Abstract
Objectives
The objective was to perform a meta‐analysis of clinical trials that investigated the effects of stem cell therapy on left ventricular remodeling in patients after acute myocardial infarction (AMI).
Background
Intracoronary injection of stem cells in the acute phase of myocardial infarction has been proposed to replace the cardiomyocytes lost and to prevent deleterious pathological remodeling after myocardial infarction. Previously published trials have investigated the effects of cell therapy on left ventricular (LV) remodeling in AMI patients. However, the sample size of these studies is small and the conclusions are inconsistent.
Methods
Trials were identified in the Cochrane Library, EMBASE, and PubMed databases, reviews, and reference lists of relevant articles. The weighted mean difference (WMD) was calculated for net changes in LV end‐diastolic and end‐systolic volumes (LVEDV and LVESV) by using fixed‐effect models.
Results
A total of 11 trials (13 comparisons) with 832 participants evaluated the association between stem cell therapy and changes in LVEDV. Compared with the control group, stem cell therapy did not influence the LVEDV changes from baseline to follow‐up (WMD: − 1.76 mL, 95% confidence interval [CI]: − 4.61 to 1.08 mL, P = 0.233). A total of 9 trials (11 comparisons) with 797 participants evaluated the association between stem cell therapy and changes in LVESV. Compared with the control group, patients in the cell therapy group had a significantly greater reduction in LVESV from baseline to follow‐up (WMD: − 5.08 mL, 95% CI: − 7.80 to − 2.37 mL, P < 0.001).
Conclusion
This meta‐analysis suggests that cell therapy improves left ventricular contractility, but has no effect on LV remodeling. Copyright © 2010 Wiley Periodicals, Inc.
Full Text
The Full Text of this article is available as a PDF (335.6 KB).
References
- 1. Adams JE III, Sicard GA, Allen BT, et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med. 1994; 330(10): 670–674. [DOI] [PubMed] [Google Scholar]
- 2. Stewart S, MacIntyre K, Capewell S, et al. Heart failure and the aging population: an increasing burden in the 21st century? Heart. 2003; 89(1): 49–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006; 355(12): 1199–1209. [DOI] [PubMed] [Google Scholar]
- 4. Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation. 2003; 107(7): 929–934. [DOI] [PubMed] [Google Scholar]
- 5. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410(6829): 701–705. [DOI] [PubMed] [Google Scholar]
- 6. Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ Res. 2005; 96(2): 151–163. [DOI] [PubMed] [Google Scholar]
- 7. Martin‐Rendon E, Brunskill SJ, Hyde CJ, et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008; 29(15): 1807–1818. [DOI] [PubMed] [Google Scholar]
- 8. Singh S, Arora R, Handa K, et al. Stem cells improve left ventricular function in acute myocardial infarction. Clin Cardiol. 2009; 32(4): 176–180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Zhang S, Sun A, Xu D, et al. Impact of timing on efficacy and safety of intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol. 2009; 32(8): 458–466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Zhang SN, Sun AJ, Ge JB, et al. Intracoronary autologous bone marrow stem cells transfer for patients with acute myocardial infarction: a meta‐analysis of randomised controlled trials. Int J Cardiol. 2009; 136(2): 178–185. [DOI] [PubMed] [Google Scholar]
- 11. Martin‐Rendon E, Brunskill S, Dorée C, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2008; 8: CD006536 Available at: http://www2.cochrane.org/reviews/en/protocol_0F48175F82E26AA201CA3F302204ADA7.html. Accessed December 25, 2009. [DOI] [PubMed] [Google Scholar]
- 12. Kang S, Yang YJ, Li CJ, et al. Effects of intracoronary autologous bone marrow cells on left ventricular function in acute myocardial infarction: a systematic review and meta‐analysis for randomized controlled trials. Coron Artery Dis. 2008; 19(5): 327–335. [DOI] [PubMed] [Google Scholar]
- 13. Hristov M, Heussen N, Schober A, et al. Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta‐analysis. J Cell Mol Med. 2006; 10(3): 727–733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Lipinski MJ, Biondi‐Zoccai GG, Abbate A, et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta‐analysis of controlled clinical trials. J Am Coll Cardiol. 2007; 50(18): 1761–1767. [DOI] [PubMed] [Google Scholar]
- 15. Udelson JE, Konstam MA. Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction. J Card Fail. 2002; 8(suppl 6): S465–S471. [DOI] [PubMed] [Google Scholar]
- 16. Moher D, Pham B, Jones A, et al. Does quality of reports of randomized trials affect estimates of intervention efficacy reported in meta‐analyses? Lancet. 1998; 352(9128): 609–613. [DOI] [PubMed] [Google Scholar]
- 17. DerSimonian R, Laird N. Meta‐analysis in clinical trials. Control Clin Trials. 1986; 7(3): 177–188. [DOI] [PubMed] [Google Scholar]
- 18.Immunosuppression: 2004 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1994–2003. Ann Arbor, MI: HHS/HRSA/OSP/DOT and UNOS, 2004. Available at: http://www.ustransplant.org/annual_reports/archives/2004/Chapter_II_AR_CD.htm. Accessed December 25, 2009.
- 19. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta‐analyses. BMJ. 2003; 327(7414): 557–560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Egger M, Davey Smith G, Schneider M, et al. Bias in meta‐analysis detected by a simple, graphical test. BMJ. 1997; 315(7109): 629–634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Schächinger V, Assmus B, Erbs S, et al; REPAIR‐AMI Investigators. Intracoronary infusion of bone marrow‐derived mononuclear cells abrogates adverse left ventricular remodelling post‐acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR‐AMI) trial. Eur J Heart Fail. 2009; 11(10): 973–979. [DOI] [PubMed] [Google Scholar]
- 22. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006; 355(12): 1199–1209. [DOI] [PubMed] [Google Scholar]
- 23. Li ZQ, Zhang M, Jing YZ, et al. The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol. 2007; 115(1): 52–56. [DOI] [PubMed] [Google Scholar]
- 24. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow‐up data from the randomized, controlled BOOST (bone marrow transfer to enhance ST‐elevation infarct regeneration) trial. Circulation. 2006; 113(10): 1287–1294. [DOI] [PubMed] [Google Scholar]
- 25. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow‐derived stem‐cell transfer in patients with ST‐segment elevation myocardial infarction: double‐blind, randomised controlled trial. Lancet. 2006; 367(9505): 113–121. [DOI] [PubMed] [Google Scholar]
- 26. Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary injection of CD133‐positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation. 2005; 112(9 Suppl): I178–183. [DOI] [PubMed] [Google Scholar]
- 27. Kang HJ, Lee HY, Na SH, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony‐stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell‐3‐DES randomized, controlled trial. Circulation. 2006; 114(1 Suppl): I145–151. [DOI] [PubMed] [Google Scholar]
- 28. Meluzín J, Mayer J, Groch L, et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J. 2006; 152(5): 975. [DOI] [PubMed] [Google Scholar]
- 29. Huikuri HV, Kervinen K, Niemelä M, et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008; 29(22): 2723–2732. [DOI] [PubMed] [Google Scholar]
- 30. Choi JH, Choi J, Lee WS, et al. Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ J. 2007; 71(4): 486–494. [DOI] [PubMed] [Google Scholar]
- 31. Suárez de Lezo J, Herrera C, Pan M, et al. Regenerative therapy in patients with a revascularized acute anterior myocardial infarction and depressed ventricular function. Rev Esp Cardiol. 2007; 60(4): 357–365. [PubMed] [Google Scholar]
- 32. Lunde K, Solheim S, Forfang K, et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: safety, clinical outcome, and serial changes in left ventricular function during 12‐months' follow‐up. J Am Coll Cardiol. 2008; 51(6): 674–676. [DOI] [PubMed] [Google Scholar]
- 33. Agbulut O, Vandervelde S, Al Attar N, et al. Comparison of human skeletal myoblasts and bone marrow‐derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol. 2004; 44(2): 458–463. [DOI] [PubMed] [Google Scholar]
- 34. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004; 428(6983): 668–673. [DOI] [PubMed] [Google Scholar]
- 35. Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001; 104(9): 1046–1052. [DOI] [PubMed] [Google Scholar]
- 36. Tateishi‐Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone‐marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002; 360(9331): 427–435. [DOI] [PubMed] [Google Scholar]
- 37. Ziegelhoeffer T, Fernandez B, Kostin S, et al. Bone marrow derived cells do not incorporate into the adult growing vasculature. Circ Res. 2004; 94(2): 230–238. [DOI] [PubMed] [Google Scholar]
- 38. Kinnaird T, Stabile E, Burnett MS, et al. Marrow‐derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004; 94(5): 678–685. [DOI] [PubMed] [Google Scholar]
- 39. Heil M, Ziegelhoeffer T, Mees B, et al. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res. 2004; 94(5): 573–574. [DOI] [PubMed] [Google Scholar]
- 40. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short‐ and long‐term effects. Circulation. 2005; 112(2): 214–223. [DOI] [PubMed] [Google Scholar]