Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2019 Jul 9;7(7):e11275. doi: 10.1002/aps3.11275

Development and characterization of EST‐SSR markers for Saxifraga fortunei var. incisolobata (Saxifragaceae)

Kana Magota 1,, Daiki Takahashi 1, Hiroaki Setoguchi 1
PMCID: PMC6636618  PMID: 31346507

Abstract

Premise

Saxifraga fortunei (Saxifragaceae) includes several infraspecific taxa that are ecologically and morphologically distinct. To investigate the evolutionary history of phenotypic polymorphisms in this species, we developed expressed sequence tag–simple sequence repeat (EST‐SSR) markers for S. fortunei.

Methods and Results

We developed 26 polymorphic markers based on transcriptome data obtained from Illumina HiSeq 2000. Within three populations of S. fortunei var. incisolobata, the number of alleles ranged from four to 25, and the levels of observed and expected heterozygosity ranged from 0.200 to 0.847 and from 0.209 to 0.930, respectively. Furthermore, all 26 loci showed transferability for S. fortunei var. obtusocuneata and S. fortunei var. suwoensis, and 18 loci were also successfully amplified in S. acerifolia.

Conclusions

These newly developed EST‐SSR markers will prove useful to infer the evolutionary history of S. fortunei var. incisolobata and its relatives in population genetic studies.

Keywords: ecological polymorphisms, expressed sequence tag–simple sequence repeat (EST‐SSR) markers, Saxifraga fortunei, Saxifragaceae, transcriptome


Saxifraga L. is the largest genus in the Saxifragaceae family, with more than 440 species widely distributed throughout the Northern Hemisphere (Tkach et al., 2015). A recent phylogenetic study divided this genus into 13 sections and nine subsections, with section Irregulares Haw., a well characterized group with zygomorphic flowers, as the earliest diverged lineage (Tkach et al., 2015). This section comprises 15–20 species growing in moist temperate areas of East Asia, whereas most other sections of Saxifraga are widely distributed in boreal and/or alpine areas (Pan, 2001).

Saxifraga fortunei Hook., which belongs to sect. Irregulares, is a perennial herb distributed in East Asia, ranging from mainland China to Sakhalin and throughout the Japanese Archipelago. This species is ecologically and morphologically diverse and includes more than seven infraspecific ecotypic entities (Nakai, 1938; Ohba, 1982; Pan, 2001). Saxifraga fortunei var. incisolobata (Engl. & Irmsch.) Nakai is the most widely distributed taxon, growing in shaded understory. Saxifraga fortunei var. obtusocuneata (Makino) Nakai is a riparian taxon with a cuneate leaf blade base, and S. fortunei var. suwoensis Nakai is also a riverbank taxon with deeply dissected leaf blades, and these two taxa have allopatric distributions in western Japan. There are other local endemics with specific characters, such as an alpine taxon that grows under direct sunlight, and an insular taxon with thick and deeply haired leaf blades. These intraspecific taxa are presumably adapted to specific habitats, and these patterns of phenotypic variation provide an ideal model for the investigation of ecological adaptation and diversification. Magota et al. (2018) reported several chloroplast and nuclear microsatellite markers based on genomic DNA sequence data of S. acerifolia Wakabayashi & Satomi, an endangered plant species related to S. fortunei (Wakabayashi, 1973; Ministry of the Environment, Japan, 2019). However, only two of the previously identified nuclear markers showed polymorphisms in S. fortunei. Therefore, more polymorphic markers were needed to investigate the genetic structure and to infer the evolutionary history of S. fortunei. Expressed sequence tag–simple sequence repeat (EST‐SSR) markers are valuable for their cross‐transferability to related taxa in many plant species, and they are easier to develop at a lower cost than other types of nuclear markers (e.g., Takahashi et al., 2017). In this study, we developed EST‐SSR markers of S. fortunei var. incisolobata and examined their utility and transferability to related taxa.

METHODS AND RESULTS

Fresh floral buds of S. fortunei var. incisolobata (population F42, Appendix 1) were frozen in liquid nitrogen and total RNA was extracted using the Agilent Plant RNA Isolation Mini Kit (Agilent Technologies, Santa Clara, California, USA) following the manufacturer's protocol. A cDNA library was constructed and sequenced using the Illumina HiSeq 2000 platform (Illumina, San Diego, California, USA; performed by BGI, Shenzhen, China). The raw reads (paired‐end 100 bp) are deposited in the DNA Data Bank of Japan (DDBJ; BioProject PRJDB8004). Low‐quality reads were trimmed using Trimmomatic 0.38 (Bolger et al., 2014) with the following parameters: HEADCROP, 20 and SLIDINGWINDOW, 4:20. In all, 26,177,799 paired reads were obtained. We conducted de novo transcriptome assembly of these reads using Trinity v.2.8.4 (Haas et al., 2013), which produced 121,463 contigs (mean length 673 bp). Microsatellite regions (≥7 dinucleotide or ≥7 trinucleotide repeats) were screened using MSATCOMMANDER (Faircloth, 2008). A total of 568 regions were obtained, and we selected 96 PCR primer pairs based on the repeat numbers of microsatellite motifs. For all loci, the forward primers were synthesized with one of four different M13 sequences (5′‐CACGACGTTGTAAAACGAC‐3′, 5′‐TGTGGAATTGTGAGCGG‐3′, 5′‐CTATAGGGCACGCGTGGT‐3′, or 5′‐CGGAGAGCCGAGAGGTG‐3′), and the reverse primers were tagged with a PIG‐tail sequence (5′‐GTTTCTT‐3′).

Twenty‐four S. fortunei var. incisolobata individuals from each of three populations (F05, F35, and F38; Appendix 1) were used to evaluate the polymorphisms of the target loci. Moreover, we used 24 individuals from each of three related taxa (S. fortunei var. obtusocuneata, S. fortunei var. suwoensis, and S. acerifolia) for cross‐amplification. Genomic DNA for PCR was extracted from dried leaf materials using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987), after washing the leaf powder three times with HEPES buffer (pH = 8.0; Setoguchi and Ohba, 1995). The PCR was performed in a 5‐μL reaction volume, containing approximately 0.5 ng DNA, 2.5 μL 2× Multiplex PCR Master Mix (QIAGEN, Hilden, Germany), 0.01 μM forward primer, 0.2 μM reverse primer, and 0.1 μM fluorescence‐labeled M13 primer. The PCR thermal profile was set as follows: an initial denaturation at 95°C for 30 min; followed by 35 cycles of 95°C for 30 s, 58°C for 3 min, and 68°C for 1 min; and then a final extension at 68°C for 20 min. Amplified products were loaded onto an ABI 3130xl Genetic Analyzer (Applied Biosystems, Carlsbad, California, USA) using the GeneScan 600 LIZ Size Standard (Applied Biosystems), POP7 polymer (Applied Biosystems), and a 36‐cm capillary array. Fragment size was determined using GeneMapper software (Applied Biosystems). To evaluate the utility of the developed markers, genetic diversity indices (number of alleles, observed heterozygosity, and expected heterozygosity) were calculated using GenAlEx version 6.503 (Peakall and Smouse, 2006). Significant deviations from Hardy–Weinberg equilibrium and linkage disequilibrium were tested with 1000 randomizations using GENEPOP 4.2 (Raymond, 1995).

Of 96 primer pairs tested with an individual from population F42, 47 loci showed clear peaks. Of the 47 loci that were successfully amplified, 26 showed polymorphisms within each population of S. fortunei var. incisolobata (Table 1) and 21 were monomorphic (Appendix 2). In total, from three populations (F05, F35, and F38), the number of alleles ranged from four to 25 and the levels of observed and expected heterozygosity ranged from 0.200 to 0.847 and from 0.209 to 0.930, respectively (Table 2). In all three populations, two loci (SF716 and SF314) significantly deviated from Hardy–Weinberg equilibrium (P < 0.01), and significant linkage disequilibrium was detected between loci SF716 and SF166 (P = 0.00951).

Table 1.

Characteristics of 26 polymorphic microsatellite loci developed for Saxifraga fortunei var. incisolobata.[Link]

Locus Primer sequences (5′–3′) Repeat motif Allele size range (bp) BLASTX top hit description E‐value GenBank accession no.
SF1037 F: CGGAGAGCCGAGAGGTGCAGTTGCTCACCACAAGACC (GAA)8 429–445 PREDICTED: polynucleotide 3′‐phosphatase ZDP [Vitis vinifera] 6.08E‐161 LC465769
  R: GTTTCTTCTTCGTCTTCCTTGCGAACC        
SF1424 F: CGGAGAGCCGAGAGGTGAAGCCACATTCCTTTCCACC (CCA)11 329–350 Probable beta‐D‐xylosidase 2 isoform X1 [Olea europaea var. sylvestris] 0.00 LC465771
  R: GTTTCTTATGAAGAGCCTCAGACCACC        
SF816 F: CGGAGAGCCGAGAGGTGCCCACATTCCTGGCATTGTG (GAT)9 317–344 Uncharacterized protein LOC18994464 [Eutrema salsugineum] 4.08E‐24 LC465773
  R: GTTTCTTAAAGAACAAACATAGCCACGAC        
SF1057 F: CTATAGGGCACGCGTGGTGACTTCCCATAGCTCCTCCG (CT)11 303–335 No significant hit LC465774
  R: GTTTCTTGGCGATCAGAACCCAACAATC        
SF75 F: TGTGGAATTGTGAGCGGATGGGACCAGCAGCATAAGG (AGG)8 340–359 Ubiquitin carboxyl‐terminal hydrolase 8 [Ziziphus jujuba] 9.77E‐07 LC465775
  R: GTTTCTTCGGAAGATCTGCATCACGTC        
SF1016 F: CTATAGGGCACGCGTGGTTCTGTGGAAACCTCACTTCTTG (AAG)8 252–279 Uncharacterized protein LOC102620652 [Citrus sinensis] 0.00 LC465776
  R: GTTTCTTCTGGTTCTCGTCACAAACCG        
SF166 F: TGTGGAATTGTGAGCGGATGGTGGTGGTGATGACAAG (GA)12 221–234 No significant hit LC465777
  R: GTTTCTTGCGCATCTTCCTTCTCTCAAC        
SF143 F: CACGACGTTGTAAAACGACCCTCGACATCAAGGTTCACAC (CT)12 218–266 PREDICTED: uncharacterized protein LOC100256691 [Vitis vinifera] 0.00 LC465780
  R: GTTTCTTATTTGGTTCCTTGCGTGTCC        
SF716 F: CACGACGTTGTAAAACGACGAAGCCTTGAGTTGATTTCGC (ATT)8 191–230 No significant hit LC465782
  R: GTTTCTTTTCAGGCCTCCCATCACATG        
SF319 F: TGTGGAATTGTGAGCGGCGGAGGTTGAGATTGAAGGC (TC)10 361–397 Uncharacterized protein LOC110815042 [Carica papaya] 3.75E‐15 LC465783
  R: GTTTCTTTTACCAAACGGCCAGCATTC        
SF1102 F: CTATAGGGCACGCGTGGTCTCTTCTATCTCCTCGGCCG (ATC)7 195–207 Uncharacterized protein DDB_G0290685‐like [Quercus suber] 2.57E‐06 LC465784
  R: GTTTCTTTGGCATGTCAAAGCCATCTG        
SF479 F: TGTGGAATTGTGAGCGGGGAGATCCGCATGAAACACG (GAT)8 162–189 PREDICTED: uncharacterized protein LOC104591093 [Nelumbo nucifera] 2.97E‐13 LC465786
  R: GTTTCTTTCTATAAACGGCGATGAGTTGG        
SF314 F: CGGAGAGCCGAGAGGTGGTGGTGTAGAAGGGTGAGGG (GTG)9 124–176 PREDICTED: protein CURVATURE THYLAKOID 1D, chloroplastic [Vitis vinifera] 1.24E‐60 LC465788
  R: GTTTCTTCAAAGCCTCTCCTATGGTGC        
SF385 F: TGTGGAATTGTGAGCGGACAGGAGGTGGTTTGTAGGG (GGT)8 105–186 No significant hit LC465790
  R: GTTTCTTGCCTTCACCTTCTCCACCC        
SF1135 F: CTATAGGGCACGCGTGGTCATATTGCCTCGCTGTCCAG (CT)13 129–141 No significant hit LC465791
  R: GTTTCTTTGTGTTGGATTACGTGGGTG        
SF1450 F: CGGAGAGCCGAGAGGTGAGGCGCCGATTTGTTTGTC (GA)12 119–133 WD40 repeat‐containing protein HOS15 [Momordica charantia] 0.00 LC465792
  R: GTTTCTTTTTCCCGTCACATCCGTACC        
SF941 F: CACGACGTTGTAAAACGACGATCCGGCAACTGTTCAAGG (TGG)7 361–463 Hypothetical protein CDL15_Pgr014496 [Punica granatum] 1.39E‐40 LC465793
  R: GTTTCTTACTTTCTTGCAACTTCAACAGC        
SF1144 F: TGTGGAATTGTGAGCGGGCCGAAGTAACAACACCACC (TGC)7 395–479 DEAD‐box ATP‐dependent RNA helicase 3, chloroplastic [Vitis vinifera] 0.00 LC465794
  R: GTTTCTTAGAGAGAGGTGGAAGTGTGC        
SF1529 F: TGTGGAATTGTGAGCGGAGCTCTAAGAAACGGCGAAAC (ATC)7 317–365 Homeobox‐leucine zipper protein ATHB‐13 [Ricinus communis] 7.32E‐75 LC465799
  R: GTTTCTTGATGTTGCTCTGTCCATGGC        
SF1116 F: CGGAGAGCCGAGAGGTGAATGGCGGCAGTTTACTTGC (AAC)7 275–304 PREDICTED: proliferating cell nuclear antigen [Daucus carota subsp. sativus] 2.50E‐95 LC465804
  R: GTTTCTTAAGTTTGCGTCGTTCACCAG        
SF1222 F: CACGACGTTGTAAAACGACCTGGTCAGAGAGTGTGGAGG (GAT)7 246–270 Unnamed protein product, partial [Vitis vinifera] 2.34E‐136 LC465805
  R: GTTTCTTCTCCAGAAACCCTAGGCTCC        
SF489 F: CGGAGAGCCGAGAGGTGAAACTCACTTCGCCATGTGC (CT)9 363–371 Unnamed protein product, partial [Vitis vinifera] 1.73E‐87 LC465807
  R: GTTTCTTTCCAGACGCCAGTTTCTCAC        
SF644 F: CACGACGTTGTAAAACGACAATTGCCCGGTTGATGCATC (AG)10 168–210 No significant hit LC465813
  R: GTTTCTTCCCTACCAACAAAGTCGTACC        
SF664 F: CGGAGAGCCGAGAGGTGTCTTACTGCCCAGAACTCCAG (AAT)7 145–171 Zinc finger CCCH domain‐containing protein 53 isoform X1 [Glycine max] 2.08E‐172 LC465814
  R: GTTTCTTAATCACTCACACGGGAATACTC        
SF631 F: CACGACGTTGTAAAACGACACTGAACAGATCTCCATGGC (TA)9 143–171 No significant hit LC465815
  R: GTTTCTTTGCACCATACTTACGAGGCC        
SF519 F: CTATAGGGCACGCGTGGTCACTCCCATGAACCTACCAAG (AAT)7 111–129 Ferredoxin‐3, chloroplastic [Vitis vinifera] 1.44E‐83 LC465816
  R: GTTTCTTTCACACACACAAGGAAAGCG        

Annealing temperature is 58°C for all primer pairs.

Table 2.

Genetic diversity statistics for three populations of Saxifraga fortunei var. incisolobata based on 26 newly developed EST‐SSR markers.a

Locus F05 (N = 24) F35 (N = 24) F38 (N = 24) Total (N = 72)
A H o b H e A H o b H e A H o b H e A H o H e
SF1037 4 0.455 0.415 7 0.778 0.769 7 0.667 0.675 8 0.625 0.718
SF1424 7 0.583 0.732 8 0.917 0.793 9 0.750 0.801 10 0.750 0.815
SF816 7 0.750 0.828 8 0.696 0.841 9 0.833 0.854 10 0.761 0.861
SF1057 13 0.792 0.885 11 0.875 0.855 14 0.875 0.890 17 0.847 0.899
SF75 3 0.391 0.373 3 0.095 0.092 4 0.208 0.261 7 0.235 0.265
SF1016 6 0.583 0.564 8 0.833 0.834 8 0.667* 0.780 12 0.694 0.811
SF166 11 0.417* 0.615 10 0.682 0.808 9 0.583** 0.829 15 0.557 0.783
SF143 10 0.714 0.883 12 0.650* 0.871 20 0.875 0.920 22 0.754 0.930
SF716 10 0.391*** 0.836 9 0.391*** 0.780 9 0.458** 0.773 15 0.414 0.834
SF319 9 0.542** 0.865 13 0.818 0.882 11 0.750 0.852 15 0.700 0.888
SF1102 4 0.333** 0.637 4 0.636 0.657 5 0.333** 0.607 5 0.429 0.687
SF479 4 0.583 0.559 7 0.583 0.707 10 0.875 0.852 10 0.681 0.787
SF314 7 0.375*** 0.680 6 0.375*** 0.707 11 0.409*** 0.854 14 0.386 0.787
SF385 16 0.609*** 0.869 14 0.714 0.897 14 0.500*** 0.884 25 0.603 0.925
SF1135 3 0.208 0.254 6 0.292 0.387 3 0.583 0.424 7 0.361 0.375
SF1450 5 0.500 0.617 7 0.545 0.727 9 0.625* 0.788 10 0.559 0.742
SF941 8 0.087*** 0.767 5 0.318** 0.629 6 0.458 0.574 10 0.290 0.751
SF1144 8 0.739 0.781 12 0.783 0.830 10 0.833 0.846 16 0.786 0.845
SF1529 6 0.500 0.549 6 0.875 0.722 9 0.708 0.809 9 0.694 0.751
SF1116 2 0.048 0.046 5 0.250* 0.448 6 0.292 0.362 8 0.200 0.304
SF1222 3 0.125 0.119 4 0.174 0.164 4 0.375 0.325 7 0.225 0.209
SF489 2 0.042 0.041 4 0.696 0.695 4 0.375* 0.574 4 0.366 0.509
SF644 9 0.750 0.724 16 0.833 0.866 11 0.708 0.759 20 0.764 0.825
SF664 3 0.292 0.254 3 0.217 0.198 3 0.375 0.398 4 0.296 0.296
SF631 10 0.458*** 0.823 10 0.609** 0.852 10 0.708 0.790 13 0.592 0.864
SF519 5 0.625 0.734 4 0.652 0.593 7 0.792 0.734 8 0.690 0.725
Average 6.7 0.458 0.603 7.6 0.588 0.677 8.5 0.616 0.701 11.6 0.548 0.700

A = number of alleles; H e = expected heterozygosity; H o = observed heterozygosity; N = number of individuals sampled.

a

Locality and voucher information are provided in Appendix 1.

b

Asterisks indicate significant deviation from Hardy–Weinberg equilibrium after Bonferroni correction (*P < 0.05, **P < 0.01, ***P < 0.001).

The results of cross‐amplifications are shown in Table 3. In S. fortunei var. obtusocuneata, all 26 loci were successfully amplified and polymorphic. In S. fortunei var. suwoensis, all 26 loci were amplified, of which 22 showed polymorphisms. In S. acerifolia, 18 loci were amplified and 15 showed polymorphisms.

Table 3.

Cross‐amplification and genetic diversity statistics of EST‐SSR markers developed for Saxifraga fortunei var. incisolobata in related taxa.a

Locus S. fortunei var. obtusocuneata (N = 24) S. fortunei var. suwoensis (N = 24) S. acerifolia (N = 24)
A H o b H e A H o b H e A H o b H e
SF1037 4 0.650 0.563 2 0.125 0.117 3 0.091* 0.206
SF1424 3 0.348 0.396 3 0.083 0.081 4 0.091* 0.170
SF816 5 0.739 0.707 6 0.833 0.799
SF1057 6 0.565 0.676 4 0.250 0.261 3 0.091 0.088
SF75 2 0.105 0.100 3 0.435 0.468 2 0.048 0.046
SF1016 3 0.565 0.662 4 0.478 0.472
SF166 5 0.739* 0.662 5 0.667 0.635
SF143 5 0.750 0.744 4 0.583 0.622 1 0.000 0.000
SF716 8 0.864 0.846 5 0.773 0.743 6 0.105*** 0.402
SF319 6 0.583 0.642 3 0.455 0.430 3 0.056*** 0.545
SF1102 4 0.458* 0.548 2 0.542 0.457
SF479 3 0.261 0.334 2 0.083 0.080 6 0.304 0.345
SF314 6 0.708 0.787 11 0.542*** 0.826 3 0.125 0.119
SF385 6 0.333*** 0.549 9 0.500*** 0.788 4 0.000*** 0.458
SF1135 3 0.042* 0.119 3 0.565** 0.494 7 0.667 0.685
SF1450 5 0.455 0.645 2 0.042 0.041 8 0.542 0.578
SF941 5 0.542 0.739 1 0.000 0.000
SF1144 6 0.636 0.760 3 0.625 0.551
SF1529 7 0.864 0.746 4 0.609 0.632 1 0.000 0.000
SF1116 5 0.278*** 0.660 1 0.000 0.000 6 0.167*** 0.608
SF1222 3 0.591 0.574 2 0.042 0.041
SF489 4 0.542* 0.556 3 0.667 0.635 2 0.043 0.043
SF644 7 0.542 0.753 7 0.625* 0.791 16 0.696** 0.881
SF664 4 0.652 0.578 1 0.000 0.000 10 0.762 0.621
SF631 5 0.188*** 0.658 1 0.000 0.000 1 0.000 0.000
SF519 3 0.478 0.532 2 0.458 0.430
Average 4.7 0.518 0.598 3.6 0.384 0.400 4.8 0.210 0.322

A = number of alleles; H e = expected heterozygosity; H o = observed heterozygosity; N = number of individuals sampled.

a

Locality and voucher information are provided in Appendix 1.

b

Asterisks indicate significant deviation from Hardy–Weinberg equilibrium after Bonferroni correction (*P < 0.05, **P < 0.01, ***P < 0.001).

CONCLUSIONS

We developed 26 novel polymorphic EST‐SSR markers for S. fortunei var. incisolobata. All loci were amplified in other infraspecific taxa of S. fortunei, and 18 of them were transferable to S. acerifolia. These markers will be useful for future studies to investigate the evolutionary histories of these species. In addition, they have also proved helpful in evaluating genetic diversity in S. acerifolia, an endangered species.

AUTHOR CONTRIBUTIONS

K.M. and H.S. conceived and designed the experiments. K.M., D.T., and H.S. contributed to sample collection. K.M. and D.T. conducted de novo transcriptome assembly. K.M. performed the molecular laboratory work, allele scoring, and analyses. K.M. drafted the manuscript and all authors participated in manuscript modifications and approved the final version for publication.

ACKNOWLEDGMENTS

The authors are grateful to the following people for sampling materials and technical advice: S. Sakaguchi, K. Akai, Y. Inoue, K. Mori, N. Shirai, and K. Yasuda. This work was financially supported by Grants‐in‐Aid for Scientific Research from the Japan Society for the Promotion of Science (16H04831) and the Environment Research and Technology Development Fund (ERTDF 4–1702).

Sample information for Saxifraga species used in this study.

Taxa Population N Collection locality Geographic coordinates Voucher specimen accession no.[Link]
Saxifraga fortunei Hook. var. incisolobata (Engl. & Irmsch.) Nakai F42 1 Takahama‐cho, Ohi‐gun, Fukui Pref., Japan 35°30′N, 135°29′E KYO_00025612
Saxifraga fortunei var. incisolobata F05 24 Oga City, Akita Pref., Japan 39°53′N, 139°45′E KYO_00025344
Saxifraga fortunei var. incisolobata F35 24 Hakusan City, Ishikawa Pref., Japan 36°11′N, 136°36′E KYO_00025616
Saxifraga fortunei var. incisolobata F38 24 Sakai City, Fukui Pref., Japan 36°08′N, 136°22′E KYO_00025339
Saxifraga fortunei var. obtusocuneata (Makino) Nakai F67 24 Niyodogawa‐cho, Agawa‐gun, Kochi Pref., Japan 33°39′N, 133°08′E KYO_00025613
Saxifraga fortunei var. suwoensis Nakai F75 24 Imari City, Saga Pref., Japan 33°13′N, 129°53′E KYO_00025356
Saxifraga acerifolia Wakabayashi & Satomi SAF 24 Sakai City, Fukui Pref., Japan 36°08′N, 136°22′E KYO_00025333

N = number of individuals.

Vouchers are deposited at Kyoto University (KYO), Kyoto, Japan.

Characteristics of 21 monomorphic microsatellite loci developed in Saxifraga fortunei var. incisolobata.a

Locus Primer sequences (5′–3′) Repeat motif Allele size range (bp) BLASTX top hit description E‐value GenBank accession no.
SF230 F: CACGACGTTGTAAAACGACCTGATTGCGACGATGAGAGC (AT)14 413 No significant hit LC465770
  R: GTTTCTTGTGCCTAACTTTCACCAACCC        
SF1095 F: CTATAGGGCACGCGTGGTTTTGAACGCCTTAAGACCGC (AT)18 448 Probable E3 ubiquitin‐protein ligase BAH1‐like [Herrania umbratica] 7.92E‐41 LC465772
  R: GTTTCTTCGCTCGCCTTACTATAACCG        
SF561 F: CTATAGGGCACGCGTGGTGATTTGGAGCCTCTTTGCCG (AT)11 317 No significant hit LC465778
  R: GTTTCTTTTGACACCAGCCCTCACTAG        
SF293 F: CTATAGGGCACGCGTGGTAAACGAGACATGGCTGCTTG (TTG)6 215 No significant hit LC465781
  R: GTTTCTTTCGGGTTTGGTCACAGAGAG        
SF112 F: CGGAGAGCCGAGAGGTGTTTGAGAGTGGGCTGCCATC (AT)12 135 Sphinganine C4‐monooxygenase [Actinidia chinensis var. chinensis] 1.66E‐164 LC465785
  R: GTTTCTTCGTGGTGCTATGTGACTTGG        
SF1055 F: CTATAGGGCACGCGTGGTGAGTAAGAGGTGGTGGAAACG (AG)12 153 Stomatal closure‐related actin‐binding protein 1‐like [Ziziphus jujuba] 6.23E‐08 LC465787
  R: GTTTCTTATGCAAATCTCCTGGCAAGC        
SF785 F: CACGACGTTGTAAAACGACTCTTCTCAACGCTTGGTCTG (ATC)8 152 PREDICTED: probable acyl‐activating enzyme 16, chloroplastic [Populus euphratica] 0.00 LC465789
  R: GTTTCTTTCGCGTGAGATCCAACATTG        
SF1547 F: CTATAGGGCACGCGTGGTAGGCGACGTGTCAGAGTATC (AT)10 454 Hypothetical protein CDL15_Pgr014134 [Punica granatum] 5.14E‐06 LC465795
  R: GTTTCTTGAAGAAGCTCGTGATCAGGC        
SF1009 F: CGGAGAGCCGAGAGGTGAACCCATCTACTAGCAGGCG (CAC)8 445 Trihelix transcription factor GTL1 isoform X2 [Rosa chinensis] 4.73E‐95 LC465796
  R: GTTTCTTGTTGTGGCTGTACTTGTGGC        
SF795 F: CTATAGGGCACGCGTGGTGACCGCCCTTTACCTTGTTG (ATC)7 435 Uncharacterized protein LOC110645629 [Hevea brasiliensis] 1.26E‐136 LC465797
  R: GTTTCTTACAGAGAAGCATCCAGACCC        
SF1496 F: CTATAGGGCACGCGTGGTAGGCGGCTAAGATTGAGGAG (AAG)7 445 Dehydrin [Corchorus capsularis] 4.00E‐03 LC465798
  R: GTTTCTTGTGGTGGAGGAGGAGTACAC        
SF145 F: CTATAGGGCACGCGTGGTTATCCCAAAGCAGCAGGAGG (CCT)7 318 PREDICTED: pentatricopeptide repeat‐containing protein At4g38150‐like [Camelina sativa] 6.69E‐29 LC465800
  R: GTTTCTTAGGATTGGTTGAGGGAGACG        
SF316 F: CGGAGAGCCGAGAGGTGTGGGACGATACTTCACCGAC (CT)10 344 Lectin_legB domain‐containing protein [Cephalotus follicularis] 5.08E‐51 LC465801
  R: GTTTCTTGGCCATGGATGAGGTGAAAC        
SF111 F: CACGACGTTGTAAAACGACGCCAGTCCAATAAGTTCGGC (AT)11 307 PREDICTED: protein NLRC3 [Prunus mume] 1.37E‐101 LC465802
  R: GTTTCTTCCTGCAATGGAGTGACTGAAC        
SF1530 F: TGTGGAATTGTGAGCGGCGGTGAGAACGGAACAATGG (ATC)7 279 Zinc‐finger homeodomain protein 5 [Jatropha curcas] 3.15E‐08 LC465803
  R: GTTTCTTTTGAGGATTCTGTGCCTCCG        
SF1096 F: CTATAGGGCACGCGTGGTTTCGACAGCAAACCGTTAGC (TGG)8 339 PREDICTED: formin‐like protein 1 [Vitis vinifera] 0.00 LC465806
  R: GTTTCTTATTATCCGGCTCCATCTCGG        
SF553 F: CACGACGTTGTAAAACGACCGCAGAGGAGTTTACGCTTG (TCG)7 271 PREDICTED: calcium‐dependent protein kinase 11‐like [Juglans regia] 0.00 LC465808
  R: GTTTCTTGTCATCGTCACAATCAACCAC        
SF1204 F: TGTGGAATTGTGAGCGGACCACAAACGTATCTAGGCATG (AGC)7 245 Beta‐amyrin 28‐oxidase‐like [Quercus suber] 5.67E‐95 LC465809
  R: GTTTCTTAACGACCCAAACAAGCACAG        
SF76 F: CGGAGAGCCGAGAGGTGCCATTCTCGCTCCAACATCG (ACC)7 286 SANT/Myb domain [Macleaya cordata] 2.19E‐81 LC465810
  R: GTTTCTTGGCGCTGGAGGATTAGAATG        
SF1403 F: CTATAGGGCACGCGTGGTCATCCGCCAGCATGTGATG (TC)17 169 PREDICTED: trigger factor‐like protein TIG, Chloroplastic [Populus euphratica] 0.00 LC465811
  R: GTTTCTTGCAGCTAGTGAAGTGATGGAG        
SF1504 F: CGGAGAGCCGAGAGGTGAGCGTGACCTTAACCTCCTC (ATC)7 179 Membrane‐associated kinase regulator [Actinidia chinensis var. chinensis] 9.89E‐46 LC465812
  R: GTTTCTTGTCCGAGGAAGACGAAGGAC        
a

Annealing temperature is 58°C for all primer pairs.

Magota, K. , Takahashi D., and Setoguchi H.. 2019. Development and characterization of EST‐SSR markers for Saxifraga fortunei var. incisolobata (Saxifragaceae). Applications in Plant Sciences 7(7): e11275.

DATA ACCESSIBILITY

Raw reads from the cDNA library sequenced by Illumina HiSeq 2000 have been deposited to the DNA Data Bank of Japan (DDBJ; BioProject PRJDB8004). Sequence information for the developed primers has been deposited to the National Center for Biotechnology Information (NCBI); GenBank accession numbers are shown in Table 1 and Appendix 2.

LITERATURE CITED

  1. Bolger, A. M. , Lohse M., and Usadel B.. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doyle, J. , and Doyle J. L.. 1987. Genomic plant DNA preparation from fresh tissue‐CTAB method. Phytochemical Bulletin 19: 11–15. [Google Scholar]
  3. Faircloth, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus‐specific primer design. Molecular Ecology Resources 8: 92–94. [DOI] [PubMed] [Google Scholar]
  4. Haas, B. J. , Papanicolaou A., Yassour M., Grabherr M., Blood P. D., Bowden J., Couger M. B., et al. 2013. De novo transcript sequence reconstruction from RNA‐seq using the Trinity platform for reference generation and analysis. Nature Protocols 8: 1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Magota, K. , Sakaguchi S., Akai K., Isagi Y., Murai Y., and Setoguchi H.. 2018. Genetic diversity of Saxifraga acerifolia and S. fortunei based on nuclear and chloroplast microsatellite markers. Bulletin of the National Museum of Nature and Science, Series B, Botany 44: 85–96. [Google Scholar]
  6. Ministry of the Environment, Japan . 2019. The Japanese Red Lists 2019. Website http://www.env.go.jp/press/files/jp/110615.pdf [accessed 18 February 2019].
  7. Nakai, T. 1938. Notes on some Saxifragaceae plants from East Asia. Journal of Japanese Botany 14: 222–234. [Google Scholar]
  8. Ohba, H. 1982. Saxifragaceae In Satake Y., Ohwi J., Kitamura S., Watari S., and Tominari T. [eds.], Wild flowers of Japan II—herbaceous plants Choripetalae, 153–172. Heibonsha, Tokyo, Japan. [Google Scholar]
  9. Pan, J. T. 2001. Saxifraga Linnaeus In Wu Z. Y. and Raven P. H. [eds.], Flora of China, vol. 8, 280–344. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, Missouri, USA. [Google Scholar]
  10. Peakall, R. O. D. , and Smouse P. E.. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Raymond, M. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249. [Google Scholar]
  12. Setoguchi, H. , and Ohba H.. 1995. Phylogenetic relationships in Crossostylis (Rhizophoraceae) inferred from restriction site variation of chloroplast DNA. Journal of Plant Research 108: 87–92. [Google Scholar]
  13. Takahashi, D. , Sakaguchi S., and Setoguchi H.. 2017. Development and characterization of EST‐SSR markers in Asarum sakawanum var. stellatum and cross‐amplification in related species. Plant Species Biology 32: 256–260. [Google Scholar]
  14. Tkach, N. , Röser M., Miehe G., Muellner‐Riehl A. N., Ebersbach J., Favre A., and Hoffmann M. H.. 2015. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae). Taxon 64: 1159–1187. [Google Scholar]
  15. Wakabayashi, M. 1973. On Saxifraga sect. Diptera of Japan, with description of a new species. Acta Phytotaxonomica et Geobotanica 25: 154–169. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Raw reads from the cDNA library sequenced by Illumina HiSeq 2000 have been deposited to the DNA Data Bank of Japan (DDBJ; BioProject PRJDB8004). Sequence information for the developed primers has been deposited to the National Center for Biotechnology Information (NCBI); GenBank accession numbers are shown in Table 1 and Appendix 2.


Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES