Skip to main content
International Journal of Nanomedicine logoLink to International Journal of Nanomedicine
. 2019 Jul 10;14:5087–5107. doi: 10.2147/IJN.S200254

Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach

Shabir Ahmad 1,, Sidra Munir 1, Nadia Zeb 1,2, Asad Ullah 1, Behramand Khan 1, Javed Ali 3, Muhammad Bilal 3, Muhammad Omer 4, Muhammad Alamzeb 5, Syed Muhammad Salman 1, Saqib Ali 5
PMCID: PMC6636611  PMID: 31371949

Abstract

Background: Nanotechnology explores a variety of promising approaches in the area of material sciences on a molecular level, and silver nanoparticles (AgNPs) are of leading interest in the present scenario. This review is a comprehensive contribution in the field of green synthesis, characterization, and biological activities of AgNPs using different biological sources.

Methods: Biosynthesis of AgNPs can be accomplished by physical, chemical, and green synthesis; however, synthesis via biological precursors has shown remarkable outcomes. In available reported data, these entities are used as reducing agents where the synthesized NPs are characterized by ultraviolet-visible and Fourier-transform infrared spectra and X-ray diffraction, scanning electron microscopy, and transmission electron microscopy.

Results: Modulation of metals to a nanoscale drastically changes their chemical, physical, and optical properties, and is exploited further via antibacterial, antifungal, anticancer, antioxidant, and cardioprotective activities. Results showed excellent growth inhibition of the microorganism.

Conclusion: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields. The study of green synthesis can be extended to conduct the in silco and in vitro research to confirm these findings.

Keywords: green synthesis, plant mediated synthesis, silver bioactivity, microorganism

Introduction

Nanotechnology offers fields with effective applications, ranging from traditional chemical techniques to medicinal and environmental technologies. AgNPs have emerged with leading contributions in diverse applications, such as drug delivery,31 ointments, nanomedicine,37 chemical sensing,41 data storage,47 cell biology,54 agriculture, cosmetics,60 textiles,17 the food industry, photocatalytic organic dye–degradation activity,64 antioxidants,66 and antimicrobial agents.68

Despite the contradictions reported on the toxicity of AgNPs,69 its role as a disinfectant and antimicrobial agent has been given considerable appreciation. The available documented data73,74 and the interest of the community in this field prompted us to work on plant-mediated green synthesis and biological activities of AgNPs.

Different types of nanoparticles

Some distinctive reported forms of nanoparticles (NPs) are core–shell NPs,76 photochromic polymer NPs,78 polymer-coated magnetite NPs,80 inorganic NPs, AgNPs, CuNPs,82 AuNPs,85 PtNPs,86 PdNPs,88 SiNPs,89 and NiNPs,91 while others are metal oxide and metal dioxide NPs, such as ZnONPs,94 CuO NPs,95 FeO,97 MgONPs,100 TiO2 NPs,102 CeO2 NPs,103 and ZrO2 NPs.104 Each of these has an exclusive set of characteristics and applications, and can be synthesized by either conventional or unconventional methods. An extensive classification of NPs is provided in Figure 1.105111

Figure 1.

Figure 1

Different approaches to nanomaterial (NM) classification.

Abbreviation: NPs, nanoparticles.

Nanoparticle synthesis

Comprehensive approaches available for NP synthesis are bottom-up and top-down.112 The latter approach is immoderate and steady, whereas the former involves self-assembly of atomicsize particles to grow nanosize particles. This can be achieved by physical and chemical means,113 as summarized in Table 1. However, ecofriendly green syntheses are economical, and proliferate and trigger stable NP formation, as shown in Figure 2.

Table 1.

Chemical and physical synthesis of AgNPs

Type Reducing agent Characterization Biological activities Reference
Chitosan-loaded AgNPs Polysaccharide chitosan TEM, FTIR, XRD, DSC, TGA Antibacterial 114
PVP-coated AgNPs Sodium borohydrine UV-vis, TEM, EDS, DLS, Fl-FFF NANA 115
AgNPs Ascorbic acid UV-vis, EFTEM Antibacterial 116
AgNPs Hydrazine, D-glucose UV-vis, TEM Antibacterial 117
Polydiallyldimethylammonium chloride_ and polymethacrylic acid–caped AgNPs Methacrylic acid polymers UV-vis, reflectance spectrophotometery Antimicrobial 118

Abbreviations: NPs, nanoparticles; TEM, transmission electron microscopy; FTIR, Fourier-transform infrared; XRD, X-ray diffraction; DSC, differential scanning calorimetry; TGA, thermogravimetric analysis; UV-vis, ultraviolet-visible (spectroscopy); EDS, energy-dispersive spectroscopy; DLS, dynamic light scattering; Fl-FFF, flow field-flow fractionation; EFTEM, energy-filtered TEM; NA, not applicable.

Figure 2.

Figure 2

Various approaches to the synthesis of Ag nanoparticles (NPs).

Green approach (biological/conventional methods)

The surging popularity of green methods has triggered synthesis of AgNPs using different sources, like bacteria, fungi, algae, and plants, resulting in large-scale production with less contamination. Green synthesis is an ecofriendly and biocompatible process,119 generally accomplished by using a capping agent/stabilizer (to control size and prevent agglomeration),120 plant extracts, yeast, or bacteria.121

Green synthesis using plant extracts

In contrast to microorganisms, plants have been exhaustively used,as apparent from Table 2. This is because plant phytochemicals show greater reduction and stabilization.122 Eugenia jambolana leaf extract was used to synthesize AgNPs that indicated the presence of alkaloids, flavonoids, saponins, and sugar compounds.123 Bark extract of Saraca asoca indicated the presence of hydroxylamine and carboxyl groups.124 AgNPs using leaves of Rhynchotechum ellipticum were synthesized, and the results indicated the presence of polyphenols, flavonoids, alkaloids, terpenoids, carbohydrates, and steroids.125 Hesperidinwas used to form AgNPs of 20–40 nm.126 Phenolic compounds of pyrogallol and oleic acid were reported to be essential for the reduction of silver salt to form NPs.127 Pepper-leaf extract acts as a reducing and capping agent in the formation of AgNPs of 5–60 nm.128 Fruit extracts of Malus domestica acted as a reducing agent. Similarly, Vitis vinifera,39 Andean blackberry,129 Adansonia digitata,130 Solanum nigrum,131 Nitraria schoberi132 or multiple fruit peels have also been reported for AgNP synthesis.133 Combinations of plant extracts have also been reported.134 Some other reductants used for AgNO3 are polysaccharide,135 soluble starch,136 natural rubber,137 tarmac,138 cinnamon,25 stem-derived callus of green apple,25 red apple,139 egg white,140 lemon grass,141 coffee,142 black tea,143 and Abelmoschus esculentus juice.144 Besides these, an extensive diagram representing different parts of different plant leaves, eg, peel, seed, fruit, bark, flower, stem, and root, also used in nanoformulations, is given in Figure 3. Green synthesis is economical and innocuous.30,38,150

Table 2.

Plant-mediated synthesis of AgNPs

Plant (Family)-Local Name Part Characterization Phytoconstituents Present in plant Size of AgNPs Shape of AgNPs Reference
Acacia nilotica (Fabaceae) — babul Pod UV-vis, HRTEM, FTIR, DLS, EDS, XRD, ζ-potential Gallic acid, ellagic acid, epicatechin, rutin HRTEM (20–30 nm) Distorted spherical 151
Ocimum sanctum (Lamiaceae) — tulsi Fresh leaf UV-vis, TEM, XRD, FTIR Alkaloids, glycosides, tannins, saponins, aromatic compounds TEM (3–20 nm, average 9.5 nm) Spherical 152
Citrullus colocynthis (Cucurbitaceae) — bitter apple Fresh leaf UV-vis, FTIR, AFM NA AFM (31 nm) Spherical 153
Coccinia grandis (Cucurbitaceae) — ivy gourd Fresh leaf UV-vis, HRTEM, SEM, XRD, FTIR, TGA, EDS Triterpenoids, alkaloids, tannin TEM (20–30 nm) Spherical 154
Pterocarpus santalinus (Fabaceae) — sandalwood Fresh leaf UV-vis, SEM, XRD, FTIR, AFM, EDX NA SEM (20–50 nm, average 20 nm), AFM (41 nm) Spherical 155
Coleus aromaticus (Lamiaceae) — borage Fresh leaf UV-vis, XRD, FTIR, EDAX Carvacrol, caryophyllene, patchoulene, flavonoids SEM (40–50 nm) Spherical 156
Jatropha curcas (Euphorbiaceae) — physic nut Seed UV-vis, HRTEM, XRD NA HRTEM (1,550 nm) at 10–3 M and 30–50 nm at 10−2 M Spherical (at 10–3 M), unevenly shaped (at 10–2 M) 157
Melia dubia (Meliaceae) — malai vembu Fresh leaf UV-vis, TEM, SEM–EDS, XRD Alkaloids, carbohydrates, glycosides, phenolic compounds, tannins, gums, mucilages XRD (average 7.3 nm) Irregular, but mostly spherical 158
Capsicum annuum (Solanaceae) — peppers Fresh leaf UV-vis, TEM, FTIR, SAED, XRD, XPS, CV, DPV Proteins/enzymes, polysaccharides, amino acids, vitamins TEM (10±2 nm at 5 hours) Spherical 159
Annona squamosa (Annonaceae) — sweetsops Young leaf UV-vis, XRD, TEM, FTIR, EDS, ζ-potential Glycoside, alkaloids, saponins, flavonoids, tannins phenolic compounds, phytosterols TEM (20–100 nm) Spherical 160
Camellia sinensis (Theaceae) —tea Dried leaf XRD, TEM, FTIR NA Debye–Scherrer equation (3.42 nm), TEM (2–10 nm, average 4.06 nm) Spherical 161
Citrus sinensis (Rutaceae) — orange Peel extract UV-vis, TEM, FESEM, FTIR, XRD, EDAX Vitamin C, flavonoids, acids, volatile oils XDS (33±3 nm at 25°C, 8±2 nm at 60°C,), HRTEM (35±2 nm) Spherical 38
Lantana camara (Verbenaceae) — wild/red sage Fresh leaf UV-vis, TEM, FESEM, FTIR, XRD, XPS, AFM, SAED Phenolics, flavonoids, terpenoids, alkaloids, lipids, proteins, carbohydrates FESEM (34 nm), AFM (17–31 nm), TEM (14–27 nm), XRD (11–24 nm), SAED (~14 nm) Spherical 162
Coriandrum sativum (Apiaceae) — coriander Fresh leaf UV-vis, TEM, FTIR, XRD, Z-scan techniques Carotene, thiamine, riboflavin, niacin, oxalic acid, sodium TEM (8–75 nm, average 26 nm) Spherical 163
Aloe vera (Asphodelaceae) — first-aid plant Fresh leaf UV-vis, TEM, FTIR, AFM, NIR absorption spectroscopy NA TEM (15.2±4.2 nm) Spherical 164
Memecylon edule (Melastomataceae) — delek bangas Shade-dried leaf UV-vis, TEM, SEM, FTIR, EDAX Triterpenes, tannins, flavonoids, saponin TEM (50–90 nm) Square 165
Hibiscus rosa-sinensis (Malvaceae) — rose mallow Leaf UV-vis, TEM, FTIR, XRD, SAED Proteins, vitamin C, organic acids (essentially malic acid), flavonoids, anthocyanins TEM (average size 13 nm), Scherrer equation (13 nm) Spherical 166
Cinnamomum camphora (Lauraceae) — camphorwood Fresh leaf UV-vis, TEM, SEM, XRD, AFM NA TEM (55−80 nm, average diameter 64.8 nm) Quasispherical 55
Piper longum (Piperaceae) — pipli Dried fruit powder UV-vis, SEM, FTIR, DLS Piperidine, alkaloids, tannins, dihydrostigmasterol, sesamim, terpenines DLS (15–200 nm, average 46 nm) Spherical 167
Sesbania grandiflora (Fabaceae) — hummingbird tree Fresh leaf UV-vis, FE-TEM, FTIR, XRD, SAED Carboxylic compounds, flavonoids, terpenoids, polyphenols TEM (10–50 nm, average 24.1 nm), XRD (18.52 nm) Spherical 168
Moringa oleifera (Moringaceae) — drumstick tree Fresh stem bark UV-vis, TEM, HRSEM, FTIR, DLS, AFM Phenols, β-sitosterol, caffeoylquinic acid, quercetin, kaempferol HRTEM (average size 40 nm), DLS (38 nm), SEM (40 nm) Spherical and pentagonal 169
Origanum vulgare (Lamiaceae) — oregano Leaves UV-vis, FESEM, FTIR, XRD, DLS, ζ-potential NA FESEM (63–85 nm), Scherrer formula (65 nm), DLS (136±10.09 nm) Spherical 170
Vitex negundo (Lamiaceae) — Chinese chaste tree Fresh leaf UV-vis, TEM, FESEM, FTIR, XRD, EDX Alkaloids, glycosides, flavonoids, phenolic compounds, reducing sugars, resin tannins TEM (5–47 nm) Spherical 171
Tephrosia tinctoria (Fabaceae) — alu pila Shade dried stem extract UV-vis, TEM, SEM, FTIR Phenol, flavonoids TEM (73 nm) Spherical 172
Mimusops elengi (Sapotaceae) — Spanish cherry Seed UV-vis, TEM, FTIR, XRD, HPLC Ascorbic acid, gallic acid, pyrogallol, resorcinol TEM (12.8–30.48 nm) Spherical 173
Alternanthera dentate (Amaranthaceae) — Joseph’s coat Leaf FTIR, TEM, SEM, XRD NA SEM (50–100 nm) Spherical 174
Sesuvium portulacastrum (Aizoaceae) — salt marsh Leaf UV-vis, TEM, FTIR, XRD NA TEM (5–20 nm) Spherical 175
Dalbergia spinosa (Faboideae) — liana Shade-dried leaf UV-vis, TEM, FTIR, DLS Flavonoids, isoflavonoids, neoflavonoids, steroids, terpenoids TEM (18±4 nm) Spherical 176
Sambucus nigra (Adoxaceae) — European black elderberry Frozen fruit UV-vis, FTIR, XRD, ζ-potential Polyphenol anthocyanins TEM (20–80 nm) Spherical 177
Millingtonia hortensis (Bignoniaceae) — neem Dried leaf NA NA 2–8 nm NA 178
Syzygium cumini (Myrtaceae) — jamun Air-dried seed UV-vis, SEM, XRD, FTIR, DLS, ζ-potential, HPLC Gallic acid, p-coumaric acid, quercetin, 3,4-dihyroxybenzoic acid SEM (40–100 nm), average 43.02 nm, Z-average 43±1.25 Irregular spherical contour 179
Mukia maderaspatana (Cucurbitaceae) — Madras pea pumpkin Fresh leaf UV-vis, FESEM, FTIR, XRD, ART NA FESEM (13–34 nm), Debye–Scherrer formula (64 nm) Spherical 180
Nelumbo nucifera (Nelumbonaceae) — sacred lotus Fresh leaf UV-vis, TEM, SEM, FTIR, XRD Betulinic acid, steroidal pentacyclic triterpenoid, procyanidins TEM (25–80 nm, average 45 nm), SEM (25–80 nm) Spherical (TEM), triangular (SEM) 181
Rhizophora mucronata (Rhizophoraceae) — mangrove Leaf UV-vis, FTIR, XRD, AFM Alkaloids, flavonoids, polyphenols, terpenoids AFM (60–95 nm) Spherical 182

Abbreviations: CV, Cyclic voltammograms; ART, total reflectance technique; NPs, nanoparticles; UV-vis, ultraviolet-visible spectroscopy; TEM, transmission electron microscopy; SEM, scanning electron microscopy; FESEM, field-emission SEM; HREM, high-resolution transmission electron microscopy; XRD, X-ray diffraction; FTIR, Fourier-transform infrared spectroscopy; AFM, atomic force microscopy; HPLC, high-performance liquid chromatography; DLS, dynamic light scattering; EDX, energy-dispersive X-ray (spectroscopy); EDAX, ED X-ray analysis; SAED, selected-area electron diffraction; TGA, thermogravimetric analysis; NA, not available; CV, ; ART, .

Figure 3.

Figure 3

Plant mediated synthesis of AgNPs.

Biosynthesis using microorganisms

Bacteria-mediated synthesis of AgNPs

Microorganisms like fungi, bacteria, and yeast are of huge interest for NP synthesis; however, the process is threatened by culture contamination, lengthy procedures, and less control over NP size. NPs formed by microorganisms can be classified into distinct categories, depending upon the location where they are synthesized.183 Otari et al synthesized AgNPs intracellularly using Actinobacteria Rhodococcussp. NCIM 2891.184 Kannan et al biosynthesized AgNPs using Bacillus subtillus extracellularly.185 Table 3 provides some illustrative examples of the synthesis of AgNPs using different bacterial strains.

Table 3.

Bacteria-mediated synthesis of AgNPs

Reducing agent: bacterial strain Characterization Size Shape Gram+/
Gram
Reference
Serratia nematodiphila UV-vis, SEM, EDS SEM (65–70 nm) Spherical Gram+ 186
Bacillus stearothermophilus UV-vis, TEM, FTIR, DLS TEM (9.96–22.7 nm, average 14±4 nm) Spherical Gram+ 187
Bacillus strain CS11 UV-vis, TEM TEM (42–92 nm) NA Gram+ 188
Exopolysaccharide-producing strain Leuconostoc lactis UV-vis, TEM, SEM, AFM, XRD, TGA-DTA, Raman spectroscopy TEM (30–200 nm, average 35 nm), AFM (average 30 nm) Spherical Gram+ 189
Escherichia coli NA NA NA Gram 190
Streptomyces hygroscopicus UV-vis, TEM. EDXA, FE XRD, BioAFM TEM (20–30 nm) More or less spherical Gram+ 191
Pediococcus pentosaceus, Enterococcus faecium, Lactococcus garvieae NA NA NA NA 192
Bacillus cereus, B. subtilis, Escherichia coli, Enterobacter cloacae, Klebsiella pneumonia, Lactobacillus acidophilus, Staphylococcus aereus, Pseudomonas aeroginosa UV, TEM, EDS TEM (28.2−122 nm, average 52.5 nm) NA Gram+ and Gram 193
Morganella morganii RP42 UV, TEM, XRD, SAED TEM (10–50 nm) Quasispherical Gram 194
Escherichia coli UV, FTIR, XRD TEM (average 50 nm) Spherical Gram 195
Pseudomonas antarctica, P. proteolytica, P. meridiana, Arthrobacter kerguelensis, A. gangotriensis, Bacillus indicus, B. cecembensis UV, TEM, AFM TEM (6.1±2.8 nm), AFM (4.6–13.3 nm) Spherical Gram+ and Gram 196
Staphylococcus aureus UV, AFM AFM (160–180 nm) Irregular Gram+ 197
Bacillus brevis (NCIM 2533) UV-vis, SEM, FTIR, AFM, TLC SEM (22–60 nm, average 41 nm), AFM (average 68 nm) Spherical Gram+ 198

Abbreviations: NPs, nanoparticles; UV-vis, ultraviolet-visible (spectroscopy); TEM, transmission electron microscopy; SEM, scanning electron microscopy; FESEM, field-emission SEM; HRSEM, high-resolution TEM; XRD, X-ray diffraction; FTIR, Fourier-transform infrared (spectroscopy); AFM, atomic force microscopy; HPLC, high-performance liquid chromatography; DLS, dynamic light scattering; EDX, energy-dispersive X-ray (spectroscopy); EDAX, ED X-ray analysis; SAED, selected-area electron diffraction; TGA, thermogravimetric analysis; NA, not available; TLC, thin-layer chromatography.

Alga-mediated synthesis of AgNPs

A diverse group of aquatic microorganisms, algae have been used substantially and reported to synthesize AgNPs. They vary in size, from microscopic (picoplankton) to macroscopic (Rhodophyta). AgNPs were synthesized using microalgae Chaetoceros calcitrans, C. salina, Isochrysis galbana, and Tetraselmis gracilis199 Cystophora moniliformis marine algae were used by Prasad et al as a reducing and stabilizing agent to synthesize AgNPs.200 Table 4 illustrates some examples of the micro and macro-algae used for AgNPs synthesis.

Table 4.

Alga-mediated synthesis of AgNPs

Reducing agent: alga strain Characterization Size Shape Algae type Macro/microalgae Reference
Sargassum wightii Greville UV, TEM, XRD, FTIR TEM (8−27 nm) Spherical Brown Macroalgae 201
Caulerpa racemosa UV, TEM, FTIR, XRD TEM (10 nm) Spherical and triangular Green Macroalgae 202
Polysaccharide extracted from algae: Pterocladia capillacae, Jania rubins, Ulva fasciata, Colpmenia sinusa UV, TEM, FTIR TEM (7, 7, 12, and 20 nm for U. fasciata, P. capillacae, J. rubins, and C. sinusa, respectively) Spherical Red and green Macroalgae 203
Chaetomorpha linum UV-vis, SEM, FTIR SEM (3–44 nm, average ~30 nm) Varied Green Macroalgae 204
Chaetoceros calcitran, Chlorella salina, Isochrysis galbana, Tetraselmis gracilis UV, SEM SEM (53.1–73.9 nm) NA Green Microalgae 199
Gelidium amansii UV-vis, SEM, FTIR SEM (27–54 nm) Spherical Red Macroalgae 205

Abbreviations: NPs, nanoparticles; UV-vis, ultraviolet-visible (spectroscopy); TEM, transmission electron microscopy; SEM, scanning electron microscopy; XRD, X-ray diffraction; FTIR, Fourier-transform infrared (spectroscopy).

Fungus-mediated synthesis of AgNPs

Extracellular synthesis of AgNPs using fungi is also a viable alternative, because of their economical large-scale production. Fungal strains are chosen over bacterial species, because of their better tolerance and metal-bioaccumulation property. Table 5 gives some of the fungal strains used for AgNP synthesis.

Table 5.

Fungus-mediated synthesis of AgNPs

Fungal species used Characterization Size Shape Reference
Fusarium oxysporum UV-vis, TEM, FTIR TEM (5–50 nm) Spherical and few triangular 206
Verticillium UV-vis, TEM, SEM, EDX TEM (25–12 nm) Spherical 207
Aspergillus fumigatus UV-vis, TEM, XRD TEM (5−25 nm) Spherical and triangular 208
Penicillium fellutanum UV-vis, TEM TEM (5−25 nm) Spherical 209
Aspergillus flavus UV-vis, TEM, FTIR, XRD TEM (8.92±1.61 nm) NA 210
Fusarium semitectum UV-vis, TEM, FTIR, XRD, TEM (10–60 nm) Spherical 211
Alternaria alternata UV-vis, TEM, SEM, FTIR, EDX SEM (20–60 nm, average 32.5 nm) Spherical 212
Rhizopus stolonifer UV-vis, TEM, SEM, FTIR, AFM TEM (3 and 20 nm) Spherical 213
Phanerochaete chrysosporium UV-vis, TEM, FTIR, AFM, TLC TEM (34–90 nm) Spherical and oval 214

Abbreviations: NPs, nanoparticles; UV-vis, ultraviolet-visible (spectroscopy); TEM, transmission electron microscopy; SEM, scanning electron microscopy; EDX, energy-dispersive X-ray (spectroscopy); XRD, X-ray diffraction; FTIR, Fourier-transform infrared (spectroscopy); AFM, atomic force microscopy; TLC, thin-layer chromatography.

Synthesis from miscellaneous sources

Nanotechnology has placed DNA on a recent drive to be used as a reducing agent.215 Strong affinity of DNA bases for silver make it a template stabalizer216 AgNPs were synthesized on DNA strands and found to be possibly located at N7 guanine and phosphate.217 Another attempt was made with calf-thymus DNA to synthesize AgNPs.218 Similarly, silver-binding peptides were identified and selected using a combinatorial approach for NP synthesis.219

Bioactivities

Antibacterial activity of AgNPs

As a broad-spectrum antibiotic, silver is highly toxic to bacteria. It has been of great interest for the past couple of years, due to its wide spectrum of pharmacological activities, with applications in the fields of agriculture, textiles, and especially medicine. Some attributed contributions are given in Table 6.

Table 6.

Antibacterial activities of AgNPs

Biological entity Testmicroorganism Method Reference
Citrullus colocynthis Escherichia coli Agar diffusion method 153
Pterocarpus santalinus E. coli NA 154
Madhuca longifolia flower extract Bacillus cereus, Staphylococcus saprophyticus, E. coli, Salmonella typhimurium Agar well diffusion method 220
Aspergillus clavatus fungus E. coli, Pseudomonas aeruginosa NA 221
Chenopodium murale leaf extract E. coli Cup–plate agar-diffusion method 222
Iresine herbstii leaf extract Staphylococcus aureus, Enterococcus faecalis, E. coli Agar-diffusion method 223
Beetroot E. coli, P. aeruginosa, Staphylococcus, Streptococcus NA 224
Dioscorea bulbifera plant St. aureus, E. faecalis, E. coli Diskc diffusion method 225
Rosa indica flower petals E. coli, P. aeruginosa, Staphylococcus, Streptococcus Agaer well diffusion method 226
Ocimum tenuiflorum plant NA Agar well diffusion method 227
Cassia fistula fruit extract E. coli, Klebsiella pneumonia Disk diffusion method
Chitosan polymer S. aureus Parallel-streak method, colony-counting method 114
Chitosan polymer E. coli (ATCC 25922), S. aureus (ATCC 6538) Agar disk diffusion method 228
Oxidized AgNPs E. coli Cup–plate agar-diffusion method 229
Gallic acid E. coli Microdilution method 230
AgNPs E. coli, Vibrio cholerae, P. aeruginosa, Salmonella typhi Agar diffusion method 73

Abbreviations: NPs, nanoparticles; NA, not available.

Antifungal activity of AgNPs

Resistant pathogenic activities of bacteria and fungi have increased invasive infections at an alarming rate. Ultimately, the subsequent need is to find more potent antifungal agents. Table 7 provides some examples from the literature that have reported antifungal properties of green synthesized AgNPs.

Table 7.

Antifungal properties of AgNPs

Biological entity used for reduction Fungal speciesused as test organism Characterization Reference
Green and black tea leaves Aspergillus flavus, A. parasiticus UV-vis, SEM, FTIR, EDX 231
Waste dried grass Fusarium solani, Rhizoctonia solani UV-vis, TEM, XRD 232
Dodonaea viscosaand Hyptis suoveolens leaf extracts Candida albicans(ATCC 90028), C. glabrata(MTCC 3019), C. tropicalis(MTCC 184), clinical isolate (MTCC 11,802) FTIR, SEM, XRD, DLS, ζ-potential 233
Cysteine and maltose C. albicans(ATCC 10231), C. parapsilosis (ATCC 22019) UV-vis, TEM, SEM, DLS 234
Lignin A. niger UV-vis, TEM, SEM, EDS, XRD 235
Cyanobacterium Nostoc strain HKAR2 cell extract A. niger, Trichoderma harzianum UV-vis, TEM, SAED, SEM, FTIR, XRD, ζ-potential 236
Bergenia ciliate plant extract A. fumigatus (FCBP 66), F. solani(FCBP 0291), A. niger(FCBP 0198), A. flavus(FCBP 0064) UV-vis, SEM, FTIR 237
Trifolium resupinatum seed extract Neofusicoccum parvum, R. solani UV-vis, TEM FTIR, XRD 238

Abbreviations: NPs, nanoparticles; UV-vis, ultraviolet-visible (spectroscopy); TEM, transmission electron microscopy; SEM, scanning electron microscopy; XRD, X-ray diffraction; FTIR, Fourier-transform infrared (spectroscopy); DLS, dynamic light scattering; EDX, energy-dispersive X-ray (spectroscopy); EDAX, ED X-ray analysis; SAED, selected-area electron diffraction.

Anticancer activity of AgNPs

The paramount need of today is the synthesis of effective anticancer treatment, as cardiovascular at the top most; cancer is the second most leading cause of human dysphoria. Therefore the synthesis of anticancer agents is of the utmost necessity. AgNPs also possess substantial anticancer activities,239 as shown in Table 8.

Table 8.

Anticancer property of AgNPs

Biological entity used for reduction Cancer cells under study Characterization Reference
Cleome viscosa fruit extract Lung (A549) and ovarian (PA1) cancer cell lines UV-vis, TEM, SEM, FESEM, EDAX, FTIR, XRD 240
Annona muricata leaf extract Human fibroblasts isolated from dermis UV-vis, TEM, XRD, DLS, ζ-potential 239
N,N,N-trimethyl chitosan chloride and polyelectrolyte complex Colon cancer cell lines (HCT116) and Mammalian cell lines (African green monkey kidney cell lines (VERO cells) HRTEM, FESEM, FTIR, EDX, XRD, 1H NMR 241
Rheum Rhabarbarum fresh stem extract Cervical carcinoma HeLa cell line UV-vis, SEM, TEM, FTIR, EDX, TGA, XRD, ζ- potential 242
Matricaria chamomilla A549 lung cancer cells UV-vis, TEM, FESEM, FTIR, XRD EDS, DLS 243
Zataria multiflora leaf extract Cervical carcinoma cells (HeLa cell line) UV-vis, TEM, FTIR, EDS, DLS, ζ- potential 96
Phoenix dactylifera hair-root extract Human breast cancer (MCF7 cell line) UV-vis, TEM, FTIR, XRD, FESEM, EDAX, Nanophox spectra analysis, PCCS 244

Abbreviations: NPs, nanoparticles; UV-vis, ultraviolet-visible (spectroscopy); TEM, transmission electron microscopy; SEM, scanning electron microscopy; FESEM, field-emission SEM; HRTEM, high-resolution TEM; XRD, X-ray diffraction; FTIR, Fourier-transform infrared (spectroscopy); AFM, atomic force microscopy; HPLC, high-performance liquid chromatography; DLS, dynamic light scattering; EDX, energy-dispersive X-ray (spectroscopy); EDAX, ED X-ray analysis; TGA, thermogravimetric analysis; PCCS, .

Anti-inflammatory activity of AgNPs

AgNPs of 20–80 nm were synthesized using Sambucus nigra (blackberry) extract. The NPs were characterized using ultraviolet-visible and Fourier-transform infrared spectroscopy and X-ray diffraction, and further investigations were carried out for anti-inflammatory effects, both in vitro and in vivo, against Wister rats.177

Antiviral activity of AgNPs

Multidimensional biological activities of AgNPs provide significant antiviral potentiality. HEPES buffer was used to synthesize NPs of 5–20 nm. Postinfection antiviral activity of AgNPs was evaluated using Hut/CCR5 cells using ELISA. AgNPs inhibited HIV1 retrovirus 17%–187% more than the reverse-transcriptase inhibitor azidothymidine triphosphate245 Polysulfone-incorporated AgNPs manifested antiviral and antibacterial activity. This was attributed to the release of sufficient silver ions from the membrane, acting as an antiviral agent.246

Cardioprotection

The medicinal herb neem (Millingtonia hortensis) has been used to synthesize AgNPs, and showed significant cardioprotective properties in rats.178

Wound dressing

anotechnology has contributed significantly in the area of wound healing, as healing is attributed to increased anti-inflammatory and antimicrobial activity. A cotton fabric treated with NPs of size 22 nm exhibited potent healing power.247 Another advance in this area was made with the impregnation of AgNPs into bacterial cellulose for antimicrobial wound dressing. Acetobacter xylinum (strain TISTR 975) was used to produce bacterial cellulose, which was immersed in silver nitrate solution. It was effective against both Gram-positive and Gram-negative bacteria.248 The performance of a polymer is increased by the introduction of inorganic NPs. In this regard, polyurethane solution containing silver ions was reduced by dimethylformamide using electrospinning. Collagen was introduced to increase its hydrophilicity. This collagen sponge incorporatingd AgNPs had enhanced wound-healing ability in an animal model.249 Most recently, Jacob et al biosynthesized nanoengineered tissue impregnated with AgNPs, which significantly prevented borne bacterial growth on the surface of tissue and could help in controlling health-associated infections.250

Conclusion

Nature has its own coaching manners of synthesizing miniaturized functional materials. Increasing awareness of green chemistry and the benefit of synthesis of AgNPs using plant extracts can be ascribed to the fact that it is ecofriendly, low in cost, and provides maximum protection to human health. Green synthesized AgNPs have unmatched significance in the field of nanotechnology. AgNPs cover a wide spectrum of significant pharmacological activities, and the cost-effectiveness provides an alternative to local drugs. Besides plant-mediated green synthesis, special emphasis has also been placed on the diverse bioassays exhibited by AgNPs. This review will help researchers to develop novel AgNP-based drugs using green technology.

Author contributions

All authors contributed to data analysis, drafting or revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

  • 1.Prasad R, Swamy VS. Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. 2013;2013:6. doi: 10.1155/2013/431218 [DOI] [Google Scholar]
  • 2.Isaac R, Sakthivel G, Murthy C. Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol. 2013;2013:6. doi: 10.1155/2013/906592 [DOI] [Google Scholar]
  • 3.Jagtap UB, Bapat VA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod. 2013;46:132–137. [Google Scholar]
  • 4.Phanjom P, Borthakur M, Das R, Dey S, Bhuyan T. Green synthesis of silver nanoparticles using leaf extract of Amaranthus viridis. Int J Nanotechnol Appl. 2012;6:53–59. [Google Scholar]
  • 5.Ghoreishi SM, Behpour M, Khayatkashani M. Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Phys E. 2011;44(1):97–104. [Google Scholar]
  • 6.Suresh G, Gunasekar PH, Kokila D, et al. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A. 2014;127:61–66. [DOI] [PubMed] [Google Scholar]
  • 7.Santhoshkumar T, Rahuman AA, Bagavan A, et al. Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp Parasitol. 2012;132(2):156–165. [DOI] [PubMed] [Google Scholar]
  • 8.Heydari R, Rashidipour M. Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF-7 cells. Int J Breast Cancer. 2015;2015:6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Rajeshkumar S. Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resour-Effic Technol. 2016;2(1):30–35. doi: 10.1016/j.reffit.2016.06.003 [DOI] [Google Scholar]
  • 10.Song JY, Kim BS. Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng. 2008;25(4):808–811. doi: 10.1007/s11814-008-0133-z [DOI] [Google Scholar]
  • 11.Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C. 2016;58:36–43. doi: 10.1016/j.msec.2015.08.018 [DOI] [PubMed] [Google Scholar]
  • 12.Sharma K, Kaushik S, Jyoti A. Green synthesis of silver nanoparticles by using waste vegetable peel and its antibacterial activities. J Pharm Sci Res. 2016;8(5):313. [Google Scholar]
  • 13.Moteriya P, Chanda S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif Cells Nanomed Biotechnol. 2017;45(8):1556–1567. doi: 10.1080/21691401.2016.1261871 [DOI] [PubMed] [Google Scholar]
  • 14.Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S, Lakshmi P. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng C. 2016;62:553–557. doi: 10.1016/j.msec.2016.01.072 [DOI] [PubMed] [Google Scholar]
  • 15.Saddal SK, Telang T, Bhange VP, Kopulwar A, Santra S, Soni M. Green synthesis of silver nanoparticles using stem extract of Berberis aristata and to study its characterization and antimicrobial activity. J Pharm Res. 2018;12(6):840. [Google Scholar]
  • 16.Dubey SP, Lahtinen M, Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010;45(7):1065–1071. doi: 10.1016/j.procbio.2010.03.024 [DOI] [Google Scholar]
  • 17.Bharathi D, Josebin MD, Vasantharaj S, Bhuvaneshwari V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J Nanostruct Chem. 2018;8(1):83–92. doi: 10.1007/s40097-018-0256-7 [DOI] [Google Scholar]
  • 18.Baghizadeh A, Ranjbar S, Gupta VK, et al. Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. J Mol Liq. 2015;207:159–163. doi: 10.1016/j.molliq.2015.03.029 [DOI] [Google Scholar]
  • 19.Rivera-Rangel RD, González-Muñoz MP, Avila-Rodriguez M, Razo-Lazcano TA, Solans C. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf A. 2018;536:60–67. doi: 10.1016/j.colsurfa.2017.07.051 [DOI] [Google Scholar]
  • 20.Dar P, Waqas U, Hina A, et al. DBiogenic synthesis, characterization of silver nanoparticles using multani mitti (Fullers Earth), tomato (Solanum lycopersicum) seeds, rice husk (Oryza sativa) and evaluation of their potential antimicrobial activity. J Chem Soc Pak. 2016;38(4):665–674. [Google Scholar]
  • 21.Aboutorabi SN, Nasiriboroumand M, Mohammadi P, Sheibani H, Barani H. Biosynthesis of silver nanoparticles using safflower flower: structural characterization, and its antibacterial activity on applied wool fabric. J Inorg Organomet Polym Mater. 2018;28(6):2525–2532. doi: 10.1007/s10904-018-0925-5 [DOI] [Google Scholar]
  • 22.Karthiga P. Preparation of silver nanoparticles by Garcinia mangostana stem extract and investigation of the antimicrobial properties. Biotechnol Res Innovation. 2018;2(1):30–36. doi: 10.1016/j.biori.2017.11.001 [DOI] [Google Scholar]
  • 23.Baskaran C, Ratha Bai V. Green synthesis of silver nanoparticles using Coleus forskohlii roots extract and its antimicrobial activity against Bacteria and Fungus. Int J Drug Dev Res. 2013;5(1):1–10. [Google Scholar]
  • 24.Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A. 2015;151:939–944. [DOI] [PubMed] [Google Scholar]
  • 25.Saliem AH, Ibrahim OM, Salih SI. Biosynthesis of silver nanoparticles using cinnamon zeylanicum plants bark extract. مجلة الكوفة للعلوم الطبية البيطرية|Kufa J Vet Med Sci. 2016;7(1):51-63. [Google Scholar]
  • 26.Nazeruddin G, Prasad N, Prasad S, Shaikh Y, Waghmare S, Adhyapak P. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind Crops Prod. 2014;60:212–216. [Google Scholar]
  • 27.Selvakumar P, Sithara R, Viveka K, Sivashanmugam P. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. J Photochem Photobiol B. 2018;182:52–61. [DOI] [PubMed] [Google Scholar]
  • 28.Bharathi D, Kalaichelvan P, Atmaram V, Anbu S. Biogenic synthesis of silver nanoparticles from aqueous flower extract of Bougainvillea spectabilis and their antibacterial activity. J Med Plants. 2016;4:248–252. [Google Scholar]
  • 29.Sreelakshmy V, Deepa M, Mridula P. Green synthesis of silver nanoparticles from glycyrrhiza glabra root extract for the treatment of gastric ulcer. J Dev Drugs. 2016;5(2):152. [Google Scholar]
  • 30.Tamileswari R, Haniff Nisha M, Jesurani S, et al. Synthesis of silver nanoparticles using the vegetable extract of raphanus sativus (Radish) and assessment of their antibacterial activity. Int J Adv Technol Eng Sci. 2015;3(5):207–212. [Google Scholar]
  • 31.Basu S, Samanta HS, Ganguly J. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Mater. 2018;16(1):7–19. [Google Scholar]
  • 32.Iravani S, Zolfaghari B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int. 2013;2013:5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gavade SM, Nikam G, Dhabbe R, Sabale S, Tamhankar B, Mulik G. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity. Adv Nat Sci. 2015;6(4):045015. [Google Scholar]
  • 34.Mittal AK, Kaler A, Banerjee UC. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum. Nano Biomed Eng. 2012;4(3):118–124. [Google Scholar]
  • 35.Upadhyay P, Mishra SK, Purohit S, Dubey G, Singh Chauhan B, Srikrishna S. Antioxidant, antimicrobial and cytotoxic potential of silver nanoparticles synthesized using flavonoid rich alcoholic leaves extract of Reinwardtia indica. Drug Chem Toxicol. 2018;42(1):1–11. [DOI] [PubMed] [Google Scholar]
  • 36.Rajagopal T, Jemimah IAA, Ponmanickam P, Ayyanar M. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects. J Environl Biol. 2015;36(6):1283. [PubMed] [Google Scholar]
  • 37.Carabineiro S. Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules. 2017;22(5):857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A. 2011;79(3):594–598. [DOI] [PubMed] [Google Scholar]
  • 39.Roy K. ‘Green’synthesis of Silver Nanoparticles by Using Grape (Vitis Vinifera) Fruit Extract: Characterization of the Particles & Study of Antibacterial Activity. 2012. [Google Scholar]
  • 40.Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C. 2016;58:44–52. [DOI] [PubMed] [Google Scholar]
  • 41.Roy K, Biswas S, Banerjee PC. Synthesis of Silver nanoparticles by using grape (Vitis vinifera) fruit extract; characterization of the particles and study of antibacterial activity. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2013 ;4(1):1271–1278. [Google Scholar]
  • 42.Singh J, Dhaliwal AS. Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from nepeta leucophylla root extract. Anal Lett. 2018;52(2) :1–18. [Google Scholar]
  • 43.Mishra MP, Padhy RN. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J Appl Biomed. 2018;16(2):120–125. [Google Scholar]
  • 44.Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R. Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules. 2014;19(4):4624–4634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ahmad N, Sharma S, Rai R. Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv Mater Lett. 2012;3(5):376–380. [Google Scholar]
  • 46.Mukunthan K, Balaji S. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Intl J Green Nanotechnol. 2012;4(2):71–79. [Google Scholar]
  • 47.Kaur R, Singh J, Tripathi S. Incorporation of inorganic nanoparticles into an organic polymer matrix for data storage application. Current Appl Phys. 2017;17(5):756–762. [Google Scholar]
  • 48.Raut Rajesh W, Lakkakula Jaya R, Kolekar Niranjan S, Mendhulkar Vijay D, Kashid Sahebrao B. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci. 2009;5(1):117–122. [Google Scholar]
  • 49.Mata R, Nakkala JR, Sadras SR. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C. 2015;51:216–225. [DOI] [PubMed] [Google Scholar]
  • 50.Benakashani F, Allafchian A, Jalali SAH. Green synthesis, characterization and antibacterial activity of silver nanoparticles from root extract of Lepidium draba weed. Green Chem Lett Rev. 2017;10(4):324–330. [Google Scholar]
  • 51.Velayutham K, Rahuman AA, Rajakumar G, et al. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med. 2013;6(2):95–101. [DOI] [PubMed] [Google Scholar]
  • 52.Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chem Eng. 2013;2(3):367–376. [Google Scholar]
  • 53.Gao Y, Huang Q, Su Q, Liu R. Green synthesis of silver nanoparticles at room temperature using kiwifruit juice. Spectrosc Lett. 2014;47(10):790–795. [Google Scholar]
  • 54.Abdal Dayem A, Hossain MK, Lee SB, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(1):120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104. [Google Scholar]
  • 56.Gogoi N, Babu PJ, Mahanta C, Bora U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater Sci Eng C. 2015;46:463–469. [DOI] [PubMed] [Google Scholar]
  • 57.Kumar D, Kumar G, Agrawal V. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res. 2018;117(2):377–389. [DOI] [PubMed] [Google Scholar]
  • 58.Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A. 2010;368(1):58–63. [DOI] [PubMed] [Google Scholar]
  • 59.Ulug B, Turkdemir MH, Cicek A, Mete A. Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta A. 2015;135:153–161. [DOI] [PubMed] [Google Scholar]
  • 60.Fukui H. Development of new cosmetics based on nanoparticles In: Naito M, Yokoyama T, Hosokawa K, Nogi K, editors. Nanoparticle Technology Handbook. 3rd ed. Elsevier; 2018:845–877. ISBN: 978-0-444-64110-6 [Google Scholar]
  • 61.Sasikala A, Rao ML, Savithramma N, Prasad T. Synthesis of silver nanoparticles from stem bark of Cochlospermum religiosum (L.) Alston: an important medicinal plant and evaluation of their antimicrobial efficacy. Appl Nanosci. 2015;5(7):827–835. [Google Scholar]
  • 62.Erosa MSD, Díaz MMC, Lazcano TAR, Rodríguez MÁ, Aguilera JAR, Del Pilar González-Muñoz M. Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatán México. Part II: uses for the phytomediated synthesis of silver nanoparticles. Mater Sci Eng C. 2018;91:838–852. [DOI] [PubMed] [Google Scholar]
  • 63.Vijayan R, Joseph S, Mathew B. Green synthesis of silver nanoparticles using Nervalia zeylanica leaf extract and evaluation of their antioxidant, catalytic, and antimicrobial potentials. Part Sci Technol. 2018;36:1–11. [Google Scholar]
  • 64.Fathima JB, Pugazhendhi A, Oves M, Venis R. Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes. J Mol Liq. 2018;260:1–8. [Google Scholar]
  • 65.Cruz D, Falé PL, Mourato A, Vaz PD, Serralheiro ML, Lino ARL. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B. 2010;81(1):67–73. [DOI] [PubMed] [Google Scholar]
  • 66.Sharma P, Bhatt D, Zaidi M, Saradhi PP, Khanna P, Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 2012;167(8):2225–2233. [DOI] [PubMed] [Google Scholar]
  • 67.Ashokkumar S, Ravi S, Velmurugan S. Green synthesis of silver nanoparticles from Gloriosa superba L. leaf extract and their catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc. 2013;115:388–392. [DOI] [PubMed] [Google Scholar]
  • 68.Zhang J, Si G, Zou J, Fan R, Guo A, Wei X. Antimicrobial Effects of Silver Nanoparticles Synthesized by Fatsia japonica Leaf Extracts for Preservation of Citrus Fruits. J Food Sci. 2017;82(8):1861–1866. [DOI] [PubMed] [Google Scholar]
  • 69.McGillicuddy E, Murray I, Kavanagh S, et al. Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ. 2017;575:231–246. [DOI] [PubMed] [Google Scholar]
  • 70.Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:88–93. [DOI] [PubMed] [Google Scholar]
  • 71.Kumar PSM, MubarakAli D, Saratale RG, et al. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microb Pathog. 2017;113:68–73. [DOI] [PubMed] [Google Scholar]
  • 72.Philip D, Unni C, Aromal SA, Vidhu V. Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A. 2011;78(2):899–904. [DOI] [PubMed] [Google Scholar]
  • 73.Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346. [DOI] [PubMed] [Google Scholar]
  • 74.Vijayan SR, Santhiyagu P, Ramasamy R, et al. Seaweeds: a resource for marine bionanotechnology. Enzyme Microb Technol. 2016;95:45–57. [DOI] [PubMed] [Google Scholar]
  • 75.Veerasamy R, Xin TZ, Gunasagaran S, et al. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc. 2011;15(2):113–120. [Google Scholar]
  • 76.Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–2433. [DOI] [PubMed] [Google Scholar]
  • 77.Philip D. Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta A. 2011;78(1):327–331. [DOI] [PubMed] [Google Scholar]
  • 78.Zhu M-Q, Zhu L, Han JJ, Wu W, Hurst JK, Li AD. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc. 2006;128(13):4303–4309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Arunachalam KD, Annamalai SK, Hari S. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomedicine. 2013;8(3):1307–1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338–5431. [DOI] [PubMed] [Google Scholar]
  • 81.Singh P, Kim YJ, Yang DC. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol. 2016;44(8):1949–1957. [DOI] [PubMed] [Google Scholar]
  • 82.Dhoble SM, Kulkarni NS. Investigation of in vitro and in vivo atifungal property of biologically synthesized copper nanoparticles (CuNP) against rhizoctonia solani a phytopathogen of soyaabean (Glycine max, L. Merrill). Int J Eng Sci Generic Res. 2018;4(5):17–30. [Google Scholar]
  • 83.Wang C, Mathiyalagan R, Kim YJ, et al. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int J Nanomedicine. 2016;11:3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Payne JN, Waghwani HK, Connor MG, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7:607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Hubbuch J. Novel self patent gold nanoparticles for antineoplastic activity: poster presented at: posters-at-capitol wisteren kenpucky university; march 3; 2016: United state of America. Available from:https://digitalcommons.murraystate.edu/postersatthecapitol/2016/WKU/10/ [Google Scholar]
  • 86.Kumar PV, Kala SMJ. Green Synthesis, Characterisation and Biological Activity of Platinum Nanoparticle Using Croton Caudatus Geisel Leaf Extract. Int J Recent Res Aspects. (Special Issue:Conscientious Computing Technologies). 2018. 608-612 [Google Scholar]
  • 87.Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N. Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater Lett. 2012;76:18–20. [Google Scholar]
  • 88.Molaei R, Farhadi K, Forough M, Hajizadeh S. Green Biological Fabrication and Characterization of Highly Monodisperse Palladium Nanoparticles Using Pistacia Atlantica Fruit Broth. J Nanostruct. 2018;8(1):47–54. [Google Scholar]
  • 89.Liong M, Lu J, Tamanoi F, Zink JI, Nel A. Mesoporous silica nanoparticles for biomedical applications. Google Patents; 2018.
  • 90.Kesharwani J, Yoon KY, Hwang J, Rai M. Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J Bionanosci. 2009;3(1):39–44. [Google Scholar]
  • 91.Woodard A, Xu L, Barragan AA, Nava G, Wong BM, Mangolini L. On the non-thermal plasma synthesis of nickel nanoparticles. Plasma Processes Polym. 2018;15(1):1700104. [Google Scholar]
  • 92.Zayed MF, Eisa WH, Shabaka A. Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim Acta A. 2012;98:423–428. [DOI] [PubMed] [Google Scholar]
  • 93.Karuppiah M, Rajmohan R. Green synthesis of silver nanoparticles using Ixora coccinea leaves extract. Mater Lett. 2013;97:141–143. [Google Scholar]
  • 94.Raja A, Ashokkumar S, Marthandam RP, et al. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B. 2018;181:53–58. [DOI] [PubMed] [Google Scholar]
  • 95.Uozumi Y, Kim K. Synthesis of Imidazo [1, 2-a] pyrimidines by A3-Coupling on CuO Nanoparticles. Synfacts. 2018;14(08):0883. [Google Scholar]
  • 96.Baharara J, Ramezani T, Hosseini N, Mousavi M. Silver Nanoparticles Synthesized Coating with Zataria Multiflora Leaves Extract Induced Apoptosis in HeLa Cells Through p53 Activation. Ijpr. 2018;17(2):627. [PMC free article] [PubMed] [Google Scholar]
  • 97.Muthukumar H, Mohammed SN, Chandrasekaran N, Sekar AD, Pugazhendhi A, Matheswaran M. Effect of iron doped Zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int J Hydrogen Energy. 2018. [Google Scholar]
  • 98.Yakop F, Abd Ghafar SA, Yong YK, et al. Silver nanoparticles Clinacanthus Nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018:1–9. [DOI] [PubMed] [Google Scholar]
  • 99.Fard SE, Tafvizi F, Torbati MB. Silvernanoparticles biosynthesisedusingCentella asiaticaleaf extract: apoptosis induction in MCF-7 breast cancer cell line. IET Nanobiotechnol. 2018;12(7):994–1002. doi: 10.1049/iet-nbt.2018.5069 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B. 2019;190:86–97. doi: 10.1016/j.jphotobiol.2018.11.014 [DOI] [PubMed] [Google Scholar]
  • 101.Jha AK, Prasad K. Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol. 2010;1(2):P110–P117. doi: 10.1080/19430871003684572 [DOI] [Google Scholar]
  • 102.Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J. 2018;336:386–396. doi: 10.1016/j.cej.2017.12.029 [DOI] [Google Scholar]
  • 103.Sisubalan N, Ramkumar VS, Pugazhendhi A, et al. ROS-mediated cytotoxic activity of ZnO and CeO 2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res. 2017:25(11):10482-10492. [DOI] [PubMed] [Google Scholar]
  • 104.Fathima JB, Pugazhendhi A, Venis R. Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog. 2017;110:245–251. doi: 10.1016/j.micpath.2017.06.039 [DOI] [PubMed] [Google Scholar]
  • 105.Larson JK, Carvan MJ, Hutz RJ. Engineered nanomaterials: an emerging class of novel endocrine disruptors. Biol Reprod. 2014;91(1):20. doi: 10.1095/biolreprod.114.121434 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050–1074. doi: 10.3762/bjnano.9.98 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Pachapur V, Brar SK, Verma M, Surampalli RY. Nanomaterials in the Environment. In: Nano-Ecotoxicology of Natural and Engineered Nanomaterials for Animals and Humans. American society of civil engineering library. 2015:421-437. [Google Scholar]
  • 108.Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2017. doi: 10.1016/j.arabjc.2017.05.011 [DOI] [Google Scholar]
  • 109.Ranjit K, Baquee AA. Nanoparticle: an overview of preparation, characterization and application. Int. Res. J. Pharm.. 2013;4(4):47–57. [Google Scholar]
  • 110.Bhatia S. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae. Springer International Publishing. HolderSpringer International Publishing. Switzerland. 2016;1:33-93. [Google Scholar]
  • 111.Sanjay SS, Pandey AC. A brief manifestation of nanotechnology In: Ashutosh Kumar Shukla, editor. EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Springer; 2017:47–63. [Google Scholar]
  • 112.Arole V, Munde S. Fabrication of Nanomaterials by Top-down and Bottom-up Approaches- An overview. J Adv Appl Sci Technol. 2014;1(2):89–93. [Google Scholar]
  • 113.Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6(2):257–262. doi: 10.1016/j.nano.2009.07.002 [DOI] [PubMed] [Google Scholar]
  • 114.Ali SW, Rajendran S, Joshi M. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym. 2011;83(2):438–446. doi: 10.1016/j.carbpol.2010.08.004 [DOI] [Google Scholar]
  • 115.Tejamaya M, RöMer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46(13):7011–7017. doi: 10.1021/es2038596 [DOI] [PubMed] [Google Scholar]
  • 116.Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi: 10.1128/AEM.02218-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103. doi: 10.1088/0957-4484/18/49/495102 [DOI] [PubMed] [Google Scholar]
  • 118.Dubas ST, Kumlangdudsana P, Potiyaraj P. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A. 2006;289(1):105–109. doi: 10.1016/j.colsurfa.2006.04.012 [DOI] [Google Scholar]
  • 119.Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28. doi: 10.1016/j.jare.2015.02.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125(46):13940–13941. doi: 10.1021/ja029267j [DOI] [PubMed] [Google Scholar]
  • 121.Daphne J, Francis A, Mohanty R, Ojha N, Das N. Green Synthesis of Antibacterial Silver Nanoparticles using Yeast Isolates and its Characterization. Res J Pharm Technol. 2018;11(1):83–92. doi: 10.5958/0974-360X.2018.00016.1 [DOI] [Google Scholar]
  • 122.Mohamad NAN, Arham NA, Jai J, Hadi A. Plant Extract as Reducing Agent in Synthesis of Metallic Nanoparticles: A Review. Advanced Materials Research. 2014;832: 350-355.
  • 123.Gomathi S, Firdous J, Bharathi V, et al. Phytochemical screening of silver nanoparticles extract of Eugenia jambolana using Fourier infrared spectroscopy. Int J Res Pharm Sci. 2017;8(3):383–387. [Google Scholar]
  • 124.Banerjee P, Nath D. A phytochemical approach to synthesize silver nanoparticles for non-toxic biomedical application and study on their antibacterial efficacy. Nanosci Technol. 2015;2(1):1–14. [Google Scholar]
  • 125.Hazarika D, Phukan A, Saikia E, Chetia B. Phytochemical screening and synthesis of silver nanoparticles using leaf extract of Rhynchotechum ellipticum. Int J Pharm Pharm Sci. 2014;6(1):672–674. [Google Scholar]
  • 126.Stephen A, Seethalakshmi S. Phytochemical synthesis and preliminary characterization of silver nanoparticles using hesperidin. J Nanosci. 2013;2013:5. doi: 10.1155/2013/126564 [DOI] [Google Scholar]
  • 127.Martínez-Bernett D, Silva-Granados A, Correa-Torres S, Herrera A. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction. Paper presented at: Journal of Physics: Conference Series Vol. 687; 2016. [Google Scholar]
  • 128.Mallikarjuna K, Sushma NJ, Narasimha G, Manoj L, Raju BDP. Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arabian J Chem. 2014;7(6):1099–1103. doi: 10.1016/j.arabjc.2012.04.001 [DOI] [Google Scholar]
  • 129.Kumar B, Smita K, Cumbal L, Debut A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci. 2017;24(1):45–50. doi: 10.1016/j.sjbs.2015.09.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Kumar CMK, Yugandhar P, Savithramma N. Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization, and its antimicrobial properties. J Intercult Ethnopharmacol. 2016;5(1):79. doi: 10.5455/jice. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Malaikozhundan B, Vijayakumar S, Vaseeharan B, et al. Two potential uses for silver nanoparticles coated with Solanum nigrum unripe fruit extract: biofilm inhibition and photodegradation of dye effluent. Microb Pathog. 2017;111:316–324. doi: 10.1016/j.micpath.2017.08.039 [DOI] [PubMed] [Google Scholar]
  • 132.Rad MS, Rad JS, Heshmati GA, Miri A, Sen DJ. Biological synthesis of gold and silver nanoparticles by Nitraria schoberi fruits. Open J Adv Drug Delivery. 2013;1(2):174–179. [Google Scholar]
  • 133.Naganathan K, Thirunavukkarasu S. Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, anti-oxidant and anti-tumor cell line studies. Paper presented at 2nd International Conference on Mining, Material and Metallurgical Engineering: IOP Conference Series: Materials Science and Engineering191; 2017. doi:10.1088/1757-899X/191/1/012009 [Google Scholar]
  • 134.Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009;32(1):79. doi: 10.1007/s00449-008-0224-6 [DOI] [PubMed] [Google Scholar]
  • 135.Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res. 2004;339(15):2627–2631. doi: 10.1016/j.carres.2004.08.005 [DOI] [PubMed] [Google Scholar]
  • 136.Vigneshwaran N, Nachane R, Balasubramanya R, Varadarajan P. A novel one-pot ‘green’synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res. 2006;341(12):2012–2018. doi: 10.1016/j.carres.2006.04.042 [DOI] [PubMed] [Google Scholar]
  • 137.Guidelli EJ, Ramos AP, Zaniquelli MED, Baffa O. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim Acta A. 2011;82(1):140–145. doi: 10.1016/j.saa.2011.07.024 [DOI] [PubMed] [Google Scholar]
  • 138.Shameli K, Ahmad MB, Zamanian A, et al. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomedicine. 2012;7:5603. doi: 10.2147/IJN.S30631 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Umoren S, Obot I, Gasem Z. Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. J Mater Environ Sci. 2014;5:907–914. [Google Scholar]
  • 140.Lu R, Yang D, Cui D, Wang Z, Guo L. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomed. 2012;7:2101. doi: 10.2147/IJN.S30631 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. Rapid biosynthesis of silver nanoparticles using Cymbopogan citratus (lemongrass) and its antimicrobial activity. Nano-Micro Lett. 2011;3(3):189–194. doi: 10.1007/BF03353671 [DOI] [Google Scholar]
  • 142.Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10(8):859–862. doi: 10.1039/b804703k [DOI] [Google Scholar]
  • 143.Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B. 2009;71(1):113–118. doi: 10.1016/j.colsurfb.2009.01.012 [DOI] [PubMed] [Google Scholar]
  • 144.Pande N, Jaspal DK, Ambekar J. Ecofriendly synthesis and applications of silver nanoparticles. J Chem Pharm Res. 2014;6(9):403–410. [Google Scholar]
  • 145.Awwad AM, Salem NM, Abdeen AO. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem. 2013;4(1):29. doi: 10.1186/2228-5547-4-29 [DOI] [Google Scholar]
  • 146.Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, Mohamad AB. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed. 2013;3(1):58–63. doi: 10.1016/S2221-1691(13)60024-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Mousavi B, Tafvizi F, Zaker Bostanabad S. Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells Nanomed Biotechnol. 2018;46(11):1–12. doi: 10.1080/21691401.2018.1430697 [DOI] [PubMed] [Google Scholar]
  • 148.Kumara V, Vermab S, Choudhuryc S, Tyagid M, Chatterjee S, Variyara PS. Biocompatible silver nanoparticles from vegetable waste: its characterization and bio-efficacy. Int J Nano Matl Sci. 2015;4(1):70–86. [Google Scholar]
  • 149.Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B. 2009;73(2):332–338. doi: 10.1016/j.colsurfb.2009.06.005 [DOI] [PubMed] [Google Scholar]
  • 150.Ojha S. Green Synthesis of Metallic Nanoparticles Using Leaf Extract of Selected Silkworm Host Plants and Their Applications. Indian institute of technology Guwahati. Department of Biosciences and Bioengineering; 2018. [Google Scholar]
  • 151.Jebakumar Immanuel Edison TN, Sethuraman MG. Electrocatalytic reduction of benzyl chloride by green synthesized silver nanoparticles using pod extract of Acacia nilotica. ACS Sustainable Chem Eng. 2013;1(10):1326–1332. doi: 10.1021/sc4001725 [DOI] [Google Scholar]
  • 152.Mallikarjuna K, Narasimha G, Dillip G, et al. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct. 2011;6(1):181–186. [Google Scholar]
  • 153.Satyavani K, Ramanathan T, Gurudeeban S. Plant mediated synthesis of biomedical silver nanoparticles by using leaf extract of Citrullus colocynthis. Res J Nanosci Nanotechnol. 2011;1(2):95–101. doi: 10.3923/rjnn.2011.95.101 [DOI] [Google Scholar]
  • 154.Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B. 2012;94:226–230. doi: 10.1016/j.colsurfb.2012.01.040 [DOI] [PubMed] [Google Scholar]
  • 155.Gopinath K, Gowri S, Arumugam A. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J Nanostruct Chem. 2013;3(1):68. doi: 10.1186/2193-8865-3-68 [DOI] [Google Scholar]
  • 156.Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci. 2013;3(3):217–223. doi: 10.1007/s13204-012-0121-9 [DOI] [Google Scholar]
  • 157.Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A. 2009;348(1):212–216. doi: 10.1016/j.colsurfa.2009.07.021 [DOI] [Google Scholar]
  • 158.Kathiravan V, Ravi S, Ashokkumar S. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta A. 2014;130:116–121. doi: 10.1016/j.saa.2014.03.107 [DOI] [PubMed] [Google Scholar]
  • 159.Li S, Shen Y, Xie A, et al. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007;9(8):852–858. doi: 10.1039/b615357g [DOI] [Google Scholar]
  • 160.Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 2012;47(12):2405–2410. doi: 10.1016/j.procbio.2012.09.025 [DOI] [Google Scholar]
  • 161.Loo YY, Chieng BW, Nishibuchi M, Radu S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomedicine. 2012;7:4263. doi: 10.2147/IJN.S30631 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Ajitha B, Reddy YAK, Reddy PS. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater Sci Eng C. 2015;49:373–381. doi: 10.1016/j.msec.2015.01.035 [DOI] [PubMed] [Google Scholar]
  • 163.Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett. 2010;3(2):138–143. doi: 10.1166/asl.2010.1099 [DOI] [Google Scholar]
  • 164.Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog. 2006;22(2):577–583. doi: 10.1021/bp0501423 [DOI] [PubMed] [Google Scholar]
  • 165.Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomed. 2011;6:1265–1278. doi: 10.2147/IJN.S18347 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys E. 2010;42(5):1417–1424. doi: 10.1016/j.physe.2009.11.081 [DOI] [Google Scholar]
  • 167.Reddy NJ, Vali DN, Rani M, Rani SS. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C. 2014;34:115–122. doi: 10.1016/j.msec.2013.08.039 [DOI] [PubMed] [Google Scholar]
  • 168.Mallikarjuna K, Balasubramanyam K, Narasimha G, Kim H. Phyto-synthesis and antibacterial studies of bio-based silver nanoparticles using Sesbania grandiflora (Avisa) leaf tea extract. Mater Res Express. 2018;5(1):015054. doi: 10.1088/2053-1591/aaa67d [DOI] [Google Scholar]
  • 169.Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf B. 2014;117:354–359. doi: 10.1016/j.colsurfb.2014.02.052 [DOI] [PubMed] [Google Scholar]
  • 170.Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B. 2013;108:80–84. doi: 10.1016/j.colsurfb.2013.02.033 [DOI] [PubMed] [Google Scholar]
  • 171.Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48(2):317–324. doi: 10.1016/j.procbio.2012.12.013 [DOI] [Google Scholar]
  • 172.Rajaram K, Aiswarya D, Sureshkumar P. Green synthesis of silver nanoparticle using Tephrosia tinctoria and its antidiabetic activity. Mater Lett. 2015;138:251–254. doi: 10.1016/j.matlet.2014.10.017 [DOI] [Google Scholar]
  • 173.Kumar HAK, Mandal BK, Kumar KM, et al. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim Acta A. 2014;130:13–18. doi: 10.1016/j.saa.2014.03.024 [DOI] [PubMed] [Google Scholar]
  • 174.Kumar DA, Palanichamy V, Roopan SM. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta A. 2014;127:168–171. doi: 10.1016/j.saa.2014.02.058 [DOI] [PubMed] [Google Scholar]
  • 175.Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B. 2010;79(2):488–493. doi: 10.1016/j.colsurfb.2010.05.018 [DOI] [PubMed] [Google Scholar]
  • 176.Muniyappan N, Nagarajan N. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem. 2014;49(6):1054–1061. doi: 10.1016/j.procbio.2014.03.015 [DOI] [Google Scholar]
  • 177.David L, Moldovan B, Vulcu A, et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf B. 2014;122:767–777. doi: 10.1016/j.colsurfb.2014.08.018 [DOI] [PubMed] [Google Scholar]
  • 178.Savitha R, Saraswathi U. A study on the preventive effect of silver nano particles synthesized from millingtonia hortensis in isoproterenol induced cardio toxicity in male wistar rats. World J Pharm Pharm Sci. 2016;5(8):1442–1450. [Google Scholar]
  • 179.Atale N, Saxena S, Nirmala JG, Narendhirakannan R, Mohanty S, Rani V. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: a green approach. Appl Biochem Biotechnol. 2017;181(3):1140–1154. doi: 10.1007/s12010-016-2274-6 [DOI] [PubMed] [Google Scholar]
  • 180.Chitra G, Balasubramani G, Ramkumar R, Sowmiya R, Perumal P. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2015;114(4):1407–1415. doi: 10.1007/s00436-015-4320-7 [DOI] [PubMed] [Google Scholar]
  • 181.Santhoshkumar T, Rahuman AA, Rajakumar G, et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 2011;108(3):693–702. doi: 10.1007/s00436-010-2115-4 [DOI] [PubMed] [Google Scholar]
  • 182.Gnanadesigan M, Anand M, Ravikumar S, et al. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med. 2011;4(10):799–803. doi: 10.1016/S1995-7645(11)60197-1 [DOI] [PubMed] [Google Scholar]
  • 183.Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:16. doi: 10.1155/2011/270974 [DOI] [Google Scholar]
  • 184.Otari S, Patil R, Ghosh S, Thorat N, Pawar S. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A. 2015;136:1175–1180. doi: 10.1016/j.saa.2014.10.003 [DOI] [PubMed] [Google Scholar]
  • 185.Kannan N, Subbalaxmi S. Green synthesis of silver nanoparticles using Bacillus subtillus IA751 and its antimicrobial activity. Res J Nanosci Nanotechnol. 2011;1(2):87–94. doi: 10.3923/rjnn.2011.87.94 [DOI] [Google Scholar]
  • 186.Malarkodi C, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Vanaja M, Annadurai G. Bacterial synthesis of silver nanoparticles by using optimized biomass growth of Bacillus sp. J Nanosci Nanotechnol. 2013;3:26–32. [Google Scholar]
  • 187.Hallol M. Studies on Bacterial Synthesis of Silver Nanoparticles Using Gamma Radiation and Their Activity against Some Pathogenic Microbes. Cairo (Egypt): Department of Microbiology and Immunology, Cairo University; 2013. [Google Scholar]
  • 188.Das VL, Thomas R, Varghese RT, Soniya E, Mathew J, Radhakrishnan E. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014;4(2):121–126. doi: 10.1007/s13205-013-0130-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep. 2017;15:33–40. doi: 10.1016/j.btre.2017.02.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Gandhi H, Khan S. Biological synthesis of silver nanoparticles and its antibacterial activity. J Nanomed Nanotechnol. 2016;7(2):366. doi: 10.4172/2157-7439.1000366 [DOI] [Google Scholar]
  • 191.Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B. 2010;81(1):358–362. doi: 10.1016/j.colsurfb.2010.07.036 [DOI] [PubMed] [Google Scholar]
  • 192.Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84(4):741–749. doi: 10.1007/s00253-009-2032-6 [DOI] [PubMed] [Google Scholar]
  • 193.Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi -A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 2007;42(5):919–923. doi: 10.1016/j.procbio.2007.02.005 [DOI] [Google Scholar]
  • 194.Parikh RY, Ramanathan R, Coloe PJ, et al. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One. 2011;6(6):e21401. doi: 10.1371/journal.pone.0021401 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Gurunathan S, Kalishwaralal K, Vaidyanathan R, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B. 2009;74(1):328–335. doi: 10.1016/j.colsurfb.2009.07.048 [DOI] [PubMed] [Google Scholar]
  • 196.Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 2011;46(9):1800–1807. doi: 10.1016/j.procbio.2011.06.008 [DOI] [Google Scholar]
  • 197.Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine. 2009;5(4):452–456. doi: 10.1016/j.nano.2009.01.012 [DOI] [PubMed] [Google Scholar]
  • 198.Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018;116:221–226. doi: 10.1016/j.micpath.2018.01.038 [DOI] [PubMed] [Google Scholar]
  • 199.Merin DD, Prakash S, Bhimba BV. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med. 2010;3(10):797–799. doi: 10.1016/S1995-7645(10)60191-5 [DOI] [Google Scholar]
  • 200.Prasad TN, Kambala VSR, Naidu R. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol. 2013;25(1):177–182. doi: 10.1007/s10811-012-9851-z [DOI] [Google Scholar]
  • 201.Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol. 2009;9(9):5497–5501. [DOI] [PubMed] [Google Scholar]
  • 202.Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci. 2015;5(4):499–504. doi: 10.1007/s13204-014-0341-2 [DOI] [Google Scholar]
  • 203.El-Rafie H, El-Rafie M, Zahran M. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym. 2013;96(2):403–410. doi: 10.1016/j.carbpol.2013.03.071 [DOI] [PubMed] [Google Scholar]
  • 204.Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci. 2013;3(3):229–233. doi: 10.1007/s13204-012-0125-5 [DOI] [Google Scholar]
  • 205.Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi: 10.1016/j.micpath.2017.11.013 [DOI] [PubMed] [Google Scholar]
  • 206.Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B. 2003;28(4):313–318. doi: 10.1016/S0927-7765(02)00174-1 [DOI] [Google Scholar]
  • 207.Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515–519. doi: 10.1021/nl0155274 [DOI] [Google Scholar]
  • 208.Bhainsa KC, D‘Souza S. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B. 2006;47(2):160–164. doi: 10.1016/j.colsurfb.2005.11.026 [DOI] [PubMed] [Google Scholar]
  • 209.Kathiresan K, Manivannan S, Nabeel M, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B. 2009;71(1):133–137. doi: 10.1016/j.colsurfb.2009.01.016 [DOI] [PubMed] [Google Scholar]
  • 210.Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K, Balasubramanya R. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2007;61(6):1413–1418. doi: 10.1016/j.matlet.2006.07.042 [DOI] [Google Scholar]
  • 211.Basavaraja S, Balaji S, Lagashetty A, Rajasab A, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull. 2008;43(5):1164–1170. doi: 10.1016/j.materresbull.2007.06.020 [DOI] [Google Scholar]
  • 212.Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009;5(4):382–386. doi: 10.1016/j.nano.2009.06.005 [DOI] [PubMed] [Google Scholar]
  • 213.Banu A, Rathod V, Ranganath E. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum β-lactamase producing (ESBL) strains of enterobacteriaceae. Mater Res Bull. 2011;46(9):1417–1423. doi: 10.1016/j.materresbull.2011.05.008 [DOI] [Google Scholar]
  • 214.Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72. doi: 10.1016/j.micpath.2018.02.008 [DOI] [PubMed] [Google Scholar]
  • 215.Wei G, Zhou H, Liu Z, et al. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B. 2005;109(18):8738–8743. doi: 10.1021/jp044314a [DOI] [PubMed] [Google Scholar]
  • 216.Nithyaja B, Misha H, Nampoori V. Synthesis of silver nanoparticles in DNA template and its influence on nonlinear optical properties. Nanosci Nanotechnol. 2012;2(4):99–103. doi: 10.5923/j.nn.20120204.02 [DOI] [Google Scholar]
  • 217.Kasyanenko N, Varshavskii M, Ikonnikov E, et al. DNA modified with metal nanoparticles: preparation and characterization of ordered metal-DNA nanostructures in a solution and on a substrate. J Nanomater. 2016;2016:12. doi: 10.1155/2016/3237250 [DOI] [Google Scholar]
  • 218.Dai S, Zhang X, Li T, Du Z, Dang H. Preparation of silver nanopatterns on DNA templates. Appl Surf Sci. 2005;249(1–4):346–353. doi: 10.1016/j.apsusc.2004.12.026 [DOI] [Google Scholar]
  • 219.Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater. 2002;1(3):169. doi: 10.1038/nmat758 [DOI] [PubMed] [Google Scholar]
  • 220.Patil MP, Singh RD, Koli PB, et al. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog. 2018;121:184–189. doi: 10.1016/j.micpath.2018.05.040 [DOI] [PubMed] [Google Scholar]
  • 221.Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine. 2010;5(1):33–40. doi: 10.2217/nnm.09.77 [DOI] [PubMed] [Google Scholar]
  • 222.Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc. 2014;18(4):356–363. doi: 10.1016/j.jscs.2013.09.011 [DOI] [Google Scholar]
  • 223.Dipankar C, Murugan S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B. 2012;98:112–119. doi: 10.1016/j.colsurfb.2012.04.006 [DOI] [PubMed] [Google Scholar]
  • 224.Bindhu M, Umadevi M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A. 2015;135:373–378. doi: 10.1016/j.saa.2014.07.045 [DOI] [PubMed] [Google Scholar]
  • 225.Ghosh S, Patil S, Ahire M, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed. 2012;7:483. doi: 10.2147/IJN.S30631 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Manikandan R, Manikandan B, Raman T, et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta A. 2015;138:120–129. doi: 10.1016/j.saa.2014.10.043 [DOI] [PubMed] [Google Scholar]
  • 227.Patil RS, Kokate MR, Kolekar SS. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta A. 2012;91:234–238. doi: 10.1016/j.saa.2012.02.009 [DOI] [PubMed] [Google Scholar]
  • 228.Wongpreecha J, Polpanich D, Suteewong T, Kaewsaneha C, Tangboriboonrat P. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydr Polym. 2018;199:641–648. doi: 10.1016/j.carbpol.2018.07.039 [DOI] [PubMed] [Google Scholar]
  • 229.Lok C-N, Ho C-M, Chen R, et al. Silver nanoparticles: partial oxidation and antibacterial activities. JBIC. 2007;12(4):527–534. doi: 10.1007/s00775-007-0208-z [DOI] [PubMed] [Google Scholar]
  • 230.Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–1348. doi: 10.1007/s11051-008-9428-6 [DOI] [Google Scholar]
  • 231.Asghar MA, Zahir E, Shahid SM, et al. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B 1 adsorption activity. LWT. 2018;90:98–107. doi: 10.1016/j.lwt.2017.12.009 [DOI] [Google Scholar]
  • 232.Khatami M, Sharifi I, Nobre MA, Zafarnia N, Aflatoonian MR. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev. 2018;11(2):125–134. doi: 10.1080/17518253.2018.1444797 [DOI] [Google Scholar]
  • 233.Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK. Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida spp. J Basic Microbiol. 2018;58(4):343–357. doi: 10.1002/jobm.201700529 [DOI] [PubMed] [Google Scholar]
  • 234.Bonilla JJA, Guerrero DJP, Rgt S, et al. Green synthesis of silver nanoparticles using maltose and cysteine and their effect on cell wall envelope shapes and microbial growth of candida spp. J Nanosci Nanotechnol. 2017;17(3):1729–1739. doi: 10.1166/jnn.2017.12822 [DOI] [Google Scholar]
  • 235.Marulasiddeshwara M, Dakshayani S, Kumar MS, Chethana R, Kumar PR, Devaraja S. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: a promising therapeutic agent. Mater Sci Eng C. 2017;81:182–190. doi: 10.1016/j.msec.2017.07.054 [DOI] [PubMed] [Google Scholar]
  • 236.Sonker AS, Pathak J, Kannaujiya V, Sinha R, Pathak J, Kannaujiya V. Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Can J Biotechnol. 2017;1(1):26–37. doi: 10.24870/cjb.2017-000103 [DOI] [Google Scholar]
  • 237.Phull A-R, Abbas Q, Ali A, Raza H, Zia M, Haq I-U. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci. 2016;2(1):31–36. doi: 10.1016/j.fjps.2016.03.001 [DOI] [Google Scholar]
  • 238.Khatami M, Nejad MS, Salari S, Almani PGN. Plant-mediated green synthesis of silver nanoparticles usingTrifolium resupinatumseed exudate and their antifungal efficacy onNeofusicoccum parvumandRhizoctonia solani. IET Nanobiotechnol. 2016;10(4):237–243. doi: 10.1049/iet-nbt.2015.0078 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Sánchez-Navarro M, Ruiz-Torres CA, Niño-Martínez N, et al. Cytotoxic and bactericidal effect of silver nanoparticles obtained by green synthesis method using annona muricata aqueous extract and functionalized with 5-fluorouracil. Bioinorg Chem Appl. 2018;2018:8. doi: 10.1155/2018/6506381 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Lakshmanan G, Sathiyaseelan A, Kalaichelvan P, Murugesan K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala Int J Mod Sci. 2018;4(1):61–68. [Google Scholar]
  • 241.Elella MHA, Mohamed RR, Abdel-Aziz MM, Sabaa MW. Green synthesis of antimicrobial and antitumor N, N, N-trimethyl chitosan chloride/poly (acrylic acid)/silver nanocomposites. Int J Biol Macromol. 2018;111:706–716. [DOI] [PubMed] [Google Scholar]
  • 242.Palem RR, Ganesh SD, Kroneková Z, Sláviková M, Saha N, Sáha P. Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity. Bull Mate Sci. 2018;41(2):55. [Google Scholar]
  • 243.Dadashpour M, Firouzi-Amandi A, Pourhassan-Moghaddam M, et al. Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Mater Sci Eng C. 2018;92:902–912. [DOI] [PubMed] [Google Scholar]
  • 244.Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng. 2018;89:429–443. [DOI] [PubMed] [Google Scholar]
  • 245.Sun RW-Y, Chen R, Chung NP-Y, Ho C-M, Lin C-LS, Che C-M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Cheml Commun. 2005;40:5059–5061. [DOI] [PubMed] [Google Scholar]
  • 246.Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009;43(3):715–723. [DOI] [PubMed] [Google Scholar]
  • 247.Hebeish A, El-Rafie M, El-Sheikh M, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–515. [DOI] [PubMed] [Google Scholar]
  • 248.Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym. 2008;72(1):43–51. [Google Scholar]
  • 249.Chen J-P, Chiang Y. Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J Nanosci Nanotechnol. 2010;10(11):7560–7564. [DOI] [PubMed] [Google Scholar]
  • 250.Jacob JM, John MS, Jacob A, et al. Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract. Mater Res Express. 2018;6(4):45401. [Google Scholar]

Articles from International Journal of Nanomedicine are provided here courtesy of Dove Press

RESOURCES