estudo;

• ΔT (s) é o tempo entre o pico sistólico e o pico diastólico;

• PD é a amplitude do pico diastólico;

• PS é a amplitude do pico sistólico.

A Figura 1 demonstra o formato de uma curva de pulso e a obtenção das variáveis ΔT, IR e IA.

Figura 1. Demonstração de uma curva de pulso obtida na PPG. PS = Pico sistólico; PD = Pico sistólico; ΔT = Intervalo entre pico sistólico e pico diastólico.

Figura 1

Após a coleta as informações, os dados foram tabulados e analisados com o Microsoft Excel e o programa estatístico SPSS versão 20.0. As variáveis quantitativas foram descritas por meio de medidas de tendência central e dispersão dos dados. As variáveis qualitativas foram descritas por meio de frequência absoluta e percentual.

Para comparação das variáveis obtidas com a PPG (IR, ΔT e IA) e o ITB, foi realizada regressão linear bivariada, considerando erro α = 0,05. Foi realizada regressão linear múltipla, utilizando o método backward, para identificação das variáveis associadas ao ITB, considerando apenas aquelas com p < 0,2. Os resíduos foram analisados pelo teste de Shapiro-Wilk. Foi realizada a winsorização para exclusão de um dado outlier do ITB visando a um melhor ajuste dos resultados.

RESULTADOS

Foram avaliados 100 indivíduos, dos quais 7 foram excluídos devido à má qualidade do sinal da PPG. Assim, totalizou-se uma amostra de 93 sujeitos, com mediana de idade de 66 anos, na maior parte mulheres. A mediana do IMC encontrava-se na faixa do sobrepeso, e a HAS era a comorbidade mais prevalente. Outras informações podem ser visualizadas na Tabela 1.

Tabela 1. Perfil epidemiológico dos participantes do estudo.

Mediana (P25-P75)
Idade (anos) 66,6 (62,8-75,1)
Sexo#
Masculino 34 (36,6%)
Feminino 59 (63,4%)
IMC (kg/m2) 27,0 (23,6-29,5)
FC (bpm) 65,4 (61,0-72,0)
PAS braquial (mmHg) 137,0 (124,5-153,0)
PAD braquial (mmHg) 76,0 (68,0-82,5)
PAS tornozelo (mmHg) 151,0 (138,5-164,0)
PAD tornozelo (mmHg) 75,0 (70,0-80,5)
Comorbidades#
HAS 53,0 (57,0%)
DM 10 (10,8%)
Dislipidemia 35 (37,6%)
Cardiopatia 22 (23,7%)
Tabagismo 11 (11,8%)
Atividade Física 57 (61,3%)
#

variável descrita em n (%);

IMC = Índice de Massa Corporal; FC = Frequência Cardíaca; bpm = batimentos por minuto; PAS = Pressão Arterial Sistólica; PAD = Pressão Arterial Diastólica; HAS = Hipertensão Arterial Sistêmica; DM = Diabetes Melito; P25: percentil 25; P75: percentil 75.

No que se refere aos valores do ITB, 92 casos (98,9%) estavam dentro da faixa de normalidade, entre 0,9 e 1,3. Apenas um caso apresentou ITB de 0,56, e foi excluído da amostra para padronização dos resultados. A Figura 2 apresenta os histogramas e a mediana (p25-p75) do ITB e das variáveis obtidas com a PPG (IR, ΔT e IA).

Figura 2. Histograma e mediana (p25-p75) do ITB, IR, ΔT e IA. IR = Índice de Rigidez; ΔT = Variação de Tempo; IA = Índice de Aumento.

Figura 2

Na comparação das variáveis obtidas com a PPG (IR, ΔT e IA) e do ITB em relação à idade, foram demonstradas associações significativas em todos os parâmetros, demonstrando que, quanto maior a idade, menores o ITB e o ΔT e maiores o IR e o IA. Em se tratando da comparação do ITB com o IMC e as variáveis extraídas da PPG, não foi identificada correlação significativa (Figura 3).

Figura 3. Correlação entre ITB, IR, ΔT, IA e IMC. IMC = Índice de Massa Corpórea; IR = Índice de Rigidez; ΔT = Variação de Tempo; IA = Índice de Aumento. *valores estatisticamente significativos (p<0,05).

Figura 3

Na regressão linear múltipla para análise das variáveis relacionadas ao ITB, foi inicialmente realizada a regressão linear bivariada para estipular as variáveis pertinentes ao modelo. Ao final, apenas as variáveis idade, sexo e tabagismo mostraram-se associadas ao desfecho ITB (Tabela 2). Foi obtido um r2 = 0,288, com normalidade dos resíduos (p = 0,296) e ausência de colinearidade.

Tabela 2. Regressão linear bivariada e múltipla das variáveis relacionadas ao ITB dos participantes do estudo.

β (IC95%) p β (IC95%) p
Idade (anos) -0,004 (-0,007;-0,002) 0,001 -0,005 (-0,007;-0,003) <0,001
Sexo# -0,059 (-0,097;-0,021) 0,003 -0,060 (-0,094;-0,025) 0,001
IMC (kg/m2) -0,001 (-0,006;0,003) 0,551
IR (m/s) -0,006 (-0,021;0,008) 0,404
IA (%) 0,001 (-0,002;0,002) 0,701
HAS * -0,033 (-0,071;0,005) 0,088
DM * -0,032 (-0,094;0,029) 0,300
Dislipidemia * 0,007 (-0,032;0,047) 0,718
Cardiopatia * -0,016 (-0,061;0,029) 0,486
Tabagismo * -0,064 (-0124;-0,004) 0,038 -0,072 (-0,125;-0,018) 0,009
Atividade Física * 0,024 (-0,015;0,063) 0,230
#

Homem = 1; Mulher = 2;

*

Ausência = 0; presença = 1;

IC95% = Intervalo de Confiança de 95%; IMC = Índice de Massa Corporal; HAS = Hipertensão Arterial Sistêmica; DM = Diabetes Melito; IA = Índice de Aumento; IR = Índice de Rigidez.

DISCUSSÃO

A amostra obtida no presente estudo foi em sua maioria composta por mulheres, indivíduos com sobrepeso e praticantes de AF, e teve como principal comorbidade a HAS. De forma geral, a HAS é uma das comorbidades mais prevalentes em idosos, tendo prevalência ainda maior nas mulheres. Devido à queda na produção de hormônios esteroides pós-menopausa, ocorre o aumento do tônus vascular das artérias periféricas, provocando HAS22. O perfil da amostra corrobora outros estudos, nos quais as mulheres procuram mais os serviços de saúde se comparadas aos homens, os quais muitas vezes descobrem que são hipertensos somente após sofrerem um evento clínico grave, como infarto ou acidente vascular encefálico22 , 23.

O tabagismo é um dos fatores de risco mais importantes para as principais causas de morte entre os idosos. No presente estudo, a prevalência de tabagismo foi muito similar à prevalência na cidade de São Paulo, que foi de 12,2%24. Sabe-se que a exposição ao tabaco predispõe à ocorrência de doenças limitantes e fatais, como doenças vasculares periféricas, cerebrovasculares, cardiopatias, entre outras. Idosos já apresentam uma maior prevalência de agravos crônicos o que, quando associado ao tabagismo, aumenta o risco para essa população desenvolver doenças crônicas24.

A inatividade física também é um fator relacionado à ocorrência de doenças cardiovasculares25. No presente estudo, mais da metade da amostra era praticante de AF, diferente de dados mundiais demonstrando que 70% da população é sedentária. Segundo a Organização Mundial da Saúde (OMS) a prática ideal de exercícios semanal para adultos é de no mínimo 150 minutos de AF moderada ou de 75 minutos de AF intensa26. Contudo, na presente pesquisa, o nível de AF não foi quantificado de forma objetiva, sendo potencialmente um ponto de viés.

Sabe-se que o ITB é um importante marcador de DAP tanto em indivíduos sintomáticos quanto assintomáticos, servindo como preditor de risco para doenças cardiovasculares12 , 17. Neste estudo, o valor do ITB ficou dentro da faixa de normalidade, de forma geral. Isso se deve ao perfil dos indivíduos estudados, em que foi identificado um número mais expressivo de pacientes que praticavam AF, sendo este um fator protetor, e poucos tabagistas, o que também é um fator protetor. Por outro lado, os fatores de risco mais associados com doença vascular são sexo masculino, sedentarismo, tabagismo, idade avançada e HAS6 , 17.

De forma geral, os pacientes com uma tendência a desenvolver DAP podem ser submetidos a exame vascular não invasivo para que se possa estratificá-los de forma mais precisa, contribuindo para um melhor diagnóstico da doença27. Essas avaliações podem ser realizadas por testes que são baseados em aspectos fisiológicos, como o ITB, a PPG, a velocidade de onda de pulso (VOP), entre outros, e exames que avaliam a sua anatomia, como a angiografia por tomografia computadorizada, a angiografia por ressonância magnética e a ultrassonografia duplex, que fornece, além de informações anatômicas, também informações hemodinâmicas27.

Este estudo foi direcionado para exames que avaliam a fisiologia da doença, comparando valores de ITB com parâmetros derivados da PPG. Dentre os parâmetros da PPG avaliados, estão ΔT, IR e IA. Esses índices ainda não possuem valores de referência, mas estão associados com rigidez arterial3. No estudo de Wowerm et al.28, foram comparados esses e outros parâmetros da PPG com IA e VOP obtidos por tonometria de aplanação. O IA obtido da PPG foi a variável mais relacionada ao IA e à VOP obtidos por tonometria.

A VOP é avaliada pelo método de tonometria de aplanação, em que sensores de pressão são colocados em artérias superficiais para avaliar a rigidez arterial, tendo como exemplos as artérias carótida, radial e femoral, considerando-se como padrão-ouro a VOP carótida-femoral28. Apesar de a VOP ser o padrão-ouro para avaliação da rigidez arterial, o método de tonometria é mais incômodo e de difícil operação. Como alternativa, tem-se a PPG, que usa uma tecnologia mais barata e não operador dependente, tornando-a mais viável e adequada na prática clínica28 , 29.

A VOP é considerada um biomarcador de degeneração vascular. Acompanha o mesmo ciclo do batimento cardíaco, em que uma onda de pulso é gerada e percorre o leito arterial até encontrar resistência periférica. A resistência arterial dependerá do nível de complacência que o vaso oferece29. A VOP pode ser derivada de parâmetros obtidos da PPG, conforme demonstrado por Millasseau et al.30 Assim, em indivíduos jovens existe uma melhor complacência vascular, devido à maior elasticidade das artérias, e portanto a onda refletida é lenta, com um intervalo (ΔT) maior entre pressão sistólica e diastólica e com um entalhe dicrótico29. Já em pacientes mais idosos, devido ao envelhecimento vascular e a comorbidades como HAS e DM, ocorre um aumento na VOP, gerando um ΔT menor e um entalhe dicrótico pouco perceptível29. O IR é um parâmetro que normaliza o ΔT de acordo com a altura do indivíduo, possuindo a mesma grandeza (velocidade) e unidade (m/s) que a VOP3.

Assim, a VOP tem forte correlação com a idade e a PA, pois ambas diminuem a complacência vascular, gerando um aumento da rigidez arterial. Diretrizes atuais de HAS vêm recomendando a necessidade de usar biomarcadores como coadjuvantes na acurácia da estratificação de risco cardiovascular29.

Na comparação com a idade, foi observado que, quanto maior a idade, pior o resultado obtido em relação aos valores de referência do ITB e também em relação aos parâmetros obtidos na PPG. Esse resultado revela que houve um aumento do índice de rigidez arterial, demonstrando que esses indicadores podem ser utilizados como marcadores de envelhecimento arterial2.

Em relação à comparação entre ITB e variáveis da PPG, não foi encontrada associação significativa. Isso se deve ao perfil dos pacientes do estudo, em que a maioria pertence a um grupo de risco menos propenso a ter DAP, pois a mediana de idade foi baixa, considerando-se o grupo em estudo, e, conforme mencionado anteriormente, quanto maior a idade, menor seria o ITB. Da mesma forma, a percentagem de fumantes foi pequena, e sabe-se que ser tabagista também levaria a uma redução do ITB2. Com isso, foi verificado que a doença vascular tem relação direta com a idade, no sentido de que, quanto mais idade, maior tendência a ter aterosclerose, sendo isso o que foi mostrado com o ITB e os índices da PPG2.

Nesse trabalho, na comparação entre ITB e parâmetros da PPG, esperava-se que houvesse uma correlação forte entre eles, o que não foi possível, por se tratar de uma amostra saudável com indivíduos sem doença periférica grave e com ITB dentro da normalidade. Apesar de não ter havido correlação significativa, foi observada associação entre idade, ITB e parâmetros da PPG, revelando que o envelhecimento arterial foi também evidenciado na PPG, mostrando que são necessários mais estudos para que esses dados possam ser confirmados.

Similar ao ITB com EOA, a PPG com o uso de um oxímetro de pulso, por ser prática e de simples manuseio, pode se tornar um instrumento acessível na prática clínica, constituindo um método não invasivo na detecção precoce da doença cardiovascular20.

Na regressão linear multivariada, foi demonstrado que mulheres mais idosas e tabagistas são mais propensas a possuir um menor ITB. Esses achados são corroborados pela literatura, a qual aponta que fatores como envelhecimento e hábito tabágico estão fortemente associados à aterosclerose. E, ao contrário do que se acreditava, as mulheres apresentam taxas de DAP igual ou superior à dos homens, principalmente após a menopausa, pela redução hormonal1 , 31. Esperava-se que os parâmetros da PPG estivessem envolvidos, mas não foi encontrada associação com o ITB. Por outro lado, o estudo de Allen et al.2, também utilizando técnicas de extração de sinal da PPG, demonstrou boa acurácia na estratificação de pacientes com DAP21.

Dentre as limitações do estudo, podem ser descritas a não avaliação prévia de sintomas de DAP e a normalidade do ITB de grande parte da amostra, compreendida por idosos saudáveis, o que dificultou a comparação com os índices da PPG. Além disso, a utilização do EOA para a obtenção dos dados de PA pode ter sido uma fonte de viés, apesar da indicação e da simplicidade de seu uso20.

CONCLUSÃO

Foi demonstrado que os valores do ITB estiveram em sua maioria dentro da normalidade. Apesar de ser encontrada uma correlação entre idade, ITB e parâmetros da PPG, indicando envelhecimento arterial, o ITB não esteve associado aos indicadores da PPG. O modelo preditivo demonstrou que mulheres, indivíduos com idade mais avançada e tabagistas apresentam menor ITB.

De qualquer forma, os resultados deste trabalho demonstram o potencial uso da PPG como técnica não invasiva. Entretanto, ainda são necessários mais estudos para a padronização da avaliação vascular por meio de curva da PPG e para sua utilização no diagnóstico e rastreamento de DAP.

Footnotes

Como citar: Kock KS, Silva JBS, Marques JLB. Comparação do índice tornozelo-braquial com parâmetros de rigidez e resistência arterial periférica avaliados por fotopletismografia em idosos. J Vasc Bras. 2019;18:e20180084. https://doi.org/10.1590/1677-5449.180084

Fonte de financiamento: Nenhuma.

O estudo foi realizado na Universidade do Sul de Santa Catarina (UNISUL), Tubarão, SC, Brasil.


Articles from Jornal Vascular Brasileiro are provided here courtesy of Sociedade Brasileira de Angiologia e Cirurgia Vascular

RESOURCES