Skip to main content
Clinical Cardiology logoLink to Clinical Cardiology
. 2006 Dec 5;27(3):169–173. doi: 10.1002/clc.4960270315

Transforming growth factor β1 genotype and change in left ventricular mass during antihypertensive treatment–results from the swedish irbesartan left ventricular hypertrophy investigation versus atenolol (Silvhia)

Pär Hallberg 1,, Lars Lind 1,2,, Katarina Billberger 1, Karl Michaelsson 3, Julia Karlsson 1, Lisa Kurland 1, Thomas Kahan 4, Karin Malmqvist 4, K Peter Öhman 2,5, Fredrik Nyström 5,6, Ulrika Liljedahl 1, Ann‐Christine Syvänen 1, Håkan Melhus 1
PMCID: PMC6654118  PMID: 15049387

Abstract

Background: Angiotensin II, via the angiotensin II type 1 (AT1) receptor, may mediate myocardial fibrosis and myocyte hypertrophy seen in hypertensive left ventricular (LV) hypertrophy through production of transforming growth factor β1(TGF‐β1); AT1‐receptor antagonists reverse these changes. The TGF‐(β1 G + 915C polymorphism is associated with in‐terindividual variation in TGF‐ β1 production. No study has yet determined the impact of this polymorphism on the response to antihypertensive treatment.

Hypothesis: We aimed to determine whether the TGF‐ β1 G + 915C polymorphism was related to change in LV mass during antihypertensive treatment with either an AT1 ‐receptor antagonists or a beta1 ‐adrenoceptor blocker. The polymorphism was hypothesized to have an impact mainly on the irbesartan group.

Methods: We determined the association between the TGF‐β1 genotype and regression of LV mass in 90 patients with essential hypertension and echocardiographically diagnosed LV hypertrophy, randomized in a double‐blind study to receive treatment for 48 weeks with either the AT1 ‐receptor antagonist irbesartan or the beta1 ‐adrenoceptor blocker atenolol.

Results: Irbesartan‐treated patients who were carriers of the C‐allele, which is associated with low expression of TGF‐β1, responded with a markedly greater decrease in LV mass index (LVMI) than subjects with the G/G genotype (adjusted mean change in LVMI –44.7 g/m2 vs. –22.2 g/m2, p = 0.007), independent of blood pressure reduction. No association between genotype and change in LVMI was observed in the atenolol group.

Conclusions: The TGF‐ β1 G + 915C polymorphism is related to the change in LVMI in response to antihypertensive treatment with the AT1 ‐receptor antagonist irbesartan.

Keywords: transforming growth factor, angiotensin, hypertension, polymorphism, left ventricular hypertrophy, irbesartan

Full Text

The Full Text of this article is available as a PDF (38.3 KB).

References

  • 1. Brilla CG, Maisch B: Regulation of the structural remodelling of the myocardium: From hypertrophy to heart failure. Eur Heart J 1994; 15 (suppl D): 45–52 [DOI] [PubMed] [Google Scholar]
  • 2. Williams B: Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 2001; 87: 10C–17C [DOI] [PubMed] [Google Scholar]
  • 3. Kim S, Iwao H: Molecular and cellular mechanisms of angiotensin II‐mediated cardiovascular and renal diseases. Pharmacol Rev 2000; 52: 11–34 [PubMed] [Google Scholar]
  • 4. Lijnen P, Petrov V: Antagonism of the renin‐angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods Find Exp Clin Pharmacol 1999; 21: 363–374 [DOI] [PubMed] [Google Scholar]
  • 5. Lijnen P, Petrov V: Antagonism of the renin‐angiotensin‐aldosterone system and collagen metabolism in cardiac fibroblasts. Methods Find Exp Clin Pharmacol 1999; 21: 215–227 [DOI] [PubMed] [Google Scholar]
  • 6. Munzenmaier DH, Greene AS: Opposing actions of angiotensin II on mi‐crovascular growth and arterial blood pressure. Hypertension 1996; 27: 760–765 [DOI] [PubMed] [Google Scholar]
  • 7. Ikeda Y, Nakamura T, Takano H, Kimura H, Obata JE, Takeda S, Hata A, Shido K, Mochizuki S, Yoshida Y: Angiotensin II‐induced cardiomyocyte hypertrophy and cardiac fibrosis in stroke‐prone spontaneously hypertensive rats. J Lab Clin Med 2000; 135: 353–359 [DOI] [PubMed] [Google Scholar]
  • 8. Yamazaki T, Yazaki Y: Role of tissue angiotensin II in myocardial remodelling induced by mechanical stress. J Hum Hypertens 1999; 13 (suppl 1: S43–47; discussion S49–50 [DOI] [PubMed] [Google Scholar]
  • 9. Schmieder RE, Martus P, Klingbeil A: Reversal of left ventricular hypertrophy in essential hypertension. A meta‐analysis of randomized double‐blind studies. J Am Med Assoc 1996; 275: 1507–1513 [PubMed] [Google Scholar]
  • 10. Dahlof B, Pennert K, Hansson L: Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertens 1992; 5: 95–110 [DOI] [PubMed] [Google Scholar]
  • 11. Thurmann PA, Kenedi P, Schmidt A, Harder S, Rietbrock N: Influence of the angiotensin II antagonist valsartan on left ventricular hypertrophy in patients with essential hypertension. Circulation 1998; 98: 2037–2042 [DOI] [PubMed] [Google Scholar]
  • 12. Malmqvist K, Kahan T, Edner M, Held C, Hagg A, Lind L, Muller‐Brunotte R, Nystrom F, Ohman KP, Osbakken MD, Ostergern J: Regression of left ventricular hypertrophy in human hypertension with irbesartan. J Hypertens 2001; 19: 1167–1176 [DOI] [PubMed] [Google Scholar]
  • 13. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe‐Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H: Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 2002; 359: 995–1003 [DOI] [PubMed] [Google Scholar]
  • 14. Laviades C, Varo N, Diez J: Transforming growth factor beta in hypertensives with cardiorenal damage. Hypertension 2000; 36: 517–522 [DOI] [PubMed] [Google Scholar]
  • 15. Villarreal FJ, Dillmann WH: Cardiac hypertrophy‐induced changes in mRNA levels for TGF‐beta 1, fibronectin, and collagen. Am J Physiol 1992; 262: H1861–1866 [DOI] [PubMed] [Google Scholar]
  • 16. Lijnen PJ, Petrov VV, Fagard RH: Induction of cardiac fibrosis by transforming growth factor‐beta(1). Mol Genet Metab 2000; 71: 418–435 [DOI] [PubMed] [Google Scholar]
  • 17. Petrov VV, Fagard RH, Lijnen PJ: Stimulation of collagen production by transforming growth factor‐beta1 during differentiation of cardiac fibro‐blasts to myofibroblasts. Hypertension 2002; 39: 258–263 [DOI] [PubMed] [Google Scholar]
  • 18. Porreca E, Di Febbo C, Mincione G, Reale M, Baccante G, Guglielmi MD, Cuccurullo F, Colletta G: Increased transforming growth factor‐beta production and gene expression by peripheral blood monocytes of hypertensive patients. Hypertension 1997; 30: 134–139 [DOI] [PubMed] [Google Scholar]
  • 19. Derhaschnig U, Shehata M, Herkner H, Bur A, Woisetschlager C, Laggner AN, Hirschl MM: Increased levels of transforming growth factor‐beta1 in essential hypertension. Am J Hypertens 2002; 15: 207–211 [DOI] [PubMed] [Google Scholar]
  • 20. Aziz T, Hasleton P, Hann AW, Yonan N, Deiraniya A, Hutchinson IV: Transforming growth factor beta in relation to cardiac allograft vasculopathy after heart transplantation. J Thorac Cardiovasc Surg 2000; 119: 700–708 [DOI] [PubMed] [Google Scholar]
  • 21. Aziz T, Saad RA, Burgess M, Yonan N, Hasleton P, Hutchinson IV: Transforming growth factor beta and myocardial dysfunction following heart transplantation. Eur J Cardiothorac Surg 2001; 20: 177–186 [DOI] [PubMed] [Google Scholar]
  • 22. Yu CM, Tipoe GL, Wing‐Hon Lai K, Lau CP: Effects of combination of an‐giotensin‐converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 2001; 38: 1207–1215 [DOI] [PubMed] [Google Scholar]
  • 23. Li B, Khanna A, Sharma V, Singh T, Suthanthiran M, August P: TGF‐beta1 DNA polymorphisms, protein levels, and blood pressure. Hypertension 1999; 33: 271–275 [DOI] [PubMed] [Google Scholar]
  • 24. Weber KT, Swamynathan SK, Guntaka RV, Sun Y: Angiotensin II and extracellular matrix homeostasis. Int J Biochem Cell Biol 1999; 31: 395–403 [DOI] [PubMed] [Google Scholar]
  • 25. Sadoshima J, Izumo S: Molecular characterization of angiotensin II‐induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993; 73: 413–423 [DOI] [PubMed] [Google Scholar]
  • 26. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH: IdentiFICAtion of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 1993; 88: 2849–2861 [DOI] [PubMed] [Google Scholar]
  • 27. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS: Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF‐beta 1 and endothelin‐1 from fibroblasts. Cardiovasc Res 1998; 40: 352–363 [DOI] [PubMed] [Google Scholar]
  • 28. Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A: Early induction of transforming growth factor‐beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long‐term blockade of nitric oxide synthesis in rats. Hypertension 1998; 32: 273–279 [DOI] [PubMed] [Google Scholar]
  • 29. Kim S, Ohta K, Hamaguchi A, Omura T, Yukimura T, Miura K, Inada Y, Ishimura Y, Chatani F, Iwao H: Angiotensin II type I receptor antagonist inhibits the gene expression of transforming growth factor‐beta 1 and extracellular matrix in cardiac and vascular tissues of hypertensive rats. J Pharmacol Exp Ther 1995; 273: 509–515 [PubMed] [Google Scholar]
  • 30. Ohta K, Kim S, Hamaguchi A, Yukimura T, Miura K, Takaori K, Iwao H: Role of angiotensin II in extracellular matrix and transforming growth factor‐beta 1 expression in hypertensive rats. Eur J Pharmacol 1994; 269: 115–119 [DOI] [PubMed] [Google Scholar]
  • 31. Everett AD, Tufro‐McReddie A, Fisher A, Gomez RA: Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor‐beta 1 expression. Hypertension 1994; 23: 587–592 [DOI] [PubMed] [Google Scholar]
  • 32. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD: Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 1999; 8: 93–97 [DOI] [PubMed] [Google Scholar]
  • 33. Densem CG, Hutchinson IV, Cooper A, Yonan N, Brooks NH: Polymorphism of the transforming growth factor‐beta 1 gene correlates with the development of coronary vasculopathy following cardiac transplantation. J Heart Lung Transplant 2000; 19: 551–556 [DOI] [PubMed] [Google Scholar]
  • 34. Awad MR, El‐Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV: Genotypic variation in the transforming growth factor‐beta1 gene: Association with transforming growth factor‐beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation 1998; 66: 1014–1020 [DOI] [PubMed] [Google Scholar]
  • 35. Blumenfeld JD, Sealey JE, Mann SJ, Bragat A, Marion R, Pecker MS, Sotelo J, August P, Pickering TG, Laragh JH: Beta‐adrenergic receptor blockade as a therapeutic approach for suppressing the renin‐angiotensin‐aldosterone system in normotensive and hypertensive subjects. Am J Hypertens 1999; 12: 451–459 [DOI] [PubMed] [Google Scholar]
  • 36. Syvanen AC: Solid‐phase minisequencing as a tool to detect DNA polymorphism. Methods Mol Biol 1998; 98: 291–298 [DOI] [PubMed] [Google Scholar]
  • 37. Schunkert H, Hense HW, Muscholl M, Luchner A, Kurzinger S, Danser AH, Riegger GA: Associations between circulating components of the renin‐angiotensin‐aldosterone system and left ventricular mass. Heart 1997; 77: 24–31 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical Cardiology are provided here courtesy of Wiley

RESOURCES