Abstract
We tested a battery of density functional theory (DFT) methods ranging from generalized gradient approximation (GGA) via meta-GGA to hybrid meta-GGA schemes as well as Møller–Plesset perturbation theory of the second order and a single and double excitation coupled-cluster (CCSD) theory for their ability to reproduce accurate gas-phase structures of di- and triatomic molecules derived from microwave spectroscopy. We obtained the most accurate molecular structures using the hybrid and hybrid meta-GGA approximations with B3PW91, APF, TPSSh, mPW1PW91, PBE0, mPW1PBE, B972, and B98 functionals, resulting in lowest errors. We recommend using these methods to predict accurate three-dimensional structures of inorganic molecules when intramolecular dispersion interactions play an insignificant role. The structures that the CCSD method predicts are of similar quality although at considerably larger computational cost. The structures that GGA and meta-GGA schemes predict are less accurate with the largest absolute errors detected with BLYP and M11-L, suggesting that these methods should not be used if accurate three-dimensional molecular structures are required. Because of numerical problems related to the integration of the exchange–correlation part of the functional and large scattering of errors, most of the Minnesota models tested, particularly MN12-L, M11, M06-L, SOGGA11, and VSXC, are also not recommended for geometry optimization. When maintaining a low computational budget is essential, the nonseparable gradient functional N12 might work within an acceptable range of error. As expected, the DFT-D3 dispersion correction had a negligible effect on the internuclear distances when combined with the functionals tested on nonweakly bonded di- and triatomic inorganic molecules. By contrast, the dispersion correction for the APF-D functional has been found to shorten the bonds significantly, up to 0.064 Å (AgI), in Ag halides, BaO, BaS, BaF, BaCl, Cu halides, and Li and Na halides and hydrides. These results do not agree well with very accurate structures derived from microwave spectroscopy; we therefore believe that the dispersion correction in the APF-D method should be reconsidered. Finally, we found that inaccurate structures can easily lead to errors of few kcal/mol in single-point energies.
1. Introduction
The relative energies and other molecular properties of inorganic molecules are known to converge very slowly, often requiring expensive but rigorous and robust wave function theory (WFT) calculations in the complete basis set limit.1,2 By contrast, the molecular structures of these molecules are expected to converge more rapidly,1,2 and they can usually be obtained from relatively cheap density functional theory (DFT) methods with moderate basis sets of triple-ζ quality with polarization functions. To speed up routine quantum chemical calculations, Pople and co-workers3−7 proposed the so-called composite schemes in which sophisticated WFT methods are utilized only in a single-point (SP) fashion on the molecular structures optimized with much cheaper protocols, often based on DFT methods. Although the accuracy of SP energy evaluation methods is routinely tested to reproduce the thermochemistry of individual substances8−22 as well as chemical reactions,16,20,23−37 the systematic study of the quality of the molecular structures predicted by DFT is far less common. Selecting the particular method for geometry optimization and estimating the potential inaccuracies arising from such a choice remain difficult.
An analysis of studies27,37−56 testing the accuracy of DFT molecular structures suggests that, first, hybrid-, double-hybrid-, meta-, and hybrid-meta-generalized gradient approximation (GGA) functionals generally provide better structures than classical GGA schemes; and, second, dispersion-corrected DFT functionals usually outperform their standard counterparts if significant noncovalent intra- or intermolecular interactions can be found in the system. It is impossible to identify the method that results in the best molecular structures because the performance of individual functionals is not homogeneous. Often, a functional performing well for one class of compounds provides moderate or even quite poor accuracy for another group of compounds. Even if the above-mentioned studies can provide a rough idea for the most suitable protocol for a given chemical system, these studies often have at least one of the two following shortcomings. First, in many studies benchmarking the quality of three-dimensional molecular structures, the most recent DFT functionals are not included, which is not surprising, as many functionals appeared in the last decade and became available through the latest releases of quantum chemistry computer codes. Second, the referenced experimental structures quite often are from diffraction methods and cannot, strictly speaking, be directly compared with the calculated structures in a rigorous way. The molecular structures obtained from DFT or WFT methods correspond to the potential energy minimum. Often such structures are abbreviated as re (equilibrium three-dimensional structure). Unfortunately, there are no experimental methods that provide direct access to the equilibrium structure.57 Thus, the result of a gas-phase electron diffraction (GED) experiment is the three-dimensional molecular structure averaged over all molecular vibrations at a certain temperature, ra. Another popular diffraction method in chemistry, X-ray analysis, results in structures of molecules that, in addition to being averaged over vibrations and librations, are also influenced by effects arising from crystal-packing forces. Clearly both kinds of structures cannot be directly compared to equilibrium structures, re, obtained from quantum chemistry methods. Several approximations exist to modify the experimental structures from diffraction methods to make them more comparable to their re counterparts, for example, through inclusions of the effects from vibrations (e.g., rh1, rα, etc. in GED).58−62 However, the accuracy of such approximations remains open to debate.
Here, we seek to contribute to existing studies that benchmark three-dimensional molecular structures in two ways. First, along with the standard well-tested functionals, including PBE63,64 and B3LYP,65−68 we also include the most recent functionals, in particular, the latest methods from the Minnesota group on which many fewer molecular geometry validation studies are available in the literature. As reference structures, we use molecular structures from gas-phase microwave spectroscopy.
2. Computational Details
2.1. Benchmark Set
We extracted the reference molecular structures from microwave spectroscopy measurements from the National Institute of Standards and Technology (NIST) Diatomic69 and Triatomic70 Spectral Databases. We selected molecules for which only the most reliable measurements were available. They are listed in Tables 1 and 2. In particular, we include only diatomic molecules for which re molecular structures are provided in the dataset. Similarly, we include only triatomic molecules for which re or rs (distances obtained through isotopic substitution experiments)57 structures are available in the dataset. We give preference to re if both re and rs (isotopic substitution) structures are available.
Table 1. Experimental Internuclear Distances of Selected Diatomic Molecules Derived from Microwave Spectroscopy Measurements.
| moleculea | re (Å)b | refs |
|---|---|---|
| AgBr (1Σ+) | 2.393109(2) (107Ag79Br) | (71) |
| AgCl (1Σ+) | 2.2807916(6) (107Ag35Cl) | (72) |
| AgF (1Σ+) | 1.983179(1) (107Ag19F) | (73) |
| AgI (1Σ+) | 2.5446165(12) (107Ag127I) | (71,74) |
| AlBr (1Σ+) | 2.294859(3) (27Al79Br) | (75) |
| AlCl (1Σ+) | 2.1301663(4) (27Al35Cl) | (75) |
| AlF (1Σ+) | 1.6543688(4) (27Al19F) | (76−78) |
| AlI (1Σ+) | 2.5371027(3) (27Al127I) | (75) |
| BCl (1Σ+) | 1.7194925(5) (11B35Cl) | (79) |
| BF (1Σ+) | 1.2625c | (80) |
| BaO (1Σ+) | 1.9396299(34)d (138Ba16O) | (81,82) |
| BaS (1Σ+) | 2.5073221(8) (138Ba32S) | (83,84) |
| BrCl (1Σ+) | 2.1360399(8) (79Br35Cl)d | (85) |
| BrF (1Σ+) | 1.7589200(18) (79Br19F) | (85) |
| CO (1Σ+) | 1.128229(1) (12C16O)d | (86) |
| CS (1Σ+) | 1.5348192(12) (12C32S)c | (87) |
| CSe (1Σ+) | 1.67618(9) (12C80Se)c | (88) |
| CaO (1Σ+) | 1.8222034(3) (40Ca16O) | (89) |
| ClF (1Σ+) | 1.628 2718(5) (35Cl19F)d | (85) |
| CuBr (1Σ+) | 2.173441(8) (63Cu79Br)d | (90) |
| CuCl (1Σ+) | 2.051192(1) (63Cu35Cl)d | (91) |
| CuF (1Σ+) | 1.744930(2) (63Cu19F) | (73) |
| CuI (1Σ+) | 2.3383236(15) (63Cu127I)d | (92) |
| GaBr (1Σ+) | 2.3524633(14) (69Ga79Br) | (93) |
| GaCl (1Σ+) | 2.201690(3) (69Ga35Cl) | (94) |
| GaF (1Σ+) | 1.7743691(9) (69Ga19F) | (78) |
| GaI (1Σ+) | 2.5746370(6) (69Ga127I) | (95) |
| GeO (1Σ+) | 1.624647(2) (73Ge16O) | (96,97) |
| GeS (1Σ+) | 2.0120863(1) (74Ge32S) | (98) |
| GeSe (1Σ+) | 2.1346292(1) (74Ge80Se) | (98) |
| GeTe (1Σ+) | 2.340165(12) (74Ge130Te) | (99) |
| HBr (1Σ+) | 1.414435(3) (1H81Br) | (100) |
| HCl (1Σ+) | 1.274552(6) (1H35Cl) | (101,102) |
| HF (1Σ+) | 0.916809(27) (1H19F) | (103−105) |
| HI (1Σ+) | 1.6090231(3) (1H127I)d | (102,106) |
| IBr (1Σ+) | 2.4689735(6) (127I79Br)d | (85) |
| ICl (1Σ+) | 2.320877(7) (127I35Cl) | (107) |
| IF (1Σ+) | 1.909759(5) (127I19F) | (108) |
| InBr (1Σ+) | 2.5431804(55) (115In79Br) | (109) |
| InCl (1Σ+) | 2.401168(2) (115In35Cl) | (110−112) |
| InF (1Σ+) | 1.9853964(9) (115In19F) | (78) |
| InI (1Σ+) | 2.753639(54) (115In127I) | (113) |
| LiBr (1Σ+) | 2.170428(4) (6Li79Br) | (114,115) |
| LiCl (1Σ+) | 2.0206676(4) (6Li35Cl) | (116,117) |
| LiF (1Σ+) | 1.5638601(3) (6Li19F) | (116,118) |
| LiH (1Σ+) | 1.5949131(8) (6Li1H)d | (119) |
| LiI (1Σ+) | 2.391907(14) (6Li127I) | (120) |
| MgO (1Σ+) | 1.7483805(1) (24Mg16O) | (121) |
| NaBr (1Σ+) | 2.5020379(12) (23Na79Br) | (117,122) |
| NaCl (1Σ+) | 2.360795(2) (23Na35Cl) | (123,124) |
| NaF (1Σ+) | 1.9259465(3) (23Na19F) | (125,126) |
| NaH (1Σ+) | 1.88652(9) (23Na1H)d | (127,128) |
| NaI (1Σ+) | 2.711452(2) (23Na127I) | (117,122) |
| PN (1Σ+) | 1.4908663(5) (31P14N) | (129−131) |
| PbO (1Σ+) | 1.9218134(17) (207Pb16O) | (132,133) |
| PbS (1Σ+) | 2.2868628(12) (207Pb32S) | (133,134) |
| PbSe (1Σ+) | 2.4022353(22) (208Pb80Se) | (99,135) |
| PbTe (1Σ+) | 2.594975(4) (208Pb130Te) | (99,136) |
| SiO (1Σ+) | 1.5097375(2) (28Si16O) | (97,137) |
| SiS (1Σ+) | 1.9293212(2) (28Si32S) | (138,139) |
| SiSe (1Σ+) | 2.058327(4) (28Si80Se) | (140,141) |
| SnO (1Σ+) | 1.8325054(20) (120Sn16O) | (133,142) |
| SnS (1Σ+) | 2.2090267(3) (120Sn32S) | (133,143) |
| SnSe (1Σ+) | 2.325601(3) (120Sn80Se) | (144,145) |
| SnTe (1Σ+) | 2.522814(1) (120Sn130Te) | (145,146) |
| SrO (1Σ+) | 1.919 849(1) (88Sr16O)c | (82) |
| TlBr (1Σ+) | 2.618184(11) (205Tl79Br) | (147,148) |
| TlCl (1Σ+) | 2.4848260(4) (205Tl35Cl) | (149,150) |
| TlF (1Σ+) | 2.0844377(1) (205Tl19F) | (151,152) |
| TlI (1Σ+) | 2.813676(10) (205Tl127I) | (147,148) |
| BaCl (2Σ+) | 2.6827325(5) (138Ba35Cl) | (153) |
| BaF (2Σ+) | 2.1592708(6) (138Ba19F) | (154) |
| CN (2Σ+) | 1.171807(20) (12C14N)c | (155) |
| CaBr (2Σ+) | 2.5935838(4) (40Ca79Br) | (156) |
| CaCl (2Σ+) | 2.4367580(4) (40Ca35Cl) | (156) |
| SrCl (2Σ+) | 2.575854(1) (88Sr35Cl) | (157) |
| SrF (2Σ+) | 2.075366(1) (88Sr19F) | (157) |
| BiBr (3Σ+) | 2.6095031(24) (209Bi79Br) | (158) |
| BiCl (3Σ+) | 2.4715223(8) (209Bi35Cl) | (159) |
| BiF (3Σ+) | 2.0515431(3) (209Bi19F) | (160) |
| BiI (3Σ+) | 2.8005010(3) (209Bi127I) | (161) |
| SO (3Σ+) | 1.4809899(13) (32S16O)d | (162) |
| SeO (3Σ+) | 1.6394792(18) (78Se16O)d | (163) |
Ground-state molecular term.
Calculated as re = [505 379.006(51)/μrY01]1/2 as in the NIST database unless otherwise noted.
Taken from the original work.
Calculated as re = [505379.006(51)/μrBe]1/2 as in the NIST database.
Table 2. Experimental Molecular Structures of Selected Triatomic Molecules Derived from Microwave Spectroscopy Measurements.
| molecule (ABC)a | type | rAB (Å) | rBC (Å) | ∠ABCb (deg) | refs |
|---|---|---|---|---|---|
| BrNO (1A′) | rs | 2.140(2) | 1.146(10) | 114.50(50) | (164) |
| ClCN (1Σ+) | re | 1.629(6) | 1.160(7) | 180 | (165) |
| ClNO (1A′) | rs | 1.975(5) | 1.139(12) | 113.3(6) | (166) |
| FCN (1Σ+) | rs | 1.262(2) | 1.159(2) | 180 | (167) |
| FNO (1A′) | rs | 1.512(5) | 1.136(3) | 110.1(2) | (168) |
| GeF2 (1A1) | re | 1.7321 | 1.7321 | 97.148 | (169) |
| H2O (1A1) | re | 0.9587(1) | 0.9587(1) | 103.89(0.06) | (170) |
| H2S (1A1) | re | 1.3356 | 1.3356 | 92.11 | (171,172) |
| H2Se (1A1) | re | 1.4605(30) | 1.4605(30) | 90.92(12) | (173) |
| HBS (1Σ+) | rs | 1.1692(4) | 1.5995(4) | 180 | (174) |
| HCN (1Σ+) | re | 1.0655(5) | 1.15321(10) | 180 | (175) |
| HCP (1Σ+) | re | 1.0692(8) | 1.5398(2) | 180 | (176) |
| HNC (1Σ+) | rs | 0.98607(9) | 1.17168(22) | 180 | (177,178) |
| NNO (1Σ+) | rs | 1.1286(3) | 1.1876(3) | 180 | (179) |
| NSCl (1A′) | rs | 1.450 | 2.161 | 117.7 | (180) |
| O3 (1A1) | re | 1.2717(2) | 1.2717(2) | 116.78 | (181) |
| OCS (1Σ+) | re | 1.1543(10) | 1.5628(10) | 180 | (182) |
| OCSe (1Σ+) | re | 1.1535(1) | 1.7098(1) | 180 | (183) |
| OF2 (1A1) | re | 1.4053(4) | 1.4053(4) | 103.07(06) | (184) |
| SO2 (1A1) | re | 1.43076(13) | 1.43076(13) | 119.33(1) | (185) |
| SeO2 (1A1) | re | 1.6076(6) | 1.6076(6) | 113.83 | (186) |
| SiF2 (1A1) | re | 1.5901(1) | 1.5901(1) | 100.77(2) | (187) |
| ClO2 (2B1) | rs | 1.471 | 1.471 | 117.5 | (188−190) |
| NO2 (2A1) | re | 1.1945(5) | 1.1945(5) | 133.85(10) | (191) |
Ground-state molecular term.
For comparisons with re structures from DFT and WFT methods, we modify the structural description with the two distances and a bend angle in favor of three distances.
2.2. Geometry Optimizations
We performed all geometry optimizations with the most popular DFT functionals listed in Table 3 as implemented in the Gaussian 09192 suite of programs. We adopted the default values for the self-consistent-field and geometry optimization convergence criteria. We performed numerical integration of the exchange–correlation (XC) terms using the tighter-than-default “ultrafine” option (pruned, 99 radial shells and 590 angular points per shell) to eliminate the potential numerical noise in the energy derivatives. We applied Grimme’s D3(BJ)193 dispersion correction to PBE, TPSS, BP86, B3PW91, B3LYP, BLYP, BPBE, BMK, CAM-B3LYP, LC-ωPBE, and PBE0 to arrive at the corresponding DFT-D3(BJ) methods and to account for the possible influence of the dispersion interactions not (or only partly) covered by the standard functionals. However, because in practically all cases we observed only insignificant differences in internuclear distances of only ca. 0.001 Å (or less) upon inclusion of the dispersion correction, we discuss only the dispersion-uncorrected results for the above-mentioned functionals. In addition to DFT functionals, we also optimized all structures with Møller–Plesset perturbation theory of the second order (MP2) and single and double excitation coupled-cluster (CCSD) methods for which analytical electronic energy first derivatives (gradients) are available. In both WFT methods, we included all electrons in the correlation treatment as the core–valence and core–core correlation effects have been shown to be important for some inorganic species.8,26,194−200
Table 3. Summary of the Methods Used in the Present Work to Optimize the Molecular Structures.
| method | typea | refs |
|---|---|---|
| PBE | GGA | (63,64) |
| BP86 | GGA | (65,212) |
| BLYP | GGA | (65,66) |
| BPBE | GGA | (63,65) |
| HCTH/407 | GGA | (213−215) |
| B97-D | GGA+D | (216) |
| B97-D3 | GGA+D | (216,217) |
| SOGGA11 | GGA | (218) |
| N12 | NGA | (219) |
| OLYP | GGA | (66,220−222) |
| TPSS | mGGA | (223) |
| VSXC | mGGA | (224) |
| M06-L | mGGA | (225) |
| M11-L | mGGA | (226) |
| MN12-L | mNGA | (227) |
| B3PW91 | GH-GGA | (65,68,228−232) |
| B3LYP | GH-GGA | (65,68) |
| mPW1PW91 | GH-GGA | (233) |
| SOGGA11-X | GH-GGA | (234) |
| PBE0 | GH-GGA | (63,64) |
| mPW1LYP | GH-GGA | (66,222,233) |
| mPW1PBE | GH-GGA | (63,64,233) |
| X3LYP | GH-GGA | (66,222,235) |
| B971 | GH-GGA | (213) |
| B972 | GH-GGA | (236) |
| B98 | GH-GGA | (237,238) |
| B1LYP | GH-GGA | (239) |
| APF | GH-GGA | (240) |
| APF-D | GH-GGA+D | (240) |
| LC-ωPBE | RSH-GGA | (241) |
| CAM-B3LYP | RSH-GGA | (242) |
| N12-SX | RSH-GGA | (243) |
| ωB97X-D | RSH-GGA+D | (244) |
| BMK | GH-mGGA | (245) |
| TPSSh | GH-mGGA | (223,246) |
| M06 | GH-mGGA | (247) |
| M11 | RSH-mGGA | (248) |
| MN12-SX | RSH-mGGA | (243) |
| MP2 | WFT | (249) |
| CCSD | WFT | (250−253) |
+D = functional corrected for dispersion interactions, NGA = nonseparable gradient approximation, mGGA = meta-GGA, mNGA = meta-NGA, GH = global hybrid, and RSH = range-separated hybrid.
We used the following triple-ζ correlation-consistent basis sets. We used Dunning’s cc-pVTZ basis sets to describe hydrogen.201 We described lithium, sodium, and magnesium with Wilson et al.’s all-electron (AE) correlation-consistent core–valence cc-pwCVTZ basis sets.202 We used Dunning and Peterson’s AE correlation-consistent core–valence cc-pwCVTZ basis sets to describe boron, carbon, nitrogen, oxygen, fluorine, aluminum, silicon, phosphorus, sulfur, chlorine, and argon.203 We used Li et al.’s pseudopotential-based correlation-consistent core–valence cc-pwCVTZ-PP basis sets to describe calcium, strontium, and barium.204 The 10 core electrons of Ca, the 28 core electrons of Sr, and the 46 core electrons of Ba were described with Stuttgart-type fully relativistic effective core potentials of Schwerdtfeger and co-workers.205 Copper and silver were described with the pseudopotential-based correlation-consistent core–valence cc-pwCVTZ-PP basis sets of Peterson and Puzzarini.206 The 10 core electrons of Cu and the 28 core electrons of Ag were described with Stuttgart-type fully relativistic effective core potentials of Stoll and co-workers.207 Gallium, germanium, selenium, bromine indium, tin, tellurium, iodine, thallium, lead, and bismuth were described with the pseudopotential-based correlation-consistent core–valence cc-pwCVTZ-PP basis set of Peterson and Yousaf.208 The 10 core electrons of Ga, Ge, Se, and Br, the 28 core electrons of In, Sn, Te, and I, and the 60 core electrons of Tl, Pb, and Bi were described with Stuttgart-type fully relativistic effective core potentials of Dolg and co-workers.209−211 Even when the core–valence basis sets were used for AE MP2 and CCSD calculations to describe the subvalence correlation, we applied exactly the same basis sets for the DFT methods for an unbiased comparison. Structures were characterized as true energy minima by the eigenvalues of the analytically calculated Hessian matrix.
2.3. Calculation of Errors
To quantitatively measure the deviation of the theoretical equilibrium internuclear distances from their experimental counterparts, we used a few common protocols. First, for each method, we calculated the mean unsigned error (MUE) and the mean signed error (MSE) defined as follows
| 1 |
| 2 |
where M is the number of molecules in the analyzed dataset, N is the number of atoms in the molecule (N = 2 for diatomic and N = 3 for triatomic molecules), Rij(Exp., m) is the experimental internuclear distance between nuclei i and j in the molecule, m, and Rij(Theor., m) is its theoretical counterpart.
In addition to the two above-mentioned criteria, for the errors in internuclear distances obtained from each method, we also calculated the standard deviation (σ) and the difference between the largest positive and negative deviation (δ = Max – Min). These two values are necessary to understand the dispersion of the errors.
3. Results and Discussion
We organize the results and discussion section as follows. First, we comment on the overall performance obtained for the combined dataset involving the internuclear distances of all di- and triatomic molecules covered in the present study. Then, we assess an ability of methods in reproducing specific internuclear distances as those involving the s-metals, d-metals, and light and heavy elements. Afterward, we estimate the error in the absolute electronic energy arising from the use of different methods for geometric optimization and the SP energy evaluation, which corresponds to the maximum error associated with composite schemes.
3.1. Performance in Predicting All Internuclear Distances
The MSE and MUE for the 164 internuclear distances of the 83 diatomic and 27 triatomic DFT- and WFT-optimized molecules listed in Tables 1 and 2 relative to the corresponding values derived from microwave spectroscopy measurements are presented in Figure 1. Among the local GGA DFT methods, the smallest MUE of 0.012 Å was detected for the recently developed nonseparable gradient N12 functional from the Minnesota group followed closely by the HCTH/407 functional with an MUE of 0.017 Å. While N12, with an MSE of −0.007 Å, exhibits a small tendency toward underestimation of the distances, HCTH/407, with an MSE of 0.014 Å, results in distances that are, in general, too long. The largest errors in molecular structures were obtained by the BLYP functional. With the MUE and MSE of 0.035 Å, BLYP was found to overestimate the distances, which agrees with previous reports.47,48,254−257 All other tested local GGA DFT methods, including SOGGA11, PBE, OLYP, BPBE, BP86, B97-D3, and B97-D, resulted in similar MUEs in the range of 0.020–0.027 Å. With all seven methods, positive MSEs that were practically equal in magnitude to their corresponding MUEs were obtained, indicating the pronounced tendency toward overestimation of internuclear distances. Interestingly, the B97-D3 functional with an MUE of 0.024 Å turned out to be superior to the B97-D functional with an MUE of 0.027 Å, indicating an improvement of the dispersion parameterization of D3 over D2. Despite the good accuracy obtained by the SOGGA11 method, this functional turned out to be particularly sensitive to an integration grid. The harmonic frequency calculation with the SOGGA11 functional on the three-dimensional structure optimized with the same method and the tighter-than-G09-default “ultrafine” integration grid used in this work (pruned, 99 radial shells and 590 angular points per shell) resulted in the two imaginary frequencies of i1102.9 cm–1, both of which correspond to bending vibrations distorting the molecule from its linear structure. As this molecule was experimentally found to be linear with confirmation from all but the SOGGA11 functional, we concluded that the SOGGA11 method predicts incorrect harmonic frequencies. The origin of this issue is the use of reduced-quality integration grids by the G09 code during calculation of the second derivatives of the electronic energy. Even if the “ultrafine” integration grid was explicitly specified, a grid of lower quality was actually generated to calculate the second derivatives. Indeed, the harmonic frequency calculation that explicitly specified “CPH(Grid = ultrafine)” was the only option that resulted in real frequencies.
Figure 1.

MSEs and MUEs for the 164 internuclear distances of the 83 diatomic and 27 triatomic DFT- and WFT-optimized molecules relative to the corresponding microwave spectroscopy data.
From the local meta-GGA functionals, the lowest MUE of 0.012 Å was found for the M06-L functional. The MSE of 0.007 Å for M06-L indicates that the functional has a small tendency to overestimate internuclear distances. Perhaps surprisingly, we found that the M11-L functional from the Minnesota group had the largest MUE of 0.031 Å. This functional’s negative MSE of −0.020 Å suggests that it has a tendency to shorten the internuclear distances. All other meta-GGA functionals, including TPSS, MN12-L, and VSXC, performed rather uniformly with MUEs in the range of 0.018–0.019 Å. While the TPSS and VSXC methods with MSEs of 0.017 and 0.019 Å provided distances that were too long, the MN12-L functional with an MSE of −0.007 Å predicted a distance that was slightly short.
Among the hybrid and hybrid meta-GGA functionals, the lowest MUE of 0.010 Å and practically vanishing MSEs of 0.001 and −0.002 Å were, respectively, found with the B3PW91 and APF functionals. An MUE of only 0.001 Å higher was found with the mPW1PW91, PBE0, mPW1PBE, B972, B98, and TPSSh functionals. The first three of these functionals, namely mPW1PW91, PBE0, and mPW1PBE, with the MSE of −0.004 Å exhibited a small tendency toward overestimation of the internuclear distances. The B972 method predicted a practically vanishing MSE. The B98 and TPSSh functionals predicted positive MSEs of 0.006 and 0.008 Å, which were in general too long. Slightly higher MUEs of 0.012–0.014 Å were detected for the B971 (MUE/MSE = 0.012/0.007 Å), SOGGA11-X (MUE/MSE = 0.013/–0.006 Å), X3LYP (MUE/MSE = 0.013/0.009 Å), APF-D (MUE/MSE = 0.013/–0.006 Å), CAM-B3LYP (MUE/MSE = 0.013/–0.005 Å), N12-SX (MUE/MSE = 0.013/–0.009 Å), BMK (MUE/MSE = 0.013/–0.002 Å), B3LYP (MUE/MSE = 0.014/0.011 Å), mPW1LYP (MUE/MSE = 0.014/0.008 Å), B1LYP (MUE/MSE = 0.014/0.009 Å), ωB97XD (MUE/MSE = 0.014/–0.003 Å), and M06 (MUE/MSE = 0.014/–0.001 Å) functionals. A larger MUE of 0.015 Å was detected for the MN12-SX functional, which suggests a small tendency to underestimation as indicated by MSE of −0.007 Å. On the other side of the scale, the largest MUE of 0.018 Å was predicted by the M11 and CAM-ωPBE functionals for which the MSEs turned out to be −0.003 and −0.016 Å, respectively. Interestingly, practically no influence of the Grimme dispersion correction was found for the PBE0, B3LYP, PBE, and other functionals. However, a significant difference in the predicted internuclear distances was obtained between APF and its dispersion-corrected counterpart, APF-D, as illustrated by a difference in the MUE of 0.003 Å. A detailed analysis revealed that the difference between the APF and APF-D functionals was evident only for a limited number of molecules, including Ag halides, BaO, BaS, BaF, BaCl, Cu halides, and Li and Na halides and hydrides. For these molecules, the nonzero “Petersson–Frisch” dispersion energy240 was found whereas for all other species, the absolute zero dispersion energy was calculated. The observation that nonzero dispersion energy was obtained for all studied Li, Na, and Ba complexes whereas absolute zero dispersion energy was found for Mg, Ca, and Sr complexes is remarkable. Because the APF-D functional provides a larger MUE than APF does, we believe that, perhaps, additional adjustments of the dispersion parameters for this functional might be needed. Finally, for the two WFT methods for which AE were correlated, MP2 (AE) and CCSD (AE), MUEs of 0.013 and 0.012 Å were found, which is comparable to that of the hybrid and hybrid-meta-GGA DFT methods (Av. MUE of 0.013 Å) and significantly better than that of the meta-GGA methods (Av. MUE of 0.020 Å) and local GGA methods (Av. MUE of 0.022 Å). This indicates that higher correlated WFT methods with larger basis sets have to be used to benchmark the performance of DFT methods in reproducing inorganic three-dimensional molecular structures.
Apart from the MUEs and MSEs, we also analyzed the dispersion of errors obtained for every method tested. For this purpose, in Figure 2, we show the standard deviation (σ) and the absolute difference (δ) between the most positive and negative deviations. As expected, we found the largest dispersion of errors for the heavily empirically parameterized Minnesota functionals: M11-L resulted in σ/δ of 0.033/0.198 Å, followed by MN12-L with σ/δ of 0.022/0.152 Å and SOGGA11 with σ/δ of 0.024/0.135 Å. Interestingly, a relatively large dispersion of errors (σ/δ of 0.019/0.135 Å) was detected for the MP2 WFT method. The smallest dispersion of errors was found for the TPSSh, APF, mPW1PBE, PBE0, mPW1PW91, and B3PW91 functionals.
Figure 2.

Standard deviation (σ) and absolute difference between the largest positive and negative deviations (δ) for the 164 internuclear distances of the 83 diatomic and 27 triatomic DFT- and WFT-optimized molecules relative to the corresponding microwave spectroscopy data.
3.2. Analysis of Specific Internuclear Distances
We also analyzed the difference in performance of the tested methods in reproducing the structures of the molecules consisting of the lighter elements with 1–3 periods and the heavier elements with 4–6 periods. The MSEs obtained for the molecules comprising the elements from the 1–3 groups and the elements from the 4–6 groups are presented in Figure S1; the corresponding MUEs are given in Figure S2; and the difference between the MUEs of the molecules comprising the lighter (periods 1–3) and heavier (periods 4–6) elements is depicted in Figure S3. In general, all the methods resulted in larger MUEs for the structures of the molecules comprising heavier elements from the 4–6 groups. The average difference between the MUEs in reproducing the molecular structures comprising the heavier (4–6 groups) and lighter (1–3 groups) elements turned out to be 0.007 Å. The smallest difference in the MUEs was obtained for N12-SX (ΔMUE = 0.001 Å), mPW1PW91 (ΔMUE = 0.002 Å), SOGGA11-X (ΔMUE = 0.002 Å), PBE0 (ΔMUE = 0.002 Å), and mPW1PBE (ΔMUE = 0.002 Å), indicating the robust performance of these methods across the different groups in the periodic table (see Figure S3). On the other hand, the largest difference in MUEs obtained for the structures comprising the elements of the 1–3 and 4–6 groups was obtained for SOGGA11 (ΔMUE = 0.019 Å), BLYP (ΔMUE = 0.015 Å), VSXC (ΔMUE = 0.014 Å), and B97-D (ΔMUE = 0.014 Å), indicating significantly better performance of these methods for the structures of the molecules comprising lighter elements. The larger MUEs obtained for the molecules comprising the heavier elements belonging to the 4–6 groups can be explained by a variety of factors. For the correlated WFT methods, such as MP2 and CCSD, the core–valence correlation effects become more important for the molecules comprising elements from group 4 and higher, requiring larger and more flexible basis sets, especially in the subvalence region.194,258 For the semiempirical DFT methods, the absence of the heavy elements from the fourth period and above in the fitting set, as in the B3LYP method, might result in the larger errors documented for the molecules comprising these elements. Indeed, practically no difference in performance for molecules involving the lighter (1–3 groups) and heavier (4–6 groups) elements was found with the PBE and PBE0 methods for which no empirical parameters were used.
Finally, for all the methods, relativistic effects become more important and start influencing the molecular structures significantly. In the current work scalar relativistic effects were accounted for through using relativistic effective core potentials; although popular in the density functional theory research community, it might lead to some discrepancies with the AE scalar relativistic calculations.258 Moreover, the spin–orbit effects become nonnegligible even for the closed-shell species when the molecules comprise heavy elements, especially 5p/6p elements.41,259−267 These effects may cancel themselves out when treated partially or neglected, leading to small errors. A detailed investigation of all these effects and their interplay is beyond the scope of the present study. Here, we restrict ourselves to the analysis of the errors in the structures of the molecules comprising the 5p and 6p elements. The MUEs and MSEs for the internuclear distances of the DFT- and WFT-optimized molecules comprising the elements of the 5p and 6p block relative to the corresponding microwave spectroscopy data are given in Figure S4. Because the structures of these molecules are influenced by spin–orbit coupling, which we neglected in the present study, the best performing methods in our work most likely experienced some fortuitous cancellation of errors. The best-performing methods for these complexes turned out to be N12 (MSE/MUE = 0.000/0.014 Å), mPW1PW91 (MSE/MUE = 0.001/0.014 Å), PBE0 (MSE/MUE = 0.000/0.014 Å), mPW1PBE (MSE/MUE = −0.001/0.014 Å), and APF (MSE/MUE = 0.003/0.014 Å) followed closely by CCSD (MSE/MUE = −0.004/0.015 Å). Because the calculations involving spin–orbit coupling are significantly more computationally expensive, the best-performing methods can be recommended to perform geometry optimizations while the spin–orbit contributions can be introduced later in a SP fashion. Similarly to what was found for the molecules comprising the elements of the 4–6 groups, quite large errors have been documented for SOGGA11, which might be explained by the fact that molecules containing the 5p/6p elements were not a part of the training set used to parameterize this method.
Further, we analyzed the errors obtained for distances involving the 1 and 2 group metals as well as d metals. In Figure S5, the MSEs and MUEs for the internuclear distances involving the s-metals (1/2 group elements) of the DFT- and WFT-optimized molecules relative to the corresponding microwave spectroscopy data are shown. The MSE/MUE averaged over all the tested methods turns out to be 0.008/0.016 Å, which is comparable with the average errors of 0.005/0.016 Å obtained for a dataset containing all molecules (see section 3.1). Vanishing MSEs and small MUEs were obtained for PBE0 (MUE = 0.008 Å), followed closely by MPW1PW91 (MUE = 0.009 Å), SOGGA11-X (MUE = 0.009 Å), mPW1PBE (MUE = 0.009 Å), APF (MUE = 0.009 Å), and N12-SX (MUE = 0.009 Å). The CCSD and MP2 methods slightly overestimated the distances of MSE/MUE of 0.013/0.013 and 0.012/0.014 Å, respectively. Finally, the largest errors were found for the B97D (MSE/MUE = 0.038/0.040 Å) functional. Remarkably, with the MSE/MUE of −0.018/0.019 Å, the APF-D functional was found to provide the distances that are in general too short; meanwhile, its dispersion-free counterpart, APF, resulted in a significantly better MUE of 0.009 Å and practically vanishing MSE. This indicates that the dispersion term in the APF-D functional should probably be re-evaluated. In Figure S6, the MSEs and MUEs for the internuclear distances involving the d-metals (Cu and Ag) of the DFT- and WFT-optimized molecules relative to the corresponding microwave spectroscopy data are shown. The MSE/MUE averaged over all the tested methods tuned out to be 0.007/0.018 Å, which is comparable to that obtained for the distances involving the s-metals. The best performing methods with an MUE of only 0.004 Å and vanishing MSE turned out to be TPSS and its hybrid version, TPSSh, and the mPW1PBE method. Particularly, small MUEs of only 0.005 Å and vanishing MSEs have also been obtained for the PBE, BP86, BPBE, mPW1PW91, PBE0, and APF methods. The worst performing method with an MSE/MUE of −0.052/0.052 Å turned out to be the MN12-L functional followed closely by SOGGA11 with an MSE/MUE of 0.050/0.050 Å. Remarkably, similarly to that found for the s-metals, the dispersion-corrected APD-F functional with an MSE/MUE of −0.035/0.037 Å was found to perform significantly worse compared with its dispersion-free counterpart, strongly indicating a need for re-evaluation of the dispersion term in the APF-D method. When it comes to the WFT methods, the CCSD resulted in acceptable MSE/MUE both equal to 0.011 Å. Meanwhile, the MP2 methods with an MSE/MUE of −0.037/0.037 Å predicted distances that were rather too short. The poor performance of the MP2 method for transition metal complexes that we found here is in agreement with earlier reports.257,268
3.3. Errors in Absolute Electronic Energies Arising from Geometry Optimization and SP Energy Evaluation with Various Methods
We performed a series of additional calculations to estimate the potential deviations in the absolute electronic energy because of the different methods used for geometry optimization and SP energy evaluation. The deviation in the absolute energy of a single compound corresponds to the maximum error in the relative energies obtained with the composite schemes because no cancellation between the reactants and products is assumed. First, we calculated the CCSD SP energy of three-dimensional molecular structures obtained with one of the best performing DFT functionals, PBE0. Then, we calculated the CCSD SP energy on the structures from one of the worst performers for molecular structures in the current study, M11-L. Finally, we calculated the difference between the CCSD SP energies from the two protocols described above, that is, CCSD/aug-cc-pwCVTZ//PBE0/aug-cc-pwCVTZ and CCSD/aug-cc-pwCVTZ//M11-L/aug-cc-pwCVTZ, and the CCSD SP energy on a consistently optimized geometry. That is, CCSD/aug-cc-pwCVTZ//CCSD/aug-cc-pwCVTZ. The results are summarized in Figure 3 and Table S1. The average difference in electronic energy obtained with the CCSD/aug-cc-pwCVTZ//PBE0/aug-cc-pwCVTZ protocol compared with the CCSD energies on consistently optimized geometries turned out to be 0.0 kcal/mol, with a maximum deviation of 0.5 kcal/mol obtained for the CaO molecule. By contrast, the difference in energy obtained with the CCSD/aug-cc-pwCVTZ//M11-L/aug-cc-pwCVTZ protocol compared with CCSD energies on consistently optimized geometries was significantly larger, 0.3 kcal/mol, with a maximum deviation of 2.3 kcal/mol obtained for the GeF2 molecule. These results suggest that an error of a few kcal/mol in SP energies can easily be obtained even for relatively small systems if inaccurate three-dimensional structures are used.
Figure 3.

Difference in CCSD/aug-cc-pwCVTZ(-PP) SP energies on PBE0/aug-cc-pwCVTZ(-PP) and M11-L/aug-cc-pwCVTZ(-PP) compared with CCSD/aug-cc-pwCVTZ(-PP) SP energies on consistently optimized geometries.
4. Conclusions
We used very accurate gas-phase three-dimensional molecular structures of di- and triatomic molecules from microwave spectroscopy measurements to assess the accuracy of a battery of DFT and WFT methods with aug-cc-pwCVTZ basis sets. When we consider the performance of the methods in reproducing all internuclear distances in all the molecules, we find that the most accurate molecular structures were obtained by hybrid and hybrid meta-GGA functionals, with the B3PW91, APF, TPSSh, mPW1PW91, PBE0, mPW1PBE, B972, and B98 functionals providing the lowest errors. Among these functionals, we recommend APF, mPW1PW91, mPW1PBE, and PBE0 because they resulted in the smallest errors for the subsets of internuclear distances that we studied as well as for the distances involving s-metals, d-metals, and 5p/6p-containing molecules. Also, we found a negligible difference in performance for molecular structures containing lighter (1–3 periods) and heavier (4–6 elements) for these methods. The CCSD method predicted molecular geometries of similar quality although at considerably higher computational cost. Quite low errors were also found for the nonseparable gradient local-GGA functional N12, which we recommend for projects with low CPU budgets. We detected the largest errors with local GGA and meta-GGA functionals, namely BLYP and M11-L, suggesting that these methods not be used if accurate three-dimensional molecular structures are the goal. Because we encountered some numerical problems with integrating the exchange–correlation part269,270 and obtained large dispersion of errors with some Minnesota functionals, particularly MN12-L, M11, M06-L, SOGGA11, and VSXC, we also recommend that these methods not be used for geometry optimizations. The large and nonsystemic nature of the errors in internuclear distances is especially concerning in quantitative structure–activity relationship studies that correlate such parameters with chemical activity, for example, the correlation of the length of the Ru=C bond in Grubbs complexes with their catalytic activity in olefin metathesis.271 Apart from these methods, we found that B97D performs poorly for distances involving s-metals and should probably be avoided as well. The DFT-D3 dispersion correction was found to have a negligible effect on internuclear distances. By contrast, the APF-D dispersion correction led to significant shortening up to 0.064 Å (AgI) of the bonds in Ag halides, BaO, BaS, BaF, BaCl, Cu halides, and Li and Na halides and hydrides. Given that these results do not agree well with very accurate structures derived from microwave spectroscopy, we believe that the dispersion correction in the APF-D method should be reconsidered.
When it comes to relatively large and nonrigid molecules for which intramolecular interactions are critical, significantly influencing the structure, particular recommendations on the geometric optimization method remain difficult to give. In our opinion, because of the large dispersion of errors that we found and problems related to noise in the integration of the exchange–correlation part of the functionals, the Minnesota models should either be avoided or applied with extreme caution. The DFT-D3 methods are perhaps a better choice than the Minnesota models. Experimental structures in the size range discussed here are available only from diffraction methods, which are significantly contaminated by the effects of molecular vibrations (GED) or librations and crystal-packing forces (X-ray), which may be comparable or even larger than the errors in internuclear distances for particular functional, making validation of DFT results a difficult prospect. Moreover, application of accurate WFT methods to obtain accurate geometries of relatively large molecules of 50–100 atoms to validate DFT methods is also impractical as robust results can be obtained only with the CCSD(T) method, relative large basis sets, and correlated subvalence electrons. Creation of a database of accurate molecular geometries for benchmarking of methods that require less-expensive computational chemistry methods would be a good subject for future work. Finally, we performed a series of additional calculations to estimate the potential errors in the absolute electronic energy from different methods used for geometry optimization and SP energy evaluation. Our calculations showed that an error of few kcal/mol in SP energies can easily be obtained even in relatively small systems if inaccurate geometries are used.
Acknowledgments
We are grateful to the reviewers for their critical comments and suggestions for improvement of this manuscript. The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia.
Supporting Information Available
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.7b01203.
Figures S1–S6, Table S1 (mentioned in the main text), tabulated errors forming the basis of Figures 1–3 and S1–S6, and Cartesian coordinates (Å) of PBE, BP86, BLYP, BPBE, HCTH/407, B97-D, B97-D3, SOGGA11, N12, OLYP, TPSS, VSXC, M06-L, M11-L, MN12-L, B3PW91, B3LYP, mPW1PW91, SOGGA11-X, PBE0, mPW1LYP, mPW1PBE, X3LYP, B971, B972, B98, B1LYP, APF, APF-D, LC-ωPBE, CAM-B3LYP, N12-SX, ωB97X-D, BMK, TPSSh, M06, M11, MN12-SX, MP2, and CCSD optimized geometries (PDF)
The authors declare no competing financial interest.
Supplementary Material
References
- Jensen F.Introduction to Computational Chemistry, 2nd ed.; Wiley: Chichester, England, 2006; pp 1–620. [Google Scholar]
- Cramer C. J.Essentials of Computational Chemistry: Theories and Models, 2nd ed.; Wiley: Chichester, England, 2005; pp 1–618. [Google Scholar]
- Hehre W. J.; Ditchfield R.; Radom L.; Pople J. A. Molecular Orbital Theory of the Electronic Structure of Organic Compounds. V. Molecular Theory of Bond Separation. J. Am. Chem. Soc. 1970, 92, 4796–4801. 10.1021/ja00719a006. [DOI] [Google Scholar]
- Pople J. A.; Head-Gordon M.; Fox D. J.; Raghavachari K.; Curtiss L. A. Gaussian-1 Theory: a General Procedure for Prediction of Molecular Energies. J. Chem. Phys. 1989, 90, 5622–5629. 10.1063/1.456415. [DOI] [Google Scholar]
- Curtiss L. A.; Jones C.; Trucks G. W.; Raghavachari K.; Pople J. A. Gaussian-1 Theory of Molecular Energies for Second-Row Compounds. J. Chem. Phys. 1990, 93, 2537–2545. 10.1063/1.458892. [DOI] [Google Scholar]
- Curtiss L. A.; Raghavachari K.; Trucks G. W.; Pople J. A. Gaussian-2 Theory for Molecular Energies of First- and Second-Row Compounds. J. Chem. Phys. 1991, 94, 7221–7230. 10.1063/1.460205. [DOI] [Google Scholar]
- Curtiss L. A.; Raghavachari K.; Pople J. A. Gaussian-2 Theory Using Reduced Møller–Plesset Orders. J. Chem. Phys. 1993, 98, 1293–1298. 10.1063/1.464297. [DOI] [Google Scholar]
- Minenkov Y.; Sliznev V. V.; Cavallo L. Accurate Gas Phase Formation Enthalpies of Alloys and Refractories Decomposition Products. Inorg. Chem. 2017, 56, 1386–1401. 10.1021/acs.inorgchem.6b02441. [DOI] [PubMed] [Google Scholar]
- Emel’yanenko V. N.; Nagrimanov R. N.; Solomonov B. N.; Verevkin S. P. Adamantanes: Benchmarking of Thermochemical Properties. J. Chem. Thermodyn. 2016, 101, 130–138. 10.1016/j.jct.2016.05.017. [DOI] [Google Scholar]
- Goldsmith C. F.; Magoon G. R.; Green W. H. Database of Small Molecule Thermochemistry for Combustion. J. Phys. Chem. A 2012, 116, 9033–9057. 10.1021/jp303819e. [DOI] [PubMed] [Google Scholar]
- Bross D. H.; Peterson K. A. Composite Thermochemistry of Gas Phase U(VI)-Containing Molecules. J. Chem. Phys. 2014, 141, 244308. 10.1063/1.4904721. [DOI] [PubMed] [Google Scholar]
- Emel’yanenko V. N.; Zaitsau D. H.; Shoifet E.; Meurer F.; Verevkin S. P.; Schick C.; Held C. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study. J. Phys. Chem. A 2015, 119, 9680–9691. 10.1021/acs.jpca.5b04753. [DOI] [PubMed] [Google Scholar]
- Somers K. P.; Simmie J. M. Benchmarking Compound Methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the Active Thermochemical Tables: Formation Enthalpies of Radicals. J. Phys. Chem. A 2015, 119, 8922–8933. 10.1021/acs.jpca.5b05448. [DOI] [PubMed] [Google Scholar]
- Verevkin S. P.; Zaitsau D. H.; Emel’yanenko V. N.; Zhabina A. A. Thermodynamic Properties of Glycerol: Experimental and Theoretical Study. Fluid Phase Equilib. 2015, 397, 87–94. 10.1016/j.fluid.2015.03.038. [DOI] [Google Scholar]
- Emel’yanenko V. N.; Verevkin S. P. Benchmark Thermodynamic Properties of 1,3-Propanediol: Comprehensive Experimental and Theoretical Study. J. Chem. Thermodyn. 2015, 85, 111–119. 10.1016/j.jct.2015.01.014. [DOI] [Google Scholar]
- Emel’yanenko V. N.; Zaitseva K. V.; Agapito F.; Simões J. A. M.; Verevkin S. P. Benchmark Thermodynamic Properties of Methylanisoles: Experimental and Theoretical Study. J. Chem. Thermodyn. 2015, 85, 155–162. 10.1016/j.jct.2015.02.001. [DOI] [Google Scholar]
- Emel’yanenko V. N.; Pimerzin A. A.; Turovtsev V. V.; Verevkin S. P. Benchmark Thermochemistry of N-Methylaniline. J. Phys. Chem. A 2015, 119, 2142–2152. 10.1021/jp5129854. [DOI] [PubMed] [Google Scholar]
- Paulechka E.; Kazakov A. Efficient DLPNO–CCSD(T)-Based Estimation of Formation Enthalpies for C-, H-, O-, and N-Containing Closed-Shell Compounds Validated against Critically Evaluated Experimental Data. J. Phys. Chem. A 2017, 121, 4379–4387. 10.1021/acs.jpca.7b03195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karton A.; Rabinovich E.; Martin J. M. L.; Ruscic B. W4 Theory for Computational Thermochemistry: In Pursuit of Confident Sub-kj/mol Predictions. J. Chem. Phys. 2006, 125, 144108. 10.1063/1.2348881. [DOI] [PubMed] [Google Scholar]
- Karton A.; Tarnopolsky A.; Lamère J. F.; Schatz G. C.; Martin J. M. L. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. J. Phys. Chem. A 2008, 112, 12868–12886. 10.1021/jp801805p. [DOI] [PubMed] [Google Scholar]
- Karton A.; Gruzman D.; Martin J. M. L. Benchmark Thermochemistry of the CnH2n+2 Alkane Isomers (N=2–8) and Performance of DFT and Composite Ab Initio Methods for Dispersion-Driven Isomeric Equilibria. J. Phys. Chem. A 2009, 113, 8434–8447. 10.1021/jp904369h. [DOI] [PubMed] [Google Scholar]
- Karton A.; Daon S.; Martin J. M. L. W4-11: A High-Confidence Benchmark Dataset for Computational Thermochemistry Derived from First-Principles W4 Data. Chem. Phys. Lett. 2011, 510, 165–178. 10.1016/j.cplett.2011.05.007. [DOI] [Google Scholar]
- Minenkov Y.; Occhipinti G.; Jensen V. R. Metal–Phosphine Bond Strengths of the Transition Metals: A Challenge for DFT. J. Phys. Chem. A 2009, 113, 11833–11844. 10.1021/jp902940c. [DOI] [PubMed] [Google Scholar]
- Minenkov Y.; Occhipinti G.; Heyndrickx W.; Jensen V. R. The Nature of the Barrier to Phosphane Dissociation from Grubbs Olefin Metathesis Catalysts. Eur. J. Inorg. Chem. 2012, 1507–1516. 10.1002/ejic.201100932. [DOI] [Google Scholar]
- Minenkov Y.; Chermak E.; Cavallo L. Accuracy of DLPNO–CCSD(T) Method for Noncovalent Bond Dissociation Enthalpies from Coinage Metal Cation Complexes. J. Chem. Theory Comput. 2015, 11, 4664–4676. 10.1021/acs.jctc.5b00584. [DOI] [PubMed] [Google Scholar]
- Minenkov Y.; Chermak E.; Cavallo L. Troubles in the Systematic Prediction of Transition Metal Thermochemistry with Contemporary Out-of-the-Box Methods. J. Chem. Theory Comput. 2016, 12, 1542–1560. 10.1021/acs.jctc.5b01163. [DOI] [PubMed] [Google Scholar]
- Sieffert N.; Bühl M. Noncovalent Interactions in a Transition-Metal Triphenylphosphine Complex: A Density Functional Case Study. Inorg. Chem. 2009, 48, 4622–4624. 10.1021/ic900347e. [DOI] [PubMed] [Google Scholar]
- Xu X.; Zhang W.; Tang M.; Truhlar D. G. Do Practical Standard Coupled Cluster Calculations Agree Better Than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?. J. Chem. Theory Comput. 2015, 11, 2036–2052. 10.1021/acs.jctc.5b00081. [DOI] [PubMed] [Google Scholar]
- Goerigk L.; Grimme S. A Thorough Benchmark of Density Functional Methods for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688. 10.1039/c0cp02984j. [DOI] [PubMed] [Google Scholar]
- Zhao Y.; Truhlar D. G. Applications and Validations of the Minnesota Density Functionals. Chem. Phys. Lett. 2011, 502, 1–13. 10.1016/j.cplett.2010.11.060. [DOI] [Google Scholar]
- Schultz N. E.; Zhao Y.; Truhlar D. G. Databases for Transition Element Bonding: Metal–Metal Bond Energies and Bond Lengths and Their Use to Test Hybrid, Hybrid Meta, and Meta Density Functionals and Generalized Gradient Approximations. J. Phys. Chem. A 2005, 109, 4388–4403. 10.1021/jp0504468. [DOI] [PubMed] [Google Scholar]
- Cramer C. J.; Truhlar D. G. Density Functional Theory for Transition Metals and Transition Metal Chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. 10.1039/b907148b. [DOI] [PubMed] [Google Scholar]
- Averkiev B. B.; Zhao Y.; Truhlar D. G. Binding Energy of d10 Transition Metals to Alkenes by Wave Function Theory and Density Functional Theory. J. Mol. Catal. A: Chem. 2010, 324, 80–88. 10.1016/j.molcata.2010.03.016. [DOI] [Google Scholar]
- Zhang W.; Truhlar D. G.; Tang M. Tests of Exchange-Correlation Functional Approximations against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds. J. Chem. Theory Comput. 2013, 9, 3965–3977. 10.1021/ct400418u. [DOI] [PubMed] [Google Scholar]
- Tarnopolsky A.; Karton A.; Sertchook R.; Vuzman D.; Martin J. M. L. Double-Hybrid Functionals for Thermochemical Kinetics. J. Phys. Chem. A 2008, 112, 3–8. 10.1021/jp710179r. [DOI] [PubMed] [Google Scholar]
- Liakos D. G.; Sparta M.; Kesharwani M. K.; Martin J. M. L.; Neese F. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. J. Chem. Theory Comput. 2015, 11, 1525–1539. 10.1021/ct501129s. [DOI] [PubMed] [Google Scholar]
- Tortorella S.; Talamo M. M.; Cardone A.; Pastore M.; De Angelis F. Benchmarking DFT and Semi-Empirical Methods for a Reliable and Cost-Efficient Computational Screening of Benzofulvene Derivatives as Donor Materials for Small-Molecule Organic Solar Cells. J. Phys.: Condens. Matter 2016, 28, 074005. 10.1088/0953-8984/28/7/074005. [DOI] [PubMed] [Google Scholar]
- Shi R.; Huang X.; Su Y.; Lu H.-G.; Li S.-D.; Tang L.; Zhao J. Which Density Functional Should Be Used to Describe Protonated Water Clusters?. J. Phys. Chem. A 2017, 121, 3117–3127. 10.1021/acs.jpca.7b00058. [DOI] [PubMed] [Google Scholar]
- Kubiček K.; Veedu S. T.; Storozhuk D.; Kia R.; Techert S. Geometric and Electronic Properties in a Series of Phosphorescent Heteroleptic Cu(I) Complexes: Crystallographic and Computational Studies. Polyhedron 2017, 124, 166–176. 10.1016/j.poly.2016.12.035. [DOI] [Google Scholar]
- Cypryk M.; Gostyński B. Computational Benchmark for Calculation of Silane and Siloxane Thermochemistry. J. Mol. Model. 2016, 22, 35. 10.1007/s00894-015-2900-1. [DOI] [PubMed] [Google Scholar]
- Wang J.; Bai F.-Q.; Xia B.-H.; Zhang H.-X.; Cui T. Accurate Simulation of Geometry, Singlet-Singlet and Triplet-Singlet Excitation of Cyclometalated Iridium(III) Complex. J. Mol. Model. 2014, 20, 2108. 10.1007/s00894-014-2108-9. [DOI] [PubMed] [Google Scholar]
- Tentscher P. R.; Arey J. S. Geometries and Vibrational Frequencies of Small Radicals: Performance of Coupled Cluster and More Approximate Methods. J. Chem. Theory Comput. 2012, 8, 2165–2179. 10.1021/ct300194x. [DOI] [PubMed] [Google Scholar]
- Hirva P.; Haukka M.; Jakonen M.; Moreno M. A. DFT Tests for Group 8 Transition Metal Carbonyl Complexes. J. Mol. Model. 2008, 14, 171–181. 10.1007/s00894-007-0259-7. [DOI] [PubMed] [Google Scholar]
- Minenkov Y.; Singstad Å.; Occhipinti G.; Jensen V. R. The Accuracy of DFT-Optimized Geometries of Functional Transition Metal Compounds: A Validation Study of Catalysts for Olefin Metathesis and Other Reactions in the Homogeneous Phase. Dalton Trans. 2012, 41, 5526–5541. 10.1039/c2dt12232d. [DOI] [PubMed] [Google Scholar]
- Girichev G. V.; Giricheva N. I.; Koifman O. I.; Minenkov Y. V.; Pogonin A. E.; Semeikin A. S.; Shlykov S. A. Molecular Structure and Bonding in Octamethylporphyrin Tin(II), SnN4C28H28. Dalton Trans. 2012, 41, 7550–7558. 10.1039/c2dt12499h. [DOI] [PubMed] [Google Scholar]
- Bühl M.; Kabrede H. Geometries of Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2006, 2, 1282–1290. 10.1021/ct6001187. [DOI] [PubMed] [Google Scholar]
- Bühl M.; Reimann C.; Pantazis D. A.; Bredow T.; Neese F. Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2008, 4, 1449–1459. 10.1021/ct800172j. [DOI] [PubMed] [Google Scholar]
- Waller M. P.; Braun H.; Hojdis N.; Bühl M. Geometries of Second-Row Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput. 2007, 3, 2234–2242. 10.1021/ct700178y. [DOI] [PubMed] [Google Scholar]
- Larsen E.; Madsen A. Ø.; Kofod P.; Song Y. S. Making a Robust Carbon–Cobalt(III) Bond. Inorg. Chem. 2009, 48, 7159–7164. 10.1021/ic900397r. [DOI] [PubMed] [Google Scholar]
- Huang H.; Zhang T.; Zhang J.; Wang L. Density Functional Theoretical Study of Transition Metal Carbohydrazide Perchlorate Complexes. Chem. Phys. Lett. 2010, 487, 200–203. 10.1016/j.cplett.2010.01.047. [DOI] [Google Scholar]
- Machura B.; Jaworska M.; Kruszynski R. X-Ray and Electronic Structure of the [ReCl3(pzH)2(PPh3)] and [ReCl3(3,5-Me2pzH)2(PPh3)] Complexes. Polyhedron 2004, 23, 1819–1827. 10.1016/j.poly.2004.04.017. [DOI] [Google Scholar]
- Machura B.; Jaworska M.; Kruszynski R. DFT Calculation and X-Ray Structure of the [ReCl3(pzH)3] Complex. Polyhedron 2004, 23, 2005–2011. 10.1016/j.poly.2004.05.003. [DOI] [Google Scholar]
- Jiménez-Hoyos C. A.; Janesko B. G.; Scuseria G. E. Evaluation of Range-Separated Hybrid and Other Density Functional Approaches on Test Sets Relevant for Transition Metal-Based Homogeneous Catalysts. J. Phys. Chem. A 2009, 113, 11742–11749. 10.1021/jp902879m. [DOI] [PubMed] [Google Scholar]
- Jacobsen H. Hydrogen and Dihydrogen Bonding of Transition Metal Hydrides. Chem. Phys. 2008, 345, 95–102. 10.1016/j.chemphys.2008.01.041. [DOI] [PubMed] [Google Scholar]
- Kulkarni A. D.; Truhlar D. G. Performance of Density Functional Theory and Møller–Plesset Second-Order Perturbation Theory for Structural Parameters in Complexes of Ru. J. Chem. Theory Comput. 2011, 7, 2325–2332. 10.1021/ct200188n. [DOI] [PubMed] [Google Scholar]
- Rydberg P.; Olsen L. The Accuracy of Geometries for Iron Porphyrin Complexes from Density Functional Theory. J. Phys. Chem. A 2009, 113, 11949–11953. 10.1021/jp9035716. [DOI] [PubMed] [Google Scholar]
- Vilkov L. V.; Pentin Y. A.. Physical Research Methods in Chemistry. Structural Methods and Optical Spectroscopy; Mir: Moscow, 2003; pp 1–683. [Google Scholar]
- Novikov V. P.; Sipachev V. A.; Kulikova E. I.; Vilkov L. V. A Comparison of Amplitudes and Shrinkage Corrections for C6Cl3(NO2)3 Calculated Using Conventional and New Procedures. J. Mol. Struct. 1993, 301, 29–36. 10.1016/0022-2860(93)80228-n. [DOI] [Google Scholar]
- Sipachev V. A. Anharmonic Corrections to Structural Experiment Data. Struct. Chem. 2000, 11, 167–172. 10.1023/a:1009217826943. [DOI] [Google Scholar]
- Sipachev V. A.; Khaikin L. S.; Grikina O. E.; Nikitin V. S.; Trætteberg M. Structure, Spectra and Internal Rotation of Bis(Trimethylsilyl) Acetylene: Spectral Analysis by Scaling Quantum-Chemical Force Fields and Two Methods for Calculating Vibrational Effects. J. Mol. Struct. 2000, 523, 1–22. 10.1016/s0022-2860(99)00387-7. [DOI] [Google Scholar]
- Sipachev V. A. Local Centrifugal Distortions Caused by Internal Motions of Molecules. J. Mol. Struct. 2001, 567, 67–72. 10.1016/s0022-2860(01)00534-8. [DOI] [Google Scholar]
- Sipachev V. A. The Use of Quantum-Mechanical Third-Order Force Constants in Structural Studies. J. Mol. Struct. 2004, 693, 235–240. 10.1016/j.molstruc.2004.02.038. [DOI] [Google Scholar]
- Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/physrevlett.77.3865. [DOI] [PubMed] [Google Scholar]
- Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. 10.1103/physrevlett.78.1396. [DOI] [PubMed] [Google Scholar]
- Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/physreva.38.3098. [DOI] [PubMed] [Google Scholar]
- Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
- Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. 10.1021/j100096a001. [DOI] [Google Scholar]
- Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. [DOI] [Google Scholar]
- Lovas F. J.; Tiemann E.; Coursey J. S.; Kotochigova S. A.; Chang J.; Olsen K.; Dragoset R. A.. NIST Standard Reference Database 114. Diatomic Spectral Database, version 2.1 [Online]; National Institute of Standards and Technology: Gaithersburg, MD, 2002. Available: http://physics.nist.gov/Diatomic. [Google Scholar]
- Lovas F. J.; Coursey J. S.; Kotochigova S. A.; Chang J.; Olsen K.; Dragoset R. A.. NIST Standard Reference Database 117. Triatomic Spectral Database, version 2.0 [Online]; National Institute of Standards and technology: Gaithersburg, MD, 2003. Available: http://physics.nist.gov/Triatomic. [Google Scholar]
- Hoeft J.; Lovas F. J.; Tiemann E.; Törring T. Die Mikrowellen-Rotationsspektren des AgCl, AgBr und AgJ. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1971, 26, 240–244. 10.1515/zna-1971-0210. [DOI] [Google Scholar]
- Krisher L. C.; Norris W. G. Microwave Spectrum of Silver Chloride. J. Chem. Phys. 1966, 44, 391–394. 10.1063/1.1726476. [DOI] [Google Scholar]
- Hoeft J.; Lovas F. J.; Tiemann E.; Törring T. The Rotational Spectra and Dipole Moments of AgF and CuF by Microwave Absorption. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1970, 25, 35–39. 10.1515/zna-1970-0106. [DOI] [Google Scholar]
- Hoeft J.; Nair K. P. R. Millimeter-Wave Rotational Transitions and Molecular Constants of the Diatomic Silver Iodide. Chem. Phys. Lett. 1986, 129, 538–540. 10.1016/0009-2614(86)80396-7. [DOI] [PubMed] [Google Scholar]
- Wyse F. C.; Gordy W. Millimeter Wave Rotational Spectra of AlCl, AlBr, and AlI. J. Chem. Phys. 1972, 56, 2130. 10.1063/1.1677509. [DOI] [Google Scholar]
- Wyse F. C.; Gordy W.; Pearson E. F. Millimeter and Submillimeter Wave Spectrum and Molecular Constants of Aluminum Monofluoride. J. Chem. Phys. 1970, 52, 3887. 10.1063/1.1673587. [DOI] [Google Scholar]
- Lide D. R. High-Temperature Microwave Spectroscopy: AlF and AlCl. J. Chem. Phys. 1965, 42, 1013. 10.1063/1.1696035. [DOI] [Google Scholar]
- Hoeft J.; Lovas F. J.; Tiemann E.; Törring T. Microwave Absorption Spectra of AlF, GaF, InF, and TIF. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1970, 25, 1029–1035. 10.1515/zna-1970-0706. [DOI] [Google Scholar]
- Endo Y.; Saito S.; Hirota E. Microwave Spectroscopy of Boron Chloride (BCl). The Chlorine Nuclear Quadrupole Coupling Constant. Bull. Chem. Soc. Jpn. 1983, 56, 3410–3414. 10.1246/bcsj.56.3410. [DOI] [Google Scholar]
- Lovas F. J.; Johnson D. R. Microwave Spectrum of BF. J. Chem. Phys. 1971, 55, 41. 10.1063/1.1675537. [DOI] [Google Scholar]
- Wharton L.; Klemperer W. Microwave Spectrum of BaO. J. Chem. Phys. 1963, 38, 2705. 10.1063/1.1733577. [DOI] [Google Scholar]
- Hocking W. H.; Pearson E. F.; Creswell R. A.; Winnewisser G. Millimeter Wave Spectra of the Alkaline Earth Metal Oxides: BaO, SrO, and CaO. J. Chem. Phys. 1978, 68, 1128–1134. 10.1063/1.435800. [DOI] [Google Scholar]
- Helms D. A.; Winnewisser M.; Winnewisser G. Millimeter Wave Spectrum of Barium Sulfide in a Low-Pressure Flame. Current Millimeter Wave Measurements of High-Temperature Species. J. Phys. Chem. 1980, 84, 1758–1765. 10.1021/j100451a003. [DOI] [Google Scholar]
- Melendres C. A.; Hebert A. J.; Street K. Radio-Frequency Stark Spectra and Dipole Moment of BaS. J. Chem. Phys. 1969, 51, 855. 10.1063/1.1672091. [DOI] [Google Scholar]
- Willis R. E.; Clark W. W. Millimeter Wave Measurements of the Rotational Spectra of ClF, BrF, BrCl, ICl, and IBr. J. Chem. Phys. 1980, 72, 4946–4950. 10.1063/1.439780. [DOI] [Google Scholar]
- Le Floch A. Revised Molecular Constants for the Ground State of CO. Mol. Phys. 1991, 72, 133–144. 10.1080/00268979100100081. [DOI] [Google Scholar]
- Bogey M.; Demuynck C.; Destombes J. L. Millimeter and Submillimeter Wave Spectrum of CS1Σ in High Vibrational-States: Isotopic Dependence of Dunham Coefficients. J. Mol. Spectrosc. 1982, 95, 35–42. 10.1016/0022-2852(82)90234-x. [DOI] [Google Scholar]
- McGurk J.; Tigelaar H. L.; Rock S. L.; Norris C. L.; Flygare W. H. Detection, Assignment of the Microwave Spectrum and the Molecular Stark and Zeeman Effects in CSe, and the Zeeman Effect and Sign of the Dipole Moment in CS. J. Chem. Phys. 1973, 58, 1420–1424. 10.1063/1.1679374. [DOI] [Google Scholar]
- Creswell R. A.; Hocking W. H.; Pearson E. F. Millimeter Wave Spectrum of CaO. Chem. Phys. Lett. 1977, 48, 369–371. 10.1016/0009-2614(77)80335-7. [DOI] [Google Scholar]
- Manson E. L.; De Lucia F. C.; Gordy W. Millimeter-Wave Spectrum and Molecular Constants of Cuprous Bromide. J. Chem. Phys. 1975, 63, 2724–2726. 10.1063/1.431622. [DOI] [Google Scholar]
- Manson E. L.; De Lucia F. C.; Gordy W. Millimeter- and Submillimeter-Wave Spectrum and Molecular Constants of Cuprous Chloride. J. Chem. Phys. 1975, 62, 1040–1043. 10.1063/1.430571. [DOI] [Google Scholar]
- Manson E. L.; De Lucia F. C.; Gordy W. Millimeter- and Submillimeter-Wave Spectrum and Molecular Constants of Cuprous Iodide. J. Chem. Phys. 1975, 62, 4796–4798. 10.1063/1.430430. [DOI] [Google Scholar]
- Nair K. P. R.; Schütze-Pahlmann H.-U.; Hoeft J. Millimeter-Wave Rotational Spectrum and Molecular Constants of Diatomic Gallium Bromide. Chem. Phys. Lett. 1981, 80, 149–152. 10.1016/0009-2614(81)80078-4. [DOI] [Google Scholar]
- Tiemann E.; Hoeft J.; Grasshoff M. Hyperfeinstruktur im Rotati onsspektrum des GaCl. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1972, 27, 753. 10.1515/zna-1972-0505. [DOI] [Google Scholar]
- Nair K. P. R.; Schütze-Pahlmann H.-U.; Hoeft J. Millimeter-Wave Rotational Spectrum and Molecular Constants of Diatomic Gallium Iodide. Chem. Phys. Lett. 1980, 70, 583–586. 10.1016/0009-2614(80)80130-8. [DOI] [Google Scholar]
- Törring T. Das Mikrowellenrotationsspektrum Des GeO. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1966, 21, 287. 10.1515/zna-1966-0319. [DOI] [Google Scholar]
- Raymonda J. W.; Muenter J. S.; Klemperer W. A. Electric Dipole Moment of SiO and GeO. J. Chem. Phys. 1970, 52, 3458. 10.1063/1.1673510. [DOI] [Google Scholar]
- Stieda W. U.; Tiemann E.; Törring T.; Hoeft J. Adiabatische Korrektur der Born-Oppenheimer-Näherung beim GeS und GeSe/Adiabatic Correction of the Born-Oppenheimer Approximation for GeS and GeSe. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1976, 31, 374–380. 10.1515/zna-1976-3-425. [DOI] [Google Scholar]
- Hoeft J.; Lovas F. J.; Tiemann E.; Törring T. Notizen: Microwave Spectrum of BaO. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1970, 25, 1750. 10.1515/zna-1970-1132. [DOI] [Google Scholar]
- Rank D. H.; Fink U.; Wiggins T. A. High Resolution Measurements on the Infrared Absorption Spectrum of HBr. J. Mol. Spectrosc. 1965, 18, 170–183. 10.1016/0022-2852(65)90073-1. [DOI] [Google Scholar]
- Rank D. H.; Rao B. S.; Wiggins T. A. Molecular Constants of HCl35. J. Mol. Spectrosc. 1965, 17, 122. 10.1016/0022-2852(65)90114-1. [DOI] [Google Scholar]
- De Lucia F. C.; Helminger P.; Gordy W. Submillimeter-Wave Spectra and Equilibrium Structures of the Hydrogen Halides. Phys. Rev. A 1971, 3, 1849. 10.1103/physreva.3.1849. [DOI] [Google Scholar]
- Webb D. U.; Rao K. N. Vibration Rotation Bands of Heated Hydrogen Halides. J. Mol. Spectrosc. 1968, 28, 121–124. 10.1016/0022-2852(68)90001-5. [DOI] [Google Scholar]
- De Leluw F. H.; Dymanus A. Magnetic Properties and Molecular Quadrupole Moment of HF and HCl By molecular-Beam Electric-Resonance Spectroscopy. J. Mol. Spectrosc. 1973, 48, 427–445. 10.1016/0022-2852(73)90107-0. [DOI] [Google Scholar]
- Muenter J. S.; Klemperer W. Hyperfine Structure Constants of HF and DF. J. Chem. Phys. 1970, 52, 6033. 10.1063/1.1672903. [DOI] [Google Scholar]
- Van Dijk F. A.; Dymanus A. The Electric Dipole Moment of HI and HBr. Chem. Phys. Lett. 1970, 5, 387–389. 10.1016/0009-2614(70)80043-4. [DOI] [Google Scholar]
- Herbst E.; Steinmetz W. Dipole Moment of ICI. J. Chem. Phys. 1972, 56, 5342. 10.1063/1.1677044. [DOI] [Google Scholar]
- Tiemann E.; Hoeft J.; Törring T. Das Rotationsspektrum des JF/Rotational Spectrum of IF. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1973, 28, 1405–1407. 10.1515/zna-1973-0904. [DOI] [Google Scholar]
- Tiemann E.; Köhler U.; Hoeft J. Zum Rotationsspektrum des InBr/On the Rotational Spectrum of InBr. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1977, 32, 6–9. 10.1515/zna-1977-0103. [DOI] [Google Scholar]
- Hoeft J. Das Mikrowellenrotationsspektrum Des Indiummonochlorids. Z. Phys. 1961, 163, 262. 10.1007/bf01342487. [DOI] [Google Scholar]
- Delvigne G. A. L.; de Wijn H. W. Microwave Rotational Spectrum of Indium Monochloride. J. Chem. Phys. 1966, 45, 3318. 10.1063/1.1728109. [DOI] [Google Scholar]
- Tiemann E.; Hoeft J.; Törring T. Elektrisches dipolmoment von InCl/Electric dipole moment of InCl. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1972, 27, 869. 10.1515/zna-1972-0528. [DOI] [Google Scholar]
- Schenk B.; Tiemann E.; Hoeft J. Hyperfeinstruktur des Rotationsspektrums bei zwei vergleichbaren Quadrupolkopplungskonstanten: InJ. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1970, 25, 1827. 10.1515/zna-1970-1209. [DOI] [Google Scholar]
- Hebert A. J.; Breivogel F. W.; Street K. Radio-Frequency and Microwave Spectra of LiBr by the Molecular-Beam Electric-Resonance Method. J. Chem. Phys. 1964, 41, 2368. 10.1063/1.1726273. [DOI] [Google Scholar]
- Hebert A. J.; Breivogel F. W.; Street K. Erratum: Radio-Frequency and Microwave Spectra of LiBr by the Molecular-Beam Electric-Resonance Method. J. Chem. Phys. 1967, 47, 2202. 10.1063/1.1712263. [DOI] [Google Scholar]
- Pearson E. F.; Gordy W. Millimeter- and Submillimeter-Wave Spectra and Molecular Constants of LiF and LiCl. Phys. Rev. 1969, 177, 52. 10.1103/physrev.177.52. [DOI] [Google Scholar]
- Hebert A. J.; Lovas F. J.; Melendres C. A.; Hollowell C. D.; Story T. L.; Street K. Dipole Moments of Some Alkali Halide Molecules by Molecular Beam Electric Resonance Method. J. Chem. Phys. 1968, 48, 2824. 10.1063/1.1669526. [DOI] [Google Scholar]
- Russell A. M. Magnetic Moments Due to Rotation in Li6F and Li7F. Phys. Rev. 1958, 111, 1558–1567. 10.1103/physrev.111.1558. [DOI] [Google Scholar]
- Plummer G. M.; Herbst E.; De Lucia F. C. Submillimeter Spectra and Molecular Constants of 6LiH, 7LiH, 6LiD, and 7LiD. J. Chem. Phys. 1984, 81, 4893–4897. 10.1063/1.447516. [DOI] [Google Scholar]
- Breivogel F. W.; Hebert A. J.; Street K. Radio-Frequency and Microwave Spectra of 6Li127I by the Molecular-Beam Electric-Resonance Method. J. Chem. Phys. 1965, 42, 1555. 10.1063/1.1696159. [DOI] [Google Scholar]
- Törring T.; Hoeft J. The Microwave Absorption Spectrum of MgO. Chem. Phys. Lett. 1986, 126, 477–480. 10.1016/s0009-2614(86)80160-9. [DOI] [Google Scholar]
- Rusk J. R.; Gordy W. Millimeter Wave Molecular Beam Spectroscopy: Alkali Bromides and Iodides. Phys. Rev. 1962, 127, 817. 10.1103/physrev.127.817. [DOI] [Google Scholar]
- Clouser P. L.; Gordy W. Millimeter-Wave Molecular-Beam Spectroscopy: Alkali Chlorides. Phys. Rev. 1964, 134, A863. 10.1103/physrev.134.a863. [DOI] [Google Scholar]
- De Leeuw F. H.; van Wachem R.; Dymanus A. Radio-Frequency Spectra of NaCl by the Molecular-Beam Electric Resonance Method. J. Chem. Phys. 1970, 53, 981. 10.1063/1.1674166. [DOI] [Google Scholar]
- Bauer R. K.; Lew H. Rotational Constants and Electric Dipole Moment of NaF. Can. J. Phys. 1963, 41, 1461–1469. 10.1139/p63-145. [DOI] [Google Scholar]
- Hollowell C. D.; Hebert A. J.; Street K. Radio-Frequency and Microwave Spectra of NaF by the Molecular-Beam Electric-Resonance Method. J. Chem. Phys. 1964, 41, 3540. 10.1063/1.1725764. [DOI] [Google Scholar]
- Sastry K. V. L. N.; Herbst E.; de Lucia F. C. Laboratory Measurements of Millimeter and Submillimeter Transitions of Sodium Hydride and Sodium Deuteride. Astrophys. J. 1981, 248, L53–L55. 10.1086/183622. [DOI] [Google Scholar]
- Sastry K. V. L. N.; Herbst E.; De Lucia F. C. The Millimeter Wave Spectra of NaH and NaD. J. Chem. Phys. 1981, 75, 4753–4757. 10.1063/1.441910. [DOI] [Google Scholar]
- Wyse F. C.; Gordy W. Rotational Spectrum of PN. Bull. Am. Phys. Soc. 1972, 17, 575. [Google Scholar]
- Wyse F. C.; Manson E. L.; Gordy W. Millimeter Wave Rotational Spectrum and Molecular Constants of 31P14N. J. Chem. Phys. 1972, 57, 1106. 10.1063/1.1678365. [DOI] [Google Scholar]
- Raymonda J.; Klemperer W. Molecular Beam Electric Resonance Spectrum of 31P14N. J. Chem. Phys. 1971, 55, 232. 10.1063/1.1675513. [DOI] [Google Scholar]
- Törring T. Notizen: Das Mikrowellenrotationsspektrum des Bleimonoxids. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1964, 19, 1426. 10.1515/zna-1964-1222. [DOI] [Google Scholar]
- Hoeft J.; Lovas F.; Tiemann E.; Tischer R.; Törring T. Elektrisches Dipolmoment und Mikrowellenrotationsspektrum von SnO, SnS, PbO und PbS. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1969, 24, 1222. 10.1515/zna-1969-0809. [DOI] [Google Scholar]
- Hoeft J. Notizen: Das Mikrowellenrotationsspektrum Des Bleimonosulfids. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1964, 19, 1134. 10.1515/zna-1964-0923. [DOI] [Google Scholar]
- Hoeft J.; Manns K. Das Mikrowellenrotationsspektrum Des PbSe. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1966, 21, 1884. 10.1515/zna-1966-1111. [DOI] [Google Scholar]
- Tiemann E.; Hoeft J.; Schenk B. Das Mikrowellenrotationsspektrum des PbTe. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1969, 24, 787. 10.1515/zna-1969-0512. [DOI] [Google Scholar]
- Lovas F. J.; Maki A. G.; Olson W. B. The Infrared Spectrum of SiO near 1240 cm–1 and Its Relation to the Circumstellar SiO Maser. J. Mol. Spectrosc. 1981, 87, 449–458. 10.1016/0022-2852(81)90416-1. [DOI] [Google Scholar]
- Tiemann E.; Renwanz E.; Hoeft J.; Törring T. Isotopieeffekte im Rotationsspektrum des SiS/lsotopic Effects in the Rotational Spectrum of SiS. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1972, 27, 1566–1570. 10.1515/zna-1972-1105. [DOI] [Google Scholar]
- Hoeft J.; Lovas F. J.; Törring T. Electrical Dipole Moments and Microwave Rotational Spectra of SiS. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1969, 24, 1422. 10.1515/zna-1969-0932. [DOI] [Google Scholar]
- Hoeft J. Das Mikrowellenrotationsspektrum Des SiSe. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1965, 20, 1122. 10.1515/zna-1965-0904. [DOI] [Google Scholar]
- Hoeft J.; Lovas F. J.; Tiemann E.; Törring T. Dipole Moments and Hyperfine Structure of the Group-IV/VI Diatomic Molecules. J. Chem. Phys. 1970, 53, 2736. 10.1063/1.1674397. [DOI] [Google Scholar]
- Törring T. Das Mikrowellenrotationsspektrum Des SnO. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1967, 22, 1234. 10.1515/zna-1967-0813. [DOI] [Google Scholar]
- Murty A. N.; Curl R. F. Dipole Moments of the Sulfides of Pb, Sn, and Si from Stark Effect Measurements. J. Mol. Spectrosc. 1969, 30, 102–110. 10.1016/0022-2852(69)90239-2. [DOI] [Google Scholar]
- Hoeft J. Das Mikrowellenrotationsspektrum Des SnSe. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1966, 21, 437. 10.1515/zna-1966-0409. [DOI] [Google Scholar]
- Hoeft J.; Lovas F. J.; Tiemann E.; Tischer R.; Törring T. Elektrisches Dipolmoment und Mikrowellenrotationsspektrum des GeO und GeS. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1969, 24, 1843. 10.1515/zna-1969-0808. [DOI] [Google Scholar]
- Hoeft J.; Tiemann E. Das Mikrowellenrotationsspektrum des SnTe. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1968, 23, 1034. 10.1515/zna-1968-0713. [DOI] [Google Scholar]
- Fitzky H. G. Das Mikrowellenrotationsspektrum Der Thallium I-Halogenide. Z. Phys. 1958, 151, 351–364. 10.1007/bf01338389. [DOI] [Google Scholar]
- Tiemann E. Elektrisches Dipolmoment von TlBr und TlJ. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1971, 26, 1809. 10.1515/zna-1971-1105. [DOI] [Google Scholar]
- De Wijn H. W. The Microwave Rotational Spectra of Thallium Mono-Chloride. Physica 1965, 31, 1193. 10.1016/0031-8914(65)90048-0. [DOI] [Google Scholar]
- Ley R.; Schauer W. Molekülstrahl-Resonanz-Messungen von Hyperfeinstruktur, Zeeman-und Stark-Effekt an TlCl-Isotopen in verschiedenen Schwingungszuständen/Molecular Beam Resonance Measurements of Hyperfine Structure, Zeeman- and Stark-Effect of TICl-lsotopes in Different Vibrational States. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1972, 27, 77. 10.1515/zna-1972-0114. [DOI] [Google Scholar]
- Dijkerman H.; Monter B.; Gräff G.; Mönter W. Beiträge zum Stark-Effekt der Moleküle 205Tl19F und 39K19F/Contributions to the Stark-Effect of the Molecules 205Tl19F and 39K19F. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1972, 27, 100. 10.1515/zna-1972-0116. [DOI] [Google Scholar]
- v. Boeckh R.; Gräff G.; Ley R. Die Abhängigkeit innerer und äußerer Wechselwirkungen des TlF-Moleküls von der Schwingung, Rotation und Isotopie. Z. Phys. 1964, 179, 285. 10.1007/BF01381648. [DOI] [Google Scholar]
- Ryzlewicz C.; Schütze-Pahlmann H.-U.; Hoeft J.; Törring T. Rotational Spectrum and Hyperfine Structure of the 2Σ Radicals BaF and BaCl. Chem. Phys. 1982, 71, 389–399. 10.1016/0301-0104(82)85045-3. [DOI] [Google Scholar]
- Ryzlewicz C.; Törring T. Formation and Microwave Spectrum of the 2Σ-Radical Barium-Monofluoride. Chem. Phys. 1980, 51, 329–334. 10.1016/0301-0104(80)80107-8. [DOI] [Google Scholar]
- Dixon T. A.; Woods R. C. The Laboratory Microwave Spectrum of the Cyanide Radical in Its X2Σ+ Ground State. J. Chem. Phys. 1977, 67, 3956–3964. 10.1063/1.435412. [DOI] [Google Scholar]
- Möller K.; Schütze-Pahlmann H. U.; Hoeft J.; Törring T. Effects of Unresolved Hyperfine Structure in the Microwave Rotational Spectra of the 2Σ-Radicals CaBr and CaCl. Chem. Phys. 1982, 68, 399–404. 10.1016/0301-0104(82)87048-1. [DOI] [Google Scholar]
- Schütze-Pahlmann H.-U.; Ryzlewicz C.; Hoeft J.; Törring T. Millimeter Wave Spectra of the 2Σ Radicals SrF and SrCl. Chem. Phys. Lett. 1982, 93, 74–77. 10.1016/0009-2614(82)85058-6. [DOI] [Google Scholar]
- Kuijpers P.; Dymanus A. Rotational Spectrum of BiBr. Chem. Phys. Lett. 1976, 39, 217–220. 10.1016/0009-2614(76)80058-9. [DOI] [Google Scholar]
- Kuijpers P.; Törring T.; Dymanus A. Formation, Microwave Spectrum and Molecular Constants of Bismuth Monochloride. Chem. Phys. 1976, 18, 401–416. 10.1016/0301-0104(76)87121-2. [DOI] [Google Scholar]
- Kuijpers P.; Dymanus A. Millimeter Wave Spectrum of Gaseous Bismuth Monofluoride (BiF). Chem. Phys. 1977, 24, 97–103. 10.1016/0301-0104(77)85082-9. [DOI] [Google Scholar]
- Kuijpers P.; Torring T.; Dymanus A. Microwave Spectrum of Bismuth Iodide (BiI). Chem. Phys. 1976, 12, 309–313. 10.1016/0301-0104(76)87101-7. [DOI] [Google Scholar]
- Bogey M.; Demuynck C.; Destombes J. L. Millimeter Wave Spectrum of SO in Highly Excited Vibrational States: Vibrational and Isotopic Dependence of Molecular Constants. Chem. Phys. 1982, 66, 99–104. 10.1016/0301-0104(82)88010-5. [DOI] [Google Scholar]
- Parent C. R.; Kuijpers P. J. M. Millimeterwave Spectrum of SeO in the X3Σ-State. Chem. Phys. 1979, 40, 425–437. 10.1016/0301-0104(79)85155-1. [DOI] [Google Scholar]
- Millen D. J.; Mitra D. Microwave Spectrum, Structure and Nuclear Quadrupole Coupling Coefficients of Nitrosyl Bromide. Trans. Faraday Soc. 1970, 66, 2414. 10.1039/tf9706602414. [DOI] [Google Scholar]
- Lafferty W. J.; Lide D. R.; Toth R. A. Infrared and Microwave Spectra of ClCN. J. Chem. Phys. 1965, 43, 2063. 10.1063/1.1697075. [DOI] [Google Scholar]
- Millen D. J.; Pannell J. The Microwave Spectrum, Structure, and Nuclear Quadrupole Coupling Coefficients of Nitrosyl Chloride. J. Chem. Soc. 1961, 1322. 10.1039/jr9610001322. [DOI] [Google Scholar]
- Tyler J. K.; Sheridan J. Structural Studies of Linear Molecules by Microwave Spectroscopy. Trans. Faraday Soc. 1963, 59, 2661. 10.1039/tf9635902661. [DOI] [Google Scholar]
- Buckton K. S.; Legon A. C.; Millen D. J. Microwave Spectrum and Structure of Nitrosyl Fluoride. Trans. Faraday Soc. 1969, 65, 1975. 10.1039/tf9696501975. [DOI] [Google Scholar]
- Takeo H.; Curl R. F. Microwave Spectrum of GeF2: Quadrupole Coupling and Centrifugal Distortion. J. Mol. Spectrosc. 1972, 43, 21. 10.1016/0022-2852(72)90160-9. [DOI] [Google Scholar]
- Cook R. L.; De Lucia F. C.; Helminger P. Molecular Force Field and Structure of Water: Recent Microwave Results. J. Mol. Spectrosc. 1974, 53, 62–76. 10.1016/0022-2852(74)90261-6. [DOI] [Google Scholar]
- Edwards T. H.; Moncur N. K.; Snyder L. E. Ground-State Molecular Constants of Hydrogen Sulfide. J. Chem. Phys. 1967, 46, 2139. 10.1063/1.1841014. [DOI] [Google Scholar]
- Cook R. L.; De Lucia F. C.; Helminger P. Molecular Force Field and Structure of Hydrogen Sulfide: Recent Microwave Results. J. Mol. Struct. 1975, 28, 237–246. 10.1016/0022-2860(75)80094-9. [DOI] [Google Scholar]
- Oka T.; Morino Y. Analysis of the Microwave Spectrum of Hydrogen Selenide. J. Mol. Spectrosc. 1962, 8, 300. 10.1016/0022-2852(62)90030-9. [DOI] [Google Scholar]
- Pearson E. F.; McCormick R. V. Rotational Spectrum and Structure of Thioborine: HBS. J. Chem. Phys. 1973, 58, 1619–1621. 10.1063/1.1679403. [DOI] [Google Scholar]
- Winnewisser G.; Maki A. G.; Johnson D. R. Rotational Constants for HCN and DCN. J. Mol. Spectrosc. 1971, 39, 149. 10.1016/0022-2852(71)90286-4. [DOI] [Google Scholar]
- Strey G.; Mills I. M. The Anharmonic Force Field and Equilibrium Structure of HCN and HCP. Mol. Phys. 1973, 26, 129–138. 10.1080/00268977300101441. [DOI] [Google Scholar]
- Creswell R. A.; Pearson E. F.; Winnewisser M.; Winnewisser G. Detection of the Millimeter Wave Spectrum of Hydrogen Isocyanide, HNC. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1976, 31, 221–224. 10.1515/zna-1976-3-401. [DOI] [Google Scholar]
- Pearson E. F.; Creswell R. A.; Winnewisser M.; Winnewisser G. The Molecular Structures of HNC and HCN Derived from the Eight Stable Isotopic Species. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1976, 31, 1394–1397. 10.1515/zna-1976-1119. [DOI] [Google Scholar]
- Costain C. C. Determination of Molecular Structures from Ground State Rotational Constants. J. Chem. Phys. 1958, 29, 864–874. 10.1063/1.1744602. [DOI] [Google Scholar]
- Beppu T.; Hirota E.; Morino Y. Microwave Spectrum, Structure, Quadrupole Coupling Constant, and Force Constants of NSCl. J. Mol. Spectrosc. 1970, 36, 386. 10.1016/0022-2852(70)90215-8. [DOI] [Google Scholar]
- Tanaka T.; Morino Y. Coriolis Interaction and Anharmonic Potential Function of Ozone from the Microwave Spectra in Excited Vibrational States. J. Mol. Spectrosc. 1970, 33, 538. 10.1016/0022-2852(70)90148-7. [DOI] [Google Scholar]
- Maki A. G.; Johnson D. R. Microwave Spectra of Carbonyl Sulfide: Measurements of Ground State and Vibrationally Excited 16O13C32S, 18O12C32S, and Other Isotopic Species. J. Mol. Spectrosc. 1973, 47, 226–233. 10.1016/0022-2852(73)90006-4. [DOI] [Google Scholar]
- Maki A. G.; Sams R. L.; Pearson R. Microwave and Infrared Spectra of Isotopically Substituted Carbonyl Selenide (OCSe). J. Mol. Spectrosc. 1977, 64, 452–459. 10.1016/0022-2852(77)90230-2. [DOI] [Google Scholar]
- Morino Y.; Saito S. Microwave Spectrum of Oxygen Difluoride in Vibrationally Excited States; ν1–2ν2 Fermi Resonance and Equilibrium Structure. J. Mol. Spectrosc. 1966, 19, 435. 10.1016/0022-2852(66)90266-9. [DOI] [Google Scholar]
- Saito S. Microwave Spectrum of Sulfur Dioxide in Doubly Excited Vibrational States and Determination of γ Constants. J. Mol. Spectrosc. 1969, 30, 1. 10.1016/0022-2852(69)90231-8. [DOI] [Google Scholar]
- Takeo H.; Hirota E.; Morino Y. Equilibrium Structure and Potential Function of Selenium Dioxide by Microwave Spectroscopy. J. Mol. Spectrosc. 1970, 34, 370. 10.1016/0022-2852(70)90020-2. [DOI] [Google Scholar]
- Shoji H.; Tanaka T.; Hirota E. Microwave-Spectrum of Silicon Difluoride in the Excited Vibrational States, Equilibrium Structure, Anharmonic Potential Function, and ν1−ν3 Coriolis Resonance. J. Mol. Spectrosc. 1973, 47, 268–274. 10.1016/0022-2852(73)90010-6. [DOI] [Google Scholar]
- Tolles W. M.; Kinsey J. L.; Curl R. F.; Heidelberg R. F. Microwave Spectrum of Chlorine Dioxide. V. The Stark and Zeeman Effects. J. Chem. Phys. 1962, 37, 927. 10.1063/1.1733247. [DOI] [Google Scholar]
- Curl R. F.; Heidelberg R. F.; Kinsey J. L. Microwave Spectrum of Chlorine Dioxide. II. Analysis of Hyperfine Structure and the Spectrum of Cl35O16O18. Phys. Rev. 1962, 125, 1993. 10.1103/physrev.125.1993. [DOI] [Google Scholar]
- Tolles W. M.; Curl R. F.; Heidelberg R. F. The Stark and Zeeman Effect of ClO2. Spectrochim. Acta 1962, 18, 1368. [Google Scholar]
- Cabana A.; Laurin M.; Lafferty W. J.; Sams R. L. High Resolution Infrared Spectra of ν2 and 2ν1 Bands of 14N16O2. Can. J. Phys. 1975, 53, 1902–1926. 10.1139/p75-240. [DOI] [Google Scholar]
- Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam N. J.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. 10.1063/1.3382344. [DOI] [PubMed] [Google Scholar]
- Minenkov Y.; Bistoni G.; Riplinger C.; Auer A. A.; Neese F.; Cavallo L. Pair Natural Orbital and Canonical Coupled Cluster Reaction Enthalpies Involving Light to Heavy Alkali and Alkaline Earth Metals: The Importance of Sub-Valence Correlation. Phys. Chem. Chem. Phys. 2017, 19, 9374–9391. 10.1039/c7cp00836h. [DOI] [PubMed] [Google Scholar]
- Bauschlicher C. W.; Melius C. F.; Allendorf M. D. Gallium Compounds, a Possible Problem for the G2 Approaches. J. Chem. Phys. 1999, 110, 1879–1881. 10.1063/1.477851. [DOI] [Google Scholar]
- Austin A. J.; Frisch M. J.; Montgomery J. A.; Petersson G. A. An Overlap Criterion for Selection of Core Orbitals. Theor. Chem. Acc. 2002, 107, 180–186. 10.1007/s00214-001-0310-1. [DOI] [Google Scholar]
- Schulz A.; Smith B. J.; Radom L. Heats of Formation of Alkali and Alkaline Earth Oxides and Hydroxides: Some Dramatic Failures of the G2 Method. J. Phys. Chem. A 1999, 103, 7522–7527. 10.1021/jp991577+. [DOI] [Google Scholar]
- Sullivan M. B.; Iron M. A.; Redfern P. C.; Martin J. M. L.; Curtiss L. A.; Radom L. Heats of Formation of Alkali Metal and Alkaline Earth Metal Oxides and Hydroxides: Surprisingly Demanding Targets for High-Level Ab Initio Procedures. J. Phys. Chem. A 2003, 107, 5617–5630. 10.1021/jp034851f. [DOI] [Google Scholar]
- Iron M. A.; Oren M.; Martin J. M. L. Alkali and Alkaline Earth Metal Compounds: Core—Valence Basis Sets and Importance of Subvalence Correlation. Mol. Phys. 2003, 101, 1345–1361. 10.1080/0026897031000094498. [DOI] [Google Scholar]
- Gong Y.; Andrews L.; Bauschlicher C. W.; Thanthiriwatte K. S.; Dixon D. A. Infrared Spectroscopic and Theoretical Studies of the OTiF2, OZrF2 and OHfF2 Molecules with Terminal Oxo Ligands. Dalton Trans. 2012, 41, 11706–11715. 10.1039/c2dt31223a. [DOI] [PubMed] [Google Scholar]
- Dunning T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. [DOI] [Google Scholar]
- Prascher B. P.; Woon D. E.; Peterson K. A.; Dunning T. H. Jr.; Wilson A. K. Gaussian Basis Sets for Use in Correlated Molecular Calculations. VII. Valence, Core-Valence, and Scalar Relativistic Basis Sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 2011, 128, 69–82. 10.1007/s00214-010-0764-0. [DOI] [Google Scholar]
- Peterson K. A.; Dunning T. H. Accurate Correlation Consistent Basis Sets for Molecular Core–Valence Correlation Effects: The Second Row Atoms Al–Ar, and the First Row Atoms B–Ne Revisited. J. Chem. Phys. 2002, 117, 10548–10560. 10.1063/1.1520138. [DOI] [Google Scholar]
- Li H.; Feng H.; Sun W.; Zhang Y.; Fan Q.; Peterson K. A.; Xie Y.; Schaefer H. F. III The Alkaline Earth Dimer Cations (Be2+, Mg2+, Ca2+, Sr2+, and Ba2+). Coupled Cluster and Full Configuration Interaction Studies. Mol. Phys. 2013, 111, 2292–2298. 10.1080/00268976.2013.802818. [DOI] [Google Scholar]
- Lim I. S.; Stoll H.; Schwerdtfeger P. Relativistic Small-Core Energy-Consistent Pseudopotentials for the Alkaline-Earth Elements from Ca to Ra. J. Chem. Phys. 2006, 124, 034107. 10.1063/1.2148945. [DOI] [PubMed] [Google Scholar]
- Peterson K. A.; Puzzarini C. Systematically Convergent Basis Sets for Transition Metals. II. Pseudopotential-Based Correlation Consistent Basis Sets for the Group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) Elements. Theor. Chem. Acc. 2005, 114, 283–296. 10.1007/s00214-005-0681-9. [DOI] [Google Scholar]
- Figgen D.; Rauhut G.; Dolg M.; Stoll H. Energy-Consistent Pseudopotentials for Group 11 and 12 Atoms: Adjustment to Multi-Configuration Dirac–Hartree–Fock Data. Chem. Phys. 2005, 311, 227–244. 10.1016/j.chemphys.2004.10.005. [DOI] [Google Scholar]
- Peterson K. A.; Yousaf K. E. Molecular Core-Valence Correlation Effects Involving the Post-d Elements Ga–Rn: Benchmarks and New Pseudopotential-Based Correlation Consistent Basis Sets. J. Chem. Phys. 2010, 133, 174116. 10.1063/1.3503659. [DOI] [PubMed] [Google Scholar]
- Metz B.; Stoll H.; Dolg M. Small-Core Multiconfiguration-Dirac–Hartree–Fock-Adjusted Pseudopotentials for Post-d Main Group Elements: Application to PbH and PbO. J. Chem. Phys. 2000, 113, 2563–2569. 10.1063/1.1305880. [DOI] [Google Scholar]
- Peterson K. A.; Figgen D.; Goll E.; Stoll H.; Dolg M. Systematically Convergent Basis Sets with Relativistic Pseudopotentials. II. Small-Core Pseudopotentials and Correlation Consistent Basis Sets for the Post-d Group 16–18 Elements. J. Chem. Phys. 2003, 119, 11113–11123. 10.1063/1.1622924. [DOI] [Google Scholar]
- Metz B.; Schweizer M.; Stoll H.; Dolg M.; Liu W. A Small-Core Multiconfiguration Dirac-Hartree-Fock-Adjusted Pseudopotential for Tl-Application to Tl X (X = F, Cl, Br, I). Theor. Chem. Acc. 2000, 104, 22–28. 10.1007/s002149900101. [DOI] [Google Scholar]
- Perdew J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822–8824. 10.1103/physrevb.33.8822. [DOI] [PubMed] [Google Scholar]
- Hamprecht F. A.; Cohen A. J.; Tozer D. J.; Handy N. C. Development and Assessment of New Exchange-Correlation Functionals. J. Chem. Phys. 1998, 109, 6264–6271. 10.1063/1.477267. [DOI] [Google Scholar]
- Boese A. D.; Doltsinis N. L.; Handy N. C.; Sprik M. New Generalized Gradient Approximation Functionals. J. Chem. Phys. 2000, 112, 1670–1678. 10.1063/1.480732. [DOI] [Google Scholar]
- Boese A. D.; Handy N. C. A New Parametrization of Exchange–Correlation Generalized Gradient Approximation Functionals. J. Chem. Phys. 2001, 114, 5497–5503. 10.1063/1.1347371. [DOI] [Google Scholar]
- Grimme S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. 10.1002/jcc.20495. [DOI] [PubMed] [Google Scholar]
- Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. [DOI] [PubMed] [Google Scholar]
- Peverati R.; Zhao Y.; Truhlar D. G. Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized across-the-Board Performance. J. Phys. Chem. Lett. 2011, 2, 1991–1997. 10.1021/jz200616w. [DOI] [Google Scholar]
- Peverati R.; Truhlar D. G. Exchange–Correlation Functional with Good Accuracy for Both Structural and Energetic Properties While Depending Only on the Density and Its Gradient. J. Chem. Theory Comput. 2012, 8, 2310–2319. 10.1021/ct3002656. [DOI] [PubMed] [Google Scholar]
- Handy N. C.; Cohen A. J. Left-Right Correlation Energy. Mol. Phys. 2001, 99, 403–412. 10.1080/00268970010018431. [DOI] [Google Scholar]
- Hoe W.-M.; Cohen A. J.; Handy N. C. Assessment of a New Local Exchange Functional OPTX. Chem. Phys. Lett. 2001, 341, 319–328. 10.1016/s0009-2614(01)00581-4. [DOI] [Google Scholar]
- Miehlich B.; Savin A.; Stoll H.; Preuss H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. 10.1016/0009-2614(89)87234-3. [DOI] [Google Scholar]
- Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. 10.1103/physrevlett.91.146401. [DOI] [PubMed] [Google Scholar]
- Van Voorhis T.; Scuseria G. E. A Novel Form for the Exchange-Correlation Energy Functional. J. Chem. Phys. 1998, 109, 400–410. 10.1063/1.476577. [DOI] [Google Scholar]
- Zhao Y.; Truhlar D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125, 194101. 10.1063/1.2370993. [DOI] [PubMed] [Google Scholar]
- Peverati R.; Truhlar D. G. M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. J. Phys. Chem. Lett. 2012, 3, 117–124. 10.1021/jz201525m. [DOI] [PubMed] [Google Scholar]
- Peverati R.; Truhlar D. G. An Improved and Broadly Accurate Local Approximation to the Exchange–Correlation Density Functional: The MN12-L Functional for Electronic Structure Calculations in Chemistry and Physics. Phys. Chem. Chem. Phys. 2012, 14, 13171–13174. 10.1039/c2cp42025b. [DOI] [PubMed] [Google Scholar]
- Ziesche P.; Eschrig H.. Electronic Structure of Solids ‘91: Proceedings of the 75 WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids, 1st ed.; Akademie Verlag: Berlin, 1991; pp 1–249. [Google Scholar]
- Perdew J. P.; Chevary J. A.; Vosko S. H.; Jackson K. A.; Pederson M. R.; Singh D. J.; Fiolhais C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671–6687. 10.1103/physrevb.46.6671. [DOI] [PubMed] [Google Scholar]
- Perdew J. P.; Chevary J. A.; Vosko S. H.; Jackson K. A.; Pederson M. R.; Singh D. J.; Fiolhais C. Erratum: Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1993, 48, 4978. 10.1103/physrevb.48.4978.2. [DOI] [PubMed] [Google Scholar]
- Perdew J. P.; Burke K.; Wang Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54, 16533–16539. 10.1103/physrevb.54.16533. [DOI] [PubMed] [Google Scholar]
- Dobson J. F.; Vignale G.; Das M. P.. Electronic Density Functional Theory: Recent Progress and New Directions; Springer: Heidelberg, 1988; pp 1–396. [Google Scholar]
- Adamo C.; Barone V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The MPW and MPW1PW Models. J. Chem. Phys. 1998, 108, 664–675. 10.1063/1.475428. [DOI] [Google Scholar]
- Peverati R.; Truhlar D. G. Communication: A Global Hybrid Generalized Gradient Approximation to the Exchange-Correlation Functional That Satisfies the Second-Order Density-Gradient Constraint and Has Broad Applicability in Chemistry. J. Chem. Phys. 2011, 135, 191102. 10.1063/1.3663871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu X.; Goddard W. A. The X3LYP Extended Density Functional for Accurate Descriptions of Nonbond Interactions, Spin States, and Thermochemical Properties. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 2673–2677. 10.1073/pnas.0308730100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson P. J.; Bradley T. J.; Tozer D. J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials. J. Chem. Phys. 2001, 115, 9233–9242. 10.1063/1.1412605. [DOI] [Google Scholar]
- Becke A. D. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 1997, 107, 8554–8560. 10.1063/1.475007. [DOI] [Google Scholar]
- Schmider H. L.; Becke A. D. Optimized Density Functionals from the Extended G2 Test Set. J. Chem. Phys. 1998, 108, 9624–9631. 10.1063/1.476438. [DOI] [Google Scholar]
- Adamo C.; Barone V. Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters. Chem. Phys. Lett. 1997, 274, 242–250. 10.1016/s0009-2614(97)00651-9. [DOI] [Google Scholar]
- Austin A.; Petersson G. A.; Frisch M. J.; Dobek F. J.; Scalmani G.; Throssell K. A Density Functional with Spherical Atom Dispersion Terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. 10.1021/ct300778e. [DOI] [PubMed] [Google Scholar]
- Vydrov O. A.; Scuseria G. E. Assessment of a Long-Range Corrected Hybrid Functional. J. Chem. Phys. 2006, 125, 234109. 10.1063/1.2409292. [DOI] [PubMed] [Google Scholar]
- Yanai T.; Tew D. P.; Handy N. C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. [DOI] [Google Scholar]
- Peverati R.; Truhlar D. G. Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Phys. Chem. Chem. Phys. 2012, 14, 16187–16191. 10.1039/c2cp42576a. [DOI] [PubMed] [Google Scholar]
- Chai J.-D.; Head-Gordon M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. [DOI] [PubMed] [Google Scholar]
- Boese A. D.; Martin J. M. L. Development of Density Functionals for Thermochemical Kinetics. J. Chem. Phys. 2004, 121, 3405–3416. 10.1063/1.1774975. [DOI] [PubMed] [Google Scholar]
- Staroverov V. N.; Scuseria G. E.; Tao J. M.; Perdew J. P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. 10.1063/1.1626543. [DOI] [Google Scholar]
- Zhao Y.; Truhlar D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. 10.1007/s00214-007-0310-x. [DOI] [Google Scholar]
- Peverati R.; Truhlar D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. J. Phys. Chem. Lett. 2011, 2, 2810–2817. 10.1021/jz201170d. [DOI] [Google Scholar]
- Møller C.; Plesset M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. 10.1103/physrev.46.618. [DOI] [Google Scholar]
- Čížek J.On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. In Advances in Chemical Physics; LeFebvre R., Moser C., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Vol. 14, pp 35–89. [Google Scholar]
- Purvis G. D.; Bartlett R. J. A Full Coupled-Cluster Singles and Doubles Model: the Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. 10.1063/1.443164. [DOI] [Google Scholar]
- Scuseria G. E.; Janssen C. L.; Schaefer H. F. An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equations. J. Chem. Phys. 1988, 89, 7382–7387. 10.1063/1.455269. [DOI] [Google Scholar]
- Scuseria G. E.; Schaefer H. F. Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive Than Quadratic Configuration Interaction (QCISD)?. J. Chem. Phys. 1989, 90, 3700–3703. 10.1063/1.455827. [DOI] [Google Scholar]
- McCullough E. A.; Aprà E.; Nichols J. Comparison of the Becke–Lee–Yang–Parr and Becke–Perdew–Wang Exchange-Correlation Functionals for Geometrics of Cyclopentadienyl–Transition Metal Complexes. J. Phys. Chem. A 1997, 101, 2502–2508. 10.1021/jp963430d. [DOI] [Google Scholar]
- Johnson B. G.; Gill P. M. W.; Pople J. A. The Performance of a Family of Density Functional Methods. J. Chem. Phys. 1993, 98, 5612–5626. 10.1063/1.464906. [DOI] [Google Scholar]
- Braïda B.; Hiberty P. C.; Savin A. A Systematic Failing of Current Density Functionals: Overestimation of Two-Center Three-Electron Bonding Energies. J. Phys. Chem. A 1998, 102, 7872–7877. 10.1021/jp982441z. [DOI] [Google Scholar]
- Koch W.; Holthausen M. C.; Baerends E. J.. A Chemist’s Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, 2001; pp 1–294. [Google Scholar]
- Bistoni G.; Riplinger C.; Minenkov Y.; Cavallo L.; Auer A. A.; Neese F. Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An out-of-the-Box Approach. J. Chem. Theory Comput. 2017, 13, 3220–3227. 10.1021/acs.jctc.7b00352. [DOI] [PubMed] [Google Scholar]
- Wang Z.; Wang F. Analysis of a Failure of the CC2 Coupled-Cluster Method for Bond Lengths of SnO and PbO. Theor. Chem. Acc. 2014, 133, 1579–1586. 10.1007/s00214-014-1579-1. [DOI] [Google Scholar]
- Wang F.; Gauss J. Analytic Energy Gradients in Closed-Shell Coupled-Cluster Theory with Spin-Orbit Coupling. J. Chem. Phys. 2008, 129, 174110. 10.1063/1.3000010. [DOI] [PubMed] [Google Scholar]
- Wang F.; Gauss J. Analytic Second Derivatives in Closed-Shell Coupled-Cluster Theory with Spin-Orbit Coupling. J. Chem. Phys. 2009, 131, 164113. 10.1063/1.3245954. [DOI] [PubMed] [Google Scholar]
- Wang F.; Gauss J.; van Wüllen C. Closed-Shell Coupled-Cluster Theory with Spin-Orbit Coupling. J. Chem. Phys. 2008, 129, 064113. 10.1063/1.2968136. [DOI] [PubMed] [Google Scholar]
- Gao D.-D.; Cao Z.; Wang F. Spin–Orbit Effects in Closed-Shell Heavy and Superheavy Element Monohydrides and Monofluorides with Coupled-Cluster Theory. J. Phys. Chem. A 2016, 120, 1231–1242. 10.1021/acs.jpca.5b11948. [DOI] [PubMed] [Google Scholar]
- Tu Z.; Yang D.-D.; Wang F.; Guo J. Symmetry Exploitation in Closed-Shell Coupled-Cluster Theory with Spin-Orbit Coupling. J. Chem. Phys. 2011, 135, 034115. 10.1063/1.3611052. [DOI] [PubMed] [Google Scholar]
- Liu W.; van Wüllen C. Spectroscopic Constants of Gold and Eka-Gold (Element 111) Diatomic Compounds: The Importance of Spin–Orbit Coupling. J. Chem. Phys. 1999, 110, 3730–3735. 10.1063/1.478237. [DOI] [Google Scholar]
- Han Y.-K.; Bae C.; Son S.-K.; Lee Y. S. Spin–Orbit Effects on the Transactinide p-Block Element Monohydrides MH (M=Element 113–118). J. Chem. Phys. 2000, 112, 2684–2691. 10.1063/1.480842. [DOI] [Google Scholar]
- Cao Z.; Wang F.; Yang M. Coupled-Cluster Method for Open-Shell Heavy-Element Systems with Spin-Orbit Coupling. J. Chem. Phys. 2017, 146, 134108. 10.1063/1.4979491. [DOI] [PubMed] [Google Scholar]
- Taylor P.“Accurate Calculations and Calibration” in Lecture Notes in Quantum Chemistry; Roos B. O., Ed.; Springer-Verlag, 1992. [Google Scholar]
- Johnson E. R.; Mackie I. D.; DiLabio G. A. Dispersion Interactions in Density-Functional Theory. J. Phys. Org. Chem. 2009, 22, 1127–1135. 10.1002/poc.1606. [DOI] [Google Scholar]
- Johnson E. R.; Becke A. D.; Sherrill C. D.; DiLabio G. A. Oscillations in Meta-Generalized-Gradient Approximation Potential Energy Surfaces for Dispersion-Bound Complexes. J. Chem. Phys. 2009, 131, 034111. 10.1063/1.3177061. [DOI] [PubMed] [Google Scholar]
- Occhipinti G.; Bjørsvik H.-R.; Jensen V. R. Quantitative Structure-Activity Relationships of Ruthenium Catalysts for Olefin Metathesis. J. Am. Chem. Soc. 2006, 128, 6952–6964. 10.1021/ja060832i. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.

