Skip to main content
Clinical Cardiology logoLink to Clinical Cardiology
. 2007 Aug 29;31(5):201–204. doi: 10.1002/clc.20202

Genetic Heterogeneity of Left‐ventricular Noncompaction Cardiomyopathy

Ewa Moric‐Janiszewska 1,, Grazyna Markiewicz‐Łoskot 2
PMCID: PMC6652885  PMID: 17729299

Abstract

Isolated noncompaction of the ventricular myocardium (INVM) sometimes referred to as spongy myocardium is a rare, congenital and also acquired cardiomyopathy. It appears to divide the presentation into neonatal, childhood and adult forms of which spongy myocardium and systolic dysfunction is the commonality. The disorder is characterized by a left ventricular hypertrophy with deep trabeculations, and with diminished systolic function, with or without associated left ventricular dilation. In half or more of the cases, the right ventricle is also affected. The sporadic type, however, in some patients, may be due to chromosomal abnormalities and the occurrence of familial incidence. Isolated noncompaction of the left ventricular myocardium in the majority of adult patients is an autosomal dominant disorder. The familial and X‐linked disorders have been described by various authors. We here describe the genetic background of this disorder: some of the most mutated genes that are responsible for the disease are (G4.5 (tafazzin gene): α‐dystrobrevin gene (DTNA); FKBP‐12 gene; lamin A/C gene; Cypher/ZASP (LIM, LDB3) gene); and some genotype‐phenotype correlations (Becker muscular dystrophy, Emery‐Dreifuss muscular dystrophy or Barth syndrome) based on the literature review. Copyright © 2007 Wiley Periodicals, Inc.

Keywords: ventricular noncompaction cardiomyopathy, G4.5 (tafazzin gene), α‐dystrobrevin gene (DTNA), FKBP‐12 gene, lamin A/C gene, Cypher/ZASP (LIM LDB3), gene

Full Text

The Full Text of this article is available as a PDF (88.8 KB).

REFERENCES

  • 1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, et al.: Contemporary definitions and classification of the cardiomyopathies: an American heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 2006; 113(14): 1807–1816. [DOI] [PubMed] [Google Scholar]
  • 2. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, et al.: Report of the 1995 world health organization/international society and federation of cardiology task force on the definition and classification of cardiomyopathies. Circulation 1996; 93(5): 841–842. [DOI] [PubMed] [Google Scholar]
  • 3. Grillo R, Pipitone S, Mongiovi M, Cipolla T, Giudice G, et al.: Isolated non‐compaction of left ventricle in childhood: clinical experience with 5 cases. Ital Heart J Suppl 2002; 3(8): 858–863. [PubMed] [Google Scholar]
  • 4. Jenni R, Goebel N, Tartini R, Schneider J, Arbenz U, et al.: Persisting myocardial sinusoids of both ventricles as an isolated anomaly: echocardiographic, angiographic, and pathologic anatomical findings. Cardiovasc Intervent Radiol 1986; 9(3): 127–131. [DOI] [PubMed] [Google Scholar]
  • 5. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R: Isolated noncompaction of left ventricular myocardium: a study of eight cases. Circulation 1990; 82(2): 507–513. [DOI] [PubMed] [Google Scholar]
  • 6. Hook S, Ratiff NB, Rosenkranz E, Sterba R: Isolated noncompaction of the ventricular myocardium. Pediatr Cardiol 1996; 17(1): 43–45. [DOI] [PubMed] [Google Scholar]
  • 7. Robida A, Hajar HA: Ventricular conduction defect in isolated noncompaction of the ventricular myocardium. Pediatr Cardiol 1996; 17(3): 189–191. [DOI] [PubMed] [Google Scholar]
  • 8. Sengupta PP, Mohan JC, Arora R: Noncompaction of left ventricular myocardium in the presence of calcific aortic stenosis in an adult. Indian Heart J 2001; 53(6): 766–768. [PubMed] [Google Scholar]
  • 9. Feldt RH, Rahimtoola SH, Davis GD, Swan HJ, Titus JL: Anomalous ventricular myocardial patterns in child with complex congenital heart disease. Am J Cardiol 1969; 23(5): 732–734. [DOI] [PubMed] [Google Scholar]
  • 10. Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, et al.: Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 2001; 103(9): 1256–1263. [DOI] [PubMed] [Google Scholar]
  • 11. Stollberger C, Finsterer J, Blazek G, Bittner RE: Left ventricular noncompaction in a patient with Becker muscular dystrophy. Heart 1996; 76(4): 380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Sasse‐Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L: Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet 2003; A 119(2): 162–167. [DOI] [PubMed] [Google Scholar]
  • 13. Hamamichi Y, Kamiya T, Singaki Y: Familial occurrence with isolated noncompaction of the myocardium. (Abstract). Acta Cardiol Pediatr Jpn 1996; 12: 220. [Google Scholar]
  • 14. Bleyl SB, Mumford BR, Brown‐Harrison MC, Pagotto LT, Carey JC, et al.: Xq28‐linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet 1997; 72(3): 257–265. [PubMed] [Google Scholar]
  • 15. Ritter M, Oechslin E, Sutsch G, Attenhofer C, Schneider J, et al.: Isolated noncompaction of the myocardium in adults. Mayo Clin Proc 1997; 72(1): 26–31. [DOI] [PubMed] [Google Scholar]
  • 16. Matsuda M, Tsukahara M, Kondoh O, Mito H: Familial isolated noncompaction of ventricular myocardium. J Hum Genet 1999; 44(2): 126–128. [DOI] [PubMed] [Google Scholar]
  • 17. Bione S, D'Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, et al.: A novel X‐linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996; 12(4): 385–389. [DOI] [PubMed] [Google Scholar]
  • 18. Bleyl SB, Mumford BR, Thompson V, Carey JC, Pysher TJ, et al.: Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet 1997; 61(4): 868–872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Chen R, Tsuji T, Ichida F, Bowles KR, Yu X, et al.: Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab 2002; 77(4): 319–325. [DOI] [PubMed] [Google Scholar]
  • 20. Kenton AB, Sanchez X, Coveler KJ, Makar KA, Jimenez S, et al.: Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, alpha‐dystrobrevin and FK Binding Protein‐12. Mol Genet Metab 2004; 82(2): 162–166. [DOI] [PubMed] [Google Scholar]
  • 21. Bissler JJ, Tsoras M, Goring HH, Hug P, Chuck G, et al.: Infantile dilated X‐linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle. Lab Invest 2002; 82(3): 335–344. [DOI] [PubMed] [Google Scholar]
  • 22. Khurana TS, Engle EC, Bennett RR, Silverman GA, Selig S, et al.: (CA) repeat polymorphism in the chromosome 18 encoded dystrophin‐like protein. Hum Mol Genet 1994; 3(5): 841. [DOI] [PubMed] [Google Scholar]
  • 23. Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, et al.: Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 2006; 88(1): 71–77. [DOI] [PubMed] [Google Scholar]
  • 24. Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, et al.: Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 1998; 391(6): 489–492. [DOI] [PubMed] [Google Scholar]
  • 25. Kamat AK, Rocchi M, Smith DI, Miller OJ: Lamin A/C gene and a related sequence map to human chromosomes 1q12.1q23 and 10. Somat Cell Mol Genet 1993; 19(2): 203–208. [DOI] [PubMed] [Google Scholar]
  • 26. Taylor MR, Robinson ML, Mestroni L: Analysis of genetic variations of lamin A/C gene (LMNA) by denaturing high performance liquid chromatography. J Biomol Screen 2004; 9(7): 625–628. [DOI] [PubMed] [Google Scholar]
  • 27. Hermida‐Prieto M, Monserrat L, Castro‐Beiras A, Laredo R, Soler R, et al.: Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol 2004; 94(1): 504. [DOI] [PubMed] [Google Scholar]
  • 28. Forissier JF, Bonne G, Bouchier C, Duboscq‐Bidot L, Richard P, et al.: Apical left ventricular aneurysm without atrioventricular block due to a lamin A/C gene mutation. Eur J Heart Fail 2003; 5(6): 821–825. [DOI] [PubMed] [Google Scholar]
  • 29. Charniot JC, Pascal C, Bouchier C, Sebillon P, Salama J, et al.: Functional consequences of an LMNA mutation associated with a new cardiac and noncardiac phenotype. Hum Mutat 2003; 21(5): 473–481. [DOI] [PubMed] [Google Scholar]
  • 30. Sebillon P, Bouchier C, Bidot LD, Bonne G, Ahamed K, et al.: Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. Med Genet 2003; 40(8): 560–567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Arbustini E, Pilotto A, Repetto A, Grasso M, Negri A, et al.: Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defectrelated disease. J Am Coll Cardiol 2002; 39(6): 981–990. [DOI] [PubMed] [Google Scholar]
  • 32. Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, et al.: Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non‐compaction. J Am Coll Cardiol 2003; 42(11): 2014–2017. [DOI] [PubMed] [Google Scholar]
  • 33. Faulkner G, Pallavicini A, Formentin E, Comelli A, Ievolella C, et al.: ZASP: a new Z‐band alternatively spliced PDZ‐motif protein. J Cell Biol 1999; 146(2): 465–475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Ishikawa K, Nagase T, Suyama M, Miyajima N, Tanaka A, et al.: Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res 1998; 5(3): 169–176. [DOI] [PubMed] [Google Scholar]
  • 35. Sasse‐Klaassen S, Probst S, Gerull B, Oechslin E, Nurnberg P, et al.: Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15. Circulation 2004; 109(22): 2720–2723. [DOI] [PubMed] [Google Scholar]
  • 36. Stollberger C, Finsterer J: Left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr 2004; 17(1): 91–100. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Cardiology are provided here courtesy of Wiley

RESOURCES