Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2019 Jul 17;7(7):e11277. doi: 10.1002/aps3.11277

Development of chloroplast microsatellite markers for Glyptostrobus pensilis (Cupressaceae)

Ya‐Dan Yan 1, Xin‐Yu Li 1, James R P Worth 2, Xue‐Ying Lin 1, Markus Ruhsam 3, Lu Chen 1, Xing‐Tong Wu 1, Min‐qiu Wang 1, Philip I Thomas 3, Ya‐Feng Wen 1,
PMCID: PMC6636616  PMID: 31346509

Abstract

Premise

Glyptostrobus pensilis (Cupressaceae) is a critically endangered conifer native to China, Laos, and Vietnam, with only a few populations remaining in the wild.

Methods and Results

Using a complete chloroplast genome sequence, we designed 70 cpSSR loci and tested them for amplification success and polymorphism in 16 samples. Ten loci were found to be polymorphic and their genetic diversity was characterized using a total of 83 individuals from three populations in China. A total of 43 haplotypes were present, the effective number of haplotypes varied from 4.55 to 13.36, and the haplotypic richness ranged from 8.04 to 16.00. Gene diversity ranged from 0.81 to 0.97 (average 0.89). The number of alleles per locus and population ranged from one to eight, and the effective number of alleles ranged from 1.00 to 3.90. All polymorphic loci were successfully amplified in the related species Cryptomeria japonica var. sinensis, Taxodium distichum, T. ascendens, and Cunninghamia lanceolata.

Conclusions

These newly developed chloroplast microsatellites will be useful for population genetic and phylogeographic analyses of G. pensilis and related species.

Keywords: chloroplast microsatellite (cpSSR), Cupressaceae, Glyptostrobus pensilis, haplotypes


Glyptostrobus pensilis (Staunton ex D. Don) K. Koch, the only extant species in the genus Glyptostrobus Endl., is a relict conifer in the family Cupressaceae (Hao et al., 2016). In China, it is mainly distributed in the Pearl River delta region of Guangdong Province, the central region of Fujian Province, the lower reaches of the Minjiang River, and northeastern Jiangxi Province (Li and Xia, 2004). A few wild populations have recently been found in Laos and Vietnam, extending its latitudinal distribution from 28°N to 13°N (Averyanov et al., 2009; Thomas and LePage, 2011). The species preferred habitat of riverbanks and flood plains have been severely degraded by human activities (e.g., agriculture and rice cultivation) in many locations, which has led to a rapid decline of most G. pensilis populations (Li and Xia, 2004, 2005; Nguyen et al., 2013). Currently, the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species has evaluated G. pensilis as Critically Endangered (CR) (Thomas et al., 2011).

Chloroplast microsatellites have been widely used to investigate the population genetic structure and phylogeographic history of a range of tree species (Ruhsam et al., 2016; Gryta et al., 2017). Previous molecular studies of G. pensilis have only used nuclear markers such as inter‐simple sequence repeats (Li and Xia, 2005; Wu, 2011), and recently Wang et al. (2019) developed 10 polymorphic nuclear microsatellite markers for this species. Compared with nuclear simple sequence repeats (SSRs), chloroplast SSRs (cpSSRs) are more likely to detect historical bottlenecks or genetic drift due to their uniparental inheritance, slower mutation rate, and lack of recombination (Ennos et al., 1999; Pleines et al., 2009; Li and Liu, 2012). Nguyen et al. (2013) analyzed G. pensilis populations from Vietnam using six cpSSRs; however, these loci were developed from Pinus thunbergii Parl. and designed for use in Pinaceae species (Vendramin et al., 1996). In this study, we developed new species‐specific chloroplast microsatellite loci using the complete chloroplast genome of G. pensilis (Hao et al., 2016). Additionally, we tested the transferability of these loci in four related species: Cryptomeria japonica (Thunb. ex L. f.) D. Don var. sinensis Miq., Taxodium distichum (L.) Rich., T. ascendens Brongn., and Cunninghamia lanceolata (Lamb.) Hook.

METHODS AND RESULTS

We searched the complete chloroplast genome of G. pensilis (Hao et al., 2016; GenBank accession number KU_302768) for microsatellite loci exhibiting a minimum of eight repeats as these loci are likely to exhibit a higher level of polymorphism (Ueno et al., 2012). For loci with a minimum of eight repeats, primers were designed using the online software Primer3Plus (Untergasser et al., 2007) using default parameters. In total, 70 cpSSR loci were selected and evaluated for their amplification efficiency and level of polymorphism using 16 G. pensilis DNA samples from different populations (Appendix 1). DNA was extracted from G. pensilis leaves using a modification of the cetyltrimethylammonium bromide (CTAB) method (Tsumura et al., 1995).

PCR amplification was carried out in volumes of 15 μL using the following protocol: 7.5 μL of 2× Taq PCR Master Mix (Tiangen, Beijing, China), 0.75 μL of forward primer (10 μM), 0.75 μL of reverse primer (10 μM), 3 μL of 20–50 ng/μL DNA template, and 3 μL of ddH2O. The mixture was then cycled using the following profile: 94°C for 4 min; 34 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for 30 s; with a final extension at 72°C for 30 min. PCR products were visualized on a 1.6% agarose gel. All loci that could be amplified successfully were tested individually using 16 G. pensilis samples to establish their polymorphism. These amplifications were carried out using fluorescently labeled primers (FAM, HEX, TAMRA, and ROX; Applied Biosystems, Foster City, California, USA) and the same PCR protocol as detailed above. PCR products were run on an ABI 3730xL DNA Analyzer adding a GeneScan 500 LIZ internal size standard (Applied Biosystems) to size fragments. The software GeneMarker version 1.9 was used to score the electropherograms of all samples (Hulce et al., 2011). Sixty‐five of the 70 cpSSR loci amplified successfully across the 16 test individuals, but 55 loci were monomorphic, and only 10 loci were polymorphic (Table 1, Appendix 2). These polymorphic loci were used to investigate the genetic diversity of 83 individuals across three Chinese G. pensilis populations (Appendix 1).

Table 1.

Characterization of 10 polymorphic chloroplast microsatellite loci developed in Glyptostrobus pensilis.a

Locus Primer sequences (5′–3′) Location Repeat motif Allele size range (bp) GenBank accession no.
Gp_cp_1 F:(ROX)TGACACACGGGTCTGTATCA ycf4 to psaI (AT)10 261–271 MK386658
R: GCCTTTGGTGGGCTTGTTTT
Gp_cp_6 F:(FAM)GCTGTTCCCCTGTGCATCAT trnL to trnF (AT)11 195–203 MK386659
R: GATCAATTTGTGTCTGCTTCTGT
Gp_cp_7 F:(HEX)ACCTGTCTCAAATCGACTTCCC ycf3 to psaA (T)11 149–167 MK386660
R: CTCCTCTTTCCAGACGAGACA
Gp_cp_8 F:(HEX)TGAACCGATGACTTACGCCT psb to trnE (TA)9 267–279 MK386661
R: AAATCGAATCCCCGTTGCCT
Gp_cp_11 F:(TAMRA)AATCCTGAAAGTCGACTAGAATTAAGT chlB to rps16 (AT)23 363–414 MK386662
R: GCTAAGAGCATCTTCGAATAAAAATAG
Gp_cp_12 F:(TAMRA)TTAAGTCGAGTGAGTCAGATGG accD to clpP (T)11 379–437 MK386663
R: TGCCCATAGGATGCCAAGTG
Gp_cp_13 F:(TAMRA)TGGGGGATCAAAATAACACAGA rbcL to accD (AT)16 208–334 MK386664
R: GTTTTCCAATGTGAATTTGAAAATCGA
Gp_cp_14 F:(FAM)TCCCCGCAGAACTATCGTTT ccsA to petA (T)12 208–214 MK386665
R: AGGAAAGAATTTGGTAATCTTGGCT
Gp_cp_17 F:(FAM)ACCTACCCAGAATTAGCAAGCC trnD to psbM (T)12 116–119 MK386666
R: AGAATTGGCGGTTGCTTCCT
Gp_cp_35 F:(HEX)TTTTCCTCTACCGCGAACCC psaJ to rpl33 (A)10 115–117 MK386667
R: ACTTCACCCCTCCTTGAATTCT
a

Optimal annealing temperature was 55°C for all loci.

The software Haplotype Analysis version 1.05 (Eliades and Eliades, 2009) was used to calculate the following statistics: number of haplotypes (A), number of private haplotypes (P), effective number of haplotypes (N e), haplotypic richness (R h), and gene diversity (H e). The software GenAlEx6.5 (Peakall and Smouse, 2012) was used to calculate the following parameters: number of alleles (N a), effective number of alleles (N e), Shannon's information index (I), and diversity (H).

A total of 43 haplotypes were detected in the three assayed populations. The number of haplotypes per population ranged from 11 to 18, the number of private haplotypes ranged from nine to 16, the effective number of haplotypes ranged from 4.55 to 13.36, the haplotypic richness ranged from 8.04 to 16.00, and the gene diversity ranged from 0.81 to 0.97 (Table 2). The number of alleles per locus ranged from one to eight per population, the effective number of alleles ranged from 1.00 to 3.90, Shannon's information index ranged from 0.00 to 1.52, and the diversity ranged from 0.00 to 0.74 (Table 3). The 10 polymorphic loci could also be successfully amplified in five individuals in each of the following four related species: Cryptomeria japonica var. sinensis, Taxodium distichum, T. ascendens, and Cunninghamia lanceolata (Table 4, Appendix 1).

Table 2.

Haplotype diversity in three Chinese Glyptostrobus pensilis populations based on 10 polymorphic chloroplast microsatellite markers.a

Population A P N e R h H e D 2 sh
DM (N = 33) 18 16 7.026 11.857 0.884 76.6
GZHN (N = 21) 17 15 13.364 16.000 0.971 470.5
PNSL (N = 29) 11 9 4.546 8.035 0.808 1.4
Mean 15.333 13.333 8.312 11.964 0.888 182.8

A = number of haplotypes; P = number of private haplotypes; N e = effective number of haplotypes; R h = haplotypic richness; H e = genetic diversity; D 2 sh = mean genetic distance between individuals; N = number of individuals sampled.

a

Locality and voucher information are provided in Appendix 1.

Table 3.

Characteristics of 10 polymorphic chloroplast microsatellite markers in 83 individuals of three Chinese Glyptostrobus pensilis populations.a

Locus DM (N = 33) GZHN (N = 21) PNSL (N = 29)
N a N e I H N a N e I H N a N e I H
Gp_cp_1 3 1.824 0.765 0.452 2 1.960 0.683 0.490 2 1.890 0.664 0.471
Gp_cp_6 2 1.198 0.305 0.165 3 2.194 0.852 0.544 3 1.324 0.479 0.245
Gp_cp_7 3 2.139 0.883 0.533 3 2.845 1.071 0.649 3 1.979 0.779 0.495
Gp_cp_8 3 1.280 0.437 0.219 3 2.110 0.832 0.526 1 1.000 0.000 0.000
Gp_cp_11 5 1.806 0.917 0.446 5 3.084 1.301 0.676 1 1.000 0.000 0.000
Gp_cp_12 3 1.280 0.437 0.219 2 1.893 0.665 0.472 1 1.000 0.000 0.000
Gp_cp_13 8 2.515 1.371 0.602 6 3.903 1.524 0.744 3 1.235 0.398 0.190
Gp_cp_14 3 1.203 0.363 0.169 3 2.110 0.832 0.526 1 1.000 0.000 0.000
Gp_cp_17 2 1.424 0.474 0.298 3 2.384 0.940 0.580 2 1.071 0.150 0.067
Gp_cp_35 2 1.271 0.369 0.213 2 1.995 0.692 0.499 1 1.000 0.000 0.000
Mean 3.400 1.594 0.632 0.331 3.200 2.448 0.939 0.571 1.800 1.250 0.247 0.147

N

= number of individuals sampled; N a = number of alleles; N e = effective number of alleles; I = Shannon's information index; H = diversity.

a

Locality and voucher information are provided in Appendix 1.

Table 4.

Results of cross‐amplification of 10 polymorphic chloroplast microsatellite markers developed for Glyptostrobus pensilis in four closely related species.a , b

Locus Taxodium distichum (N = 5) Taxodium ascendens (N = 5) Cryptomeria japonica var. sinensis (N = 5) Cunninghamia lanceolata (N = 5)
Gp_cp_1 254–256 250–254 258–262 254–256
Gp_cp_6 179 179 197 171
Gp_cp_7 149 149 133 177
Gp_cp_8 276 276 284 286
Gp_cp_11 379–383 381–383 375 371
Gp_cp_12 378 378 384 432
Gp_cp_13 303–305 303 299 299
Gp_cp_14 205 205 201–213 213
Gp_cp_17 117 115–117 117 117
Gp_cp_35 116–117 114–117 115–116 116–117

N = number of individuals sampled.

a

Locality and voucher information are provided in Appendix 1.

b

Numbers shown represent the size in base pairs of the amplified fragments.

CONCLUSIONS

In this study, we developed 10 polymorphic cpSSRs (as well as 55 pairs of monomorphic primers) that can be used to assess the population genetic and phylogeographic structure of G. pensilis populations. The high number of private haplotypes in the three assayed populations suggests geographically isolated populations. Additionally, the 10 loci can be successfully amplified in four related species of G. pensilis.

ACKNOWLEDGMENTS

This project is supported by the Forestry Industry Standard Project (2014‐LY‐213) of China. The Royal Botanic Garden Edinburgh is supported by the Scottish Government's Rural and Environment Science and Analytical Services Division.

APPENDIX 1. Sampling information for species in this study. All voucher specimens are deposited at the herbarium of Central South University of Forestry and Technology, Changsha, Hunan, China.

Species Population code Voucher no. Collection locality Geographic coordinates Elevation (m) N
Glyptostrobus pensilis (Staunton ex D. Don) K. Koch PNSL Lin170804 Pingnan, Fujian, China 27°0′27.87″N, 118°51′59.75″E 1260 29
GZHN Lin170411 Guangzhou, Guangdong, China 23°11′24.6″N, 113°21′38.13″E 40 21
DM Lin170729 Doumen, Guangdong, China 22°23′42.5″N, 113°15′14.65″E 20 33
Taxodium distichum (L.) Rich. Li180522 Changsha, Hunan, China 28°8′16.48″N, 112°59′28.36″E 90 5
Taxodium ascendens Brongn. Li180522 Changsha, Hunan, China 28°8′16.48″N, 112°59′28.36″E 90 5
Cryptomeria japonica (Thunb. ex L. f.) D. Don var. sinensis Miq. Wang180720 Jiujiang, Jiangxi, China 29°32′59.77″N, 115°58′03.32″E 911 5
Cunninghamia lanceolata (Lamb.) Hook. Li180522 Changsha, Hunan, China 28°8′16.48″N, 112°59′28.36″E 90 5

N = number of individuals sampled.

APPENDIX 2. Characteristics of 55 monomorphic chloroplast microsatellite primers developed in Glyptostrobus pensilis.

Locus Primer sequences (5′–3′) Repeat motif Product size (bp)
Gp_cp_2 F: ACATTGATTTCTAAAAGAGAGGAGTCA (A)11 211
R: TCAGTGTCAGAAATTTGGCTGA
Gp_cp_3 F: TGATGAGCTACTCTACGTGCT (T)13 369
R: ATCTGCCATTGTACCCGCAA
Gp_cp_4 F: ATAGATTCCGAGCGGCTGTG (T)18 292
R: ACCGCTGAGTTATATCCCTTTCC
Gp_cp_5 F: GCGATCGTACCTTCATCGGA (T)20 230
R: TCCTTTTTCAATATCGTTCCCTGG
Gp_cp_9 F: ATTTCTCGCCAAGCTGTCCA (AT)10 332
R: CGAGCAATGCCATCTCCTACT
Gp_cp_10 F: CGAACCCGCATCGTTAGCTT (A)15 280
R: GGTTGTTCACCTGAAATTAAGAGGA
Gp_cp_15 F: TCAAGCAAAGGTAGATGGTGAG (A)12 257
R: TCTCAACCTTCATGTGGGAG
Gp_cp_16 F: ATGCTCTTTCGCAACGTTCG (A)12 201
R: TGAACACAAAGAAAGGTAAGGTCT
Gp_cp_18 F: TCCGCTCAATTCCGTTACTC (T)12 145
R: TCCATGATTGATTTTCCCTTCGT
Gp_cp_19 F: TCTTGCAAAATCCGGACCG (A)11 201
R: TGAACCAAGTCAGTTCGCTTG
Gp_cp_20 F: CGAAAACCGTCGGGAAACAT (A)11 260
R: GCTTCTTCCTTCCCGCCAT
Gp_cp_21 F: GGCTCGCGGGTATGTTAACT (A)11 190
R: TCGGGCAATTTTGTCATGTACC
Gp_cp_22 F: AGGGGCAGAATCTAGGGTT (A)11 194
R: CCGCTATTTTCCACGTTGAGC
Gp_cp_23 F: ATCCGCCTTGATTCCCGTTT (A)11 263
R: ACAGGCGCTGTGGAAAGAT
Gp_cp_24 F: TCTCTTTTGCGTCCTTCCCC (T)11 231
R: AAGAATTAGTTCGCCATGGGT
Gp_cp_25 F: TCCTTCGGGATTAATTCTTCATTCT (T)11 264
R: AATCCTGAGCAGCCAAACC
Gp_cp_26 F: TTGTAGCTCTACGTGGCAC (AT)11 263
R: AGGCATAAACAAAAACAGGGCT
Gp_cp_27 F: CGGGGGAATGATACCTGTCG (T)10 138
R: ACGGAGACTTGATATTGATGCTC
Gp_cp_28 F: TCGTGAATTCGTTGGACAG (TA)10 213
R: TCCATCTGACTCACTCGACT
Gp_cp_29 F: GAGCTTACTTGGGTACTGAGC (A)10 126
R: CATCCGGCTCGAGCAATAGT
Gp_cp_30 F: TGAGTATCCGTTTCCTTTCTTTTGC (A)10 201
R: TAAGTTTTCCCTTACTATAGTGTGTGT
Gp_cp_31 F: CGGGAAGAGTAGTATGAAGCTC (A)10 233
R: GCATATGTGCGATGAATAGACTCC
Gp_cp_32 F: CCGAGAACGAACCGAATGGA (A)10 157
R: GGGATTGACTGTTGGATTGGC
Gp_cp_33 F: ATTAGCGGGGAGTTCCATCC (A)10 226
R: CGGACTTGTGATTCGTTTGATCT
Gp_cp_34 F: ACGCGGCGATCAATTGGATA (A)10 143
R: CCTACAGAGCGTGATCCTGC
Gp_cp_36 F: TCATTTTTACCCAGGAATAGAAACAT (A)10 156
R: GATGGCTTCATTTTATTCATAGTTTGT
Gp_cp_37 F: ACCCAAAAAGAGGAGACAAGC (A)10 165
R: GAATGACTTCGGGGTGGGAG
Gp_cp_38 F: ACTTGGACGAACTCCCTATTGA (AT)9 221
R: CAGCCGGGATAGCTCAGTTG
Gp_cp_39 F: TCTTATGTTCTTAGTAACACGCCT (A)9 125
R: TGGAGTAGGAGGAAAATCCGT
Gp_cp_40 F: ATGTCTCGTTATCGCGGACC (A)9 248
R: TGACCTGTTGATCCCTTGGC
Gp_cp_41 F: CTGCACATCTGTCCCTCTGT (T)9 162
R: TGCTTTCATCCTCCCGCAAT
Gp_cp_42 F: TGCGATCGTAAGGAAATCCA (A)9 211
R: TTCTCCCCTGAAGCCATTGG
Gp_cp_43 F: GGTTGATGGCTCTGGTCTTGA (A)9 186
R: TGAATCCTTGTTGCTCGGCT
Gp_cp_44 F: CCATTCGATCCCTATCCGGTC (T)9 224
R: CATCAACCACTCGGCCATCT
Gp_cp_45 F: AGTGAGGTAGATTACGCCTAATCT (A)9 222
R: AGCCCAGTGTTCATTTTGAATATT
Gp_cp_46 F: GCGAGTCAAGCCGAAGTACA (A)9 132
R: AATTTTTCGTTTCCTTCGTACTACT
Gp_cp_47 F: GAAGCAACCGCCAATTCTTCA (T)9 190
R: TGTTCGGGTGAGAAAGGTGT
Gp_cp_48 F: TCTCTTACATATCTCTGGAAAAAGGA (T)9 228
R: TGCTGCTCTGTCCCAACTAT
Gp_cp_49 F: AGCGAAGAATCCCTTGTCCTG (A)9 171
R: ATCTGGGCCCTCCGTCTAAT
Gp_cp_50 F: CAGATACTGGCCGGGCTAGA (A)9 140
R: CGCTCAGCCATCTCTCCTAG
Gp_cp_51 F: CGCCATCTTGGATGGAATGG (T)9 233
R: TGTGGCGGGTATAGTTTAGTGG
Gp_cp_52 F: CGGCTTTTAAGTGCGACTATGG (A)9 298
R: TGACTTAATCACCCGCACTC
Gp_cp_53 F: GGCACGAGAACTTGAAGATCG (A)9 164
R: ATTGATTCATCGACCCGCGG
Gp_cp_54 F: TGCATAAGAATGAGCCAACTTGA (T)9 187
R: TCATACGGCTTAAACAAGAACAC
Gp_cp_55 F: CAGGCATTTACTTTTTGTTTTGGAGT (T)9 134
R: TTTGGGTGGAATGGGGATTG
Gp_cp_56 F: ATATTCCGCAAGAATTTTGGGTT (T)9 202
R: TGCATTTGTCAACTTGTTTATCGAGA
Gp_cp_57 F: CGCACGGCTCCTAAGTGAT (T)9 257
R: ACCCTAAGATGAGCATCGC
Gp_cp_58 F: TGTGTATTTGGCTTTGAAACGA (T)9 176
R: TGTCTTTGTTTGCTCAATTTTGC
Gp_cp_59 F: TATTGGACCAGCGGTAGTGG (T)9 144
R: ATAAGCAGTCCAAGGGGAGC
Gp_cp_60 F: ACGATTATTCAGATTGAGCTCCGA (T)9 201
R: CCCCATTTACCTGTATGCTATACT
Gp_cp_61 F: GTTCAGCCAATAGGGGAGGG (T)9 159
R: TAAGTCCCAGGTCCCGCAT
Gp_cp_62 F: TGTCTACGTGCATAAACTCTTTTC (T)9 209
R: ACCACGCTCATCTCATGTAC
Gp_cp_63 F: CCACCTATGCCCATACGGTC (T)9 127
R: TCGATTGACCTGAGGACCTT
Gp_cp_64 F: GGGTACCGGGTTCTATTGAAT (A)8 149
R: TCGATCTATGCCGCCTTACT
Gp_cp_70 F: TCGAGCCGTATGAAGATAAACCT (G)11 137
R: GCTCTTCCTTCGCTTCGAG

Optimal annealing temperature was 55°C for all loci.

Yan, Y.‐D. , Li X.‐Y., Worth J. R. P., Lin X.‐Y., M. Ruhsam , Chen L., Wu X.‐T., Wang M.‐Q., Thomas P. I., and Wen Y.‐F.. 2019. Development of chloroplast microsatellite markers for Glyptostrobus pensilis (Cupressaceae). Applications in Plant Sciences 7(7): e11277.

DATA ACCESSIBILITY

All polymorphic primer sequences were uploaded to the National Center for Biotechology Information (accession number: MK386658MK386667; Table 1).

LITERATURE CITED

  1. Averyanov, L. V. , Phan K. L., Nguyen T. H., Nguyen S. K., Nguyen T. V., and Pham T. D.. 2009. Preliminary observation of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. Taiwania 54: 191–212. [Google Scholar]
  2. Eliades, N. G. , and Eliades D. G.. 2009. HAPLOTYPE ANALYSIS: Software for analysis of haplotypes data. Forest Genetics and Forest Tree Breeding, Georg‐August University, Goettingen, Germany.
  3. Ennos, R. A. , Sinclair W. T., Hu X. S., and Langdon A.. 1999. Using organelle markers to elucidate the history, ecology and evolution of plant populations In Hollingsworth P. M., Bateman R. M., and Gornall R. J. [eds.], Molecular systematics and plant evolution. Taylor & Francis, London, United Kingdom. [Google Scholar]
  4. Gryta, H. , Van de Paer C., Manzi S., Holota H., Roy M., and Besnard G.. 2017. Genome skimming and plastid microsatellite profiling of alder trees (Alnus spp., Betulaceae): Phylogenetic and phylogeographical prospects. Tree Genetics and Genomes 13: 118. [Google Scholar]
  5. Hao, Z. D. , Cheng T. L., Zheng R. H., Xu H. B., Zhou Y. W., Li M. P., Lu F. J., et al. 2016. The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PLoS ONE 11: e0161809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hulce, D. , Li X., Snyder‐Leiby T., and Liu C. S. J.. 2011. GeneMarker genotyping software: Tools to increase the statistical power of DNA fragment analysis. Journal of Biomolecular Techniques 22(Suppl): S35–S36. [Google Scholar]
  7. Li, B. , and Liu H. X.. 2012. Research advances in chloroplast simple sequence repeat (cpSSR). Journal of Anhui Agricultural Sciences 40: 7638–7639, 7649. [Google Scholar]
  8. Li, F. G. , and Xia N. H.. 2004. The geographical distribution and cause of threat to Glyptostrobus pensilis (Taxodiaceae). Journal of Tropical and Subtropical Botany 12: 13–20. [Google Scholar]
  9. Li, F. G. , and Xia N. H.. 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin of Academia Sinica 46: 155–162. [Google Scholar]
  10. Nguyen, M. T. , Vu D. D., Bui T. T. X., and Nguyen M. D.. 2013. Genetic variation and population structure in Chinese water pine (Glyptostrobus pensilis): A threatened species. Indian Journal of Biotechnology 12: 499–503. [Google Scholar]
  11. Peakall, R. , and Smouse P. E.. 2012. GenAlEx version 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics 28: 2537–2539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pleines, T. , Jakob S. S., and Blattner F. R.. 2009. Application of non‐coding DNA regions in intraspecific analyses. Plant Systematics and Evolution 282: 281–294. [Google Scholar]
  13. Ruhsam, M. , Clark A., Finger A., Wulff A. S., Mill R. R., Thomas P. I., Gardner M. F., et al. 2016. Hidden in plain view: Cryptic diversity in the emblematic Araucaria of New Caledonia. American Journal of Botany 103: 888–898. [DOI] [PubMed] [Google Scholar]
  14. Thomas, P. , and LePage B. A.. 2011. The end of an era?: The conservation status of redwoods and other members of the former Taxodiaceae in the 21st century. Japanese Journal of Historical Botany 19: 89–100. [Google Scholar]
  15. Thomas, P. , Yang Y., Farjon A., Nguyen D., and Liao W.. 2011. Glyptostrobus pensilis. The IUCN Red List of Threatened Species 2011: e.T32312A9695181. 10.2305/iucn.uk.2011-2.rlts.t32312a9695181.en [accessed 10 November 2011]. [DOI]
  16. Tsumura, Y. , Yoshimura K., Tomaru N., and Ohba K.. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR‐amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 1222–1236. [DOI] [PubMed] [Google Scholar]
  17. Ueno, S. , Moriguchi Y., Uchiyama K., Ujino‐Ihara T., Futamura N., Sakurai T., Shinohara K., and Tsumura Y.. 2012. A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST‐SSR markers for a conifer, Cryptomeria japonica . BMC Genomics 13: 136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Untergasser, A. , Nijveen H., Rao X. Y., Bisseling T., Geurts R., and Leunissen J. A. M.. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35: W71–W74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vendramin, G. G. , Lelli L., Rossi P., and Morgante M.. 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology 5: 595–598. [DOI] [PubMed] [Google Scholar]
  20. Wang, G. T. , Wang Z. F., Wang R. J., Liang D., and Jiang G. B.. 2019. Development of microsatellite markers for a monotypic and globally endangered species, Glyptostrobus pensilis (Cupressaceae). Applications in Plant Sciences 7(2): e1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wu, Z. Y. 2011. Study on conservation biology and restoration technique of the relict plant Glyptostrobus pensilis. Ph.D. dissertation, Fujian Agriculture and Forestry University, Fujian Province, China.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All polymorphic primer sequences were uploaded to the National Center for Biotechology Information (accession number: MK386658MK386667; Table 1).


Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES