Abstract
Background: Tedisamil is a new bradycardic agent proven to exert anti‐ischemic and antiarrhythmic effects by blockade of the different cardiac and vascular K+ currents.
Hypothesis: It was the aim of the present study to compare the favorable anti‐ischemic effects of tedisamil, with two long established representatives in the treatment of coronary artery disease (CAD), namely, the beta1 blocker esmolol and the Ca2 antagonist gallopamil.
Methods: The hemodynamic and neurohumoral effects of the new potassium channel blocker tedisamil, an agent with negative chronotropic and class III antiarrhythmic properties, were compared with the ultra‐short‐acting beta1‐selective adrenoceptor blocker esmolol and the calcium antagonist gallopamil. A total of 22 patients with angiographically proven CAD and reproducible ST‐segment depression in the exercise electrocardiogram was included in two studies with an almost identical design and inclusion criteria. The investigation was carried out using right heart catheterization and bicycle ergometry. A subgroup of 8 patients receiving 0.3 mg/kg body weight tedisamil intravenously (IV) in an open dose‐finding study was compared with a group of 14 patients who had received esmolol (IV bolus of 500 μg/kg, maintenance dose 200 μg/kg/min) and gallopamil (initial dose 0.025 mg/kg, maintenance dose 0.0005 mg/kg/h) in a second intraindividual comparison.
Results: Tedisamil and esmolol reduced heart rate at rest by 13% (p < 0.001), and 6% (p < 0.05), and at maximum working levels by 8% (p>0.01) and 9% (p>0.05), respectively. Gallopamil increased heart rate at rest by 7% (p < 0.05), with only slight changes occurring during exercise. Corresponding findings for each drug were observed for cardiac output both at rest and during exercise [tedisamil: at rest ‐10% (NS), max. exercise ‐ 8%; esmolol: at rest ‐14% (NS), max. exercise ‐18% (NS); gallopamil: no significant changes]. Compared with tedisamil, stroke volume was reduced by esmolol [at rest and max. workload: ‐9% (NS)] and gallopamil [rest: ‐6% (NS), max. exercise: ‐2% (NS)]. Of the indirect parameters of ventricular function, that is, mean capillary wedge pressure (PCWPm) and right ventricular ejection fraction, only PCWPm demonstrated significant differences between tedisamil and gallopamil (+18% and ‐6% at rest, + 17% and ‐21% during exercise, respectively; p>0.001). Compared with gallopamil, both tedisamil and esmolol were superior in their effects on rate‐pressure product, myocardial oxygen consumption, and ST‐segment depression, whereas plasma lactate concentration was more reduced by tedisamil and gallopamil. Tedisamil led to a fall in norepinephrine levels in particular.
Conclusion: Tedisamil and esmolol showed almost equipotent anti‐ischemic effects at the doses administered. Tedisamil acts mainly by reductions in heart rate, and esmolol, though to a lesser degree, also by reductions in systolic blood pressure. The mechanism of gallopamil is to reduce afterload and to improve coronary perfusion. At the doses applied, however, it has lower antianginal potency compared with tedisamil and esmolol.
Keywords: heart rate reduction, coronary heart disease, tedisamil, gallopamil, esmolol, hemodynamics, vasopressor system
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
References
- 1. Amman K, Ryden L: Comparison of metoprolol and verapamil in the treatment of angina pectoris. Am J Cardiol 1982; 49: 821–827 [DOI] [PubMed] [Google Scholar]
- 2. Indolfi C, Ross J Jr: The role of heart rate in myocardial ischemia and infarction: Implications of myocardial perfusion‐contraction matching. Prog Cardiovasc Dis 1993; 36: 61–74 [DOI] [PubMed] [Google Scholar]
- 3. Kjekshus J: Heart rate reduction‐a mechanism of benefit? Eur Heart J 1987; 8: (suppl L) 115–122 [DOI] [PubMed] [Google Scholar]
- 4. Ross J Jr: Mechanisms of regional ischemia and antianginal drug action during exercise. Prog Cardiovasc Dis 1989; 31: 455–466 [DOI] [PubMed] [Google Scholar]
- 5. Black JW, Stephenson JS: Pharmacology of a new adrenergic beta receptor blocking compound (nethalide). Lancet 1962; 2: 311–314 [DOI] [PubMed] [Google Scholar]
- 6. Kobinger W: Specific bradycardic agents, a new approach to therapy in angina pectoris. Prog Pharmacol 1985; 5/3: 89–100 [Google Scholar]
- 7. Anderson K‐E: Clinical pharmacology of potassium channel openers. Pharm Toxicol 1992; 70: 244–254 [DOI] [PubMed] [Google Scholar]
- 8. Duchosal F, Opie LH: A new compound with combined bradycardic and positive inotropic effects. J Moll Cell Cardiol 1987; 19 (suppl III): 47–68 [Google Scholar]
- 9. Grohs JG, Fischer G, Raberger G: Cardiac and hemodynamic effects of the selective bradycardic agent KC 8857 during exerciseinduced myocardial ischemia. Eur J Pharmacol 1989; 161: 53–60 [DOI] [PubMed] [Google Scholar]
- 10. Mitrovic V, Oehm E, Liebrich A, Thormann J, Schlepper M: Hemodynamic and anti‐ischemic effects of tedisamil in humans. Cardiovasc Drugs Ther 1992; 6: 353–360 [Google Scholar]
- 11. Thormann J, Mitrovic V, Riedel H, Neuzner J, Strasser R, Bahavar H: Tedisamil (KC 8857) is a new specific bradycardic drug: Does it also influence myocardial contractility? Analysis by the conductance (volume) technique in coronary artery disease. Am Heart J 1993; 125: 1233–1246 [DOI] [PubMed] [Google Scholar]
- 12. Dukes DI, Cleemann L, Morad M: Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp Ther 1990; 254 (2): 560–569 [PubMed] [Google Scholar]
- 13. Dukes DI, Morad M: Tedisamil modulates outward K+ channels in rat and guinea pig ventricular myocytes. Circulation 1989; 80 (suppin): II‐261–II‐274 [Google Scholar]
- 14. Tsuchihashi K, Curtis MJ: Influence of tedisamil on the initiation and maintenance of ventricular fibrillation: Chemical detibrillation by Ito blockade? J Cardiovasc Pharmacol 1991; 18 (3): 445–456 [DOI] [PubMed] [Google Scholar]
- 15. Eichelbaum M: Pharmakokinetik und Metabolismus von Gallopamil. Z Kardiol 1989; 78 (suppl 5): 20–24 [PubMed] [Google Scholar]
- 16. Oexle B, Weirich J, Antoni H: Electrophysiological profile of KC 8857, a new bradycardic agent. J Moll Cell Cardiol 1987; 19 (suppIII): 65 [Google Scholar]
- 17. Oexle B, Weirich J, Antoni H: Elektrophysiologisches Wirkungs spektrum einer neuen bradykardisierenden Verbindung KC 8857. Z Kardiol 1987; 76 (suppl 2): 71 3442091 [Google Scholar]
- 18. Gross GJ, Lamping KG, Warltier DC, Hardman HF: Effects of three bradycardic drugs on regional myocardial blood flow and function in areas distal to a total or partial coronary occlusion in dogs. Circulation 1984; 69 (2): 391–399 [DOI] [PubMed] [Google Scholar]
- 19. Tsuchihashi K, Curtis MJ: Tedisamil possesses direct defibrillatory activity during myocardial ischemia and during reperfusion. Br J Pharmacol 1990; 99 (suppl): 231P [Google Scholar]
- 20. Fuchs A, Buschmann G, Ziegler D, Varchim G, Kuhl UG: Tedisamil: Cardiac electrophysiologic and functional effects in guinea pigs. Naunyn ‐ Schmiedebergs Archiv Pharmacol 1989: 340 (suppl II): R72 [Google Scholar]
- 21. Eichstadt H, Koch H‐P, Danne O, Langer M, Felix R, Schmutzler H: Wirkung intravenoser und oraler Therapie mil Kalziumantagonisten auf die myokardiale Mikroperfusion In Therapie mil Gallopamil. Steinkopff Verlag, Darmstadt, 1987. [Google Scholar]
- 22. Peruche B, Schulz M: Esmolol, ein b‐Rezeptorenblocker. Pharmozie 1991; 45: 30–34 [Google Scholar]
- 23. Sum CY, Yacobi A, Kartzinel R, Stampfli H, Davis CS, Lai C‐M: Kinetics of esmolol, an ultra‐short‐acting beta blocker, and of its major metabolite. Clin Pharmacol Ther 1983; 34 (4): 427–4 [DOI] [PubMed] [Google Scholar]
- 24. Quon CY, Stampfli HF: Biochemical properties of blood esmolol esterase. Drug Metab Dispos 1985; 13: 420–424 [PubMed] [Google Scholar]
- 25. Viray R, Turlapaty P, Laddu A: Esmolol: A short‐acting titrable beta‐blocker in acute myocardial ischemia. Int J Clin Pharmacol Ther Toxicol 1988; 26 (3): 153–161 [PubMed] [Google Scholar]
- 26. Achari R, Drissel D, Matier WL: Metabolism and urinary excretion of esmolol in humans. J Clin Pharm 1986; 26: 44–47 [DOI] [PubMed] [Google Scholar]
- 27. Greenspan AM, Spielmann SR, Horowitz LN, Senior S, Steck S, Laddu A: Electrophysiology of esmolol. Am J Cardiol 1985; 56: 19F–26F [DOI] [PubMed] [Google Scholar]
- 28. Askenazi J, MacCosby PE, Hoff J, Turlapaty P, Hua TA, Laddu A: Hemodynamic effects of esmolol, an ultrashort‐acting beta blocker. J Clin Phamacol 1987; 27: 567–573 [DOI] [PubMed] [Google Scholar]
- 29. Iskandrian AS, Hakki A‐H, Laddu A: Effects of esmolol on cardiac function: Evaluation by noninvasive techniques. Am J Cardiol 1985; 56: 27F–32F [DOI] [PubMed] [Google Scholar]
- 30. Wallis DE, Pope C, Littman WJ, Scanlon PJ: Safety and efficacy of esmolol for unstable angina pectoris. Am J Cardiol 1988; 62: 1033–1037 [DOI] [PubMed] [Google Scholar]
- 31. Fischer G, Grohs JG, Raberger G: Esmolol: Effects on isoprenaline‐ and exercise‐induced cardiovascular stimulation in conscious dogs. Can J PIiysiol Pharmcol 1990; 68: 1322–1328 [DOI] [PubMed] [Google Scholar]
- 32. Kloner RA, Kirshenbaum J, Lange R, Antmann EM, Braunwald E: Expertimental and clinical observations on the efficacy of esmolol in myocardial ischemia. Am J Cardiol 1985; 56: 40F–48F [DOI] [PubMed] [Google Scholar]
- 33. Lange R, Kloner RA, Braunwald E: Enhancement of functional recovery of “stunned” reperfused myocardium by a new ultra‐short beta‐blocker. J Am Col1 Cardiol 1984; 3: 545–556 [Google Scholar]
- 34. Lange R, Kloner RA, Braunwald E: First ultra‐short‐acting beta adrenergic blacking agent: Its effect on size and segmental wall dynamics of reperfused myocardial infarcts in dogs. Am J Cardiol 1983; 5: 1759–1767 [DOI] [PubMed] [Google Scholar]
- 35. Zarolinski J, Borgmann RJ, O'Donnel JP, Anderson WG, Erhardt PW, Kam ST. Reynolds RD, Lee RJ, Gorczynski RJ: Ultra‐short acting beta‐blockers: A proposal for the treatment of the critically ill patient. Life Sci 1982; 31: 899–907 [DOI] [PubMed] [Google Scholar]
- 36. Fleckenstein‐Grün G, Fleckenstein A: Blockierung der Ca2+‐abhäggigen bioelektrischen Automatic und elektromechanischen Kopplung glalter Muskelzellen durch Gallopamil (D 600) In Gallopamil. Berlin, Heidelberg, New York, Tokyo: SpringerVerlag, 1983. [Google Scholar]
- 37. Trautwein W, Hescheler J: Versuche zum Wirkungsmechanismus von D 600 an isolierten Myozyten In Gallopamil. Berlin, Heidelberg, New York, Tokyo: Springer‐Verlag, 1983. [Google Scholar]
- 38. Fleckenstein A, Fleckenstein B, Späth F, Byon YK: Gallopamil (D 600) ‐ ein Kalziumantagonist von hoher Wirkungsstarke und Spezifität. Effekt auf Myokard und Schrittmacher In Gallopamil. Berlin, Heidelberg, New York, Tokyo: Springer‐Verlag, 1983. [Google Scholar]
- 39. Brisse B, Weber M, Bender F: Untersuchung der Gallopamil mit dem Nuklearstethoskop bei Patienten mit koronarer Herzkrankheit In Therapie mit Gallopamil. Dannstadt: Steinkopff Verlag, 1987. [Google Scholar]
- 40. Hopf R, Drews H, Kaltenbach M: Die antianginose Wirkung von Gallopamil im Vergleich zu Nifedipin In Gallopamil. Berlin, Heidelberg, New York, Tokyo: Springer‐Verlag, 1983. [Google Scholar]
- 41. Khurmi NS, O'Hara MJ, Bowles MJ, Bala Subramanian V, Raftery EB: Randomized double‐blind comparison of gallopamil and propranolol in stable angina pectoris. Am J Cardiol 1984; 53: 684–688 [DOI] [PubMed] [Google Scholar]
- 42. Tillmanns H, Zimmermann R, Kapp M, Ranch B, Neumann FJ, Schlumpp K, Bubeck B, Georgi P, Kübler W: Auswirkungen von Gallopamil auf 123‐Jod‐Phenyl‐Pentadecansäure und Thallium201‐Aufnahine bei Patienten mit koronarer Herzkrankheit. Z Kardiol 1989; 78 (suppl 5): 77–82 [PubMed] [Google Scholar]
- 43. De Servi S, Ferrario M, Ohio S, Mussini A, Angoli L, Bramucci E, Bartoli A, Poma E, Rondanclli R, Spechia G: Coronary hemodynamic effects of short term intravenous administration of gallopamil in patients with chronic stable exertional angina. Br Heart J 1987; 57: 226–231 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Grossmann G, Stauch M, Schmidt A, Waitzinger G: Die Wirkung von Gallopamil oral auf die globale und regionale Ventrikelfunklion bei Patienten mit koronarer Herzkrankheit In Therapie mit Gallopamil. Dannstadt: Steinkopff Verlag, 1987. [Google Scholar]
- 45. Mitrovic V, Niemelä L, Neuss H, Schlepper M: Zur antianginosen Wirkung des Kalziumantagonisten Gallopamil In Gallopamil. Berlin, Heidelberg, New York, Tokyo: Springer‐Verlag, 1983. [Google Scholar]
- 46. Rettig G, Sen S, Vogel W, Heisel A, Schieffer H, Bette L: Antianginal efficacy of gallopamil in comparison to nifedipine. Int J Cardiol 1988; 19: 315–325 [DOI] [PubMed] [Google Scholar]
- 47. Zebe H: Gallopamil und Molsidomin bei Patienten mit KHK. Fortschr Med 1989; 5: 134/60–138/68 [PubMed] [Google Scholar]
- 48. Eichstädt H, Danne O, Gutmann G, Langer M, Felix R, Schmutzler H: Microperfusion in coronary artery disease under treatment with calcium antagonist gallopamil. Arzneim Forsch 1988; 38: 700–703 [PubMed] [Google Scholar]
- 49. Gutmann M, Eichstädt H: Tomoszintigraphische Untersuchungen zur myokardialen Mikrozirkulation unter dem Calciumantagonisten Gallopamil. Herz‐Kreislauf 1985; 17: 363–368 [Google Scholar]
- 50. Faria DB, Goncalves FR, Maroko PR: Three‐dimensional analysis of infarct size reduction after administration of gallopamil in dogs. Arzneim Forsch 1990; 40: 19–23 [PubMed] [Google Scholar]
- 51. Schamhardt HC, Verdouw PD, Saxena PR: Improvement of perfusion and function of ischemic porcine myocardium after reduction of heart rate by alinidine. J Cardiovase Pharmacol 1981; 3: 728–738 [DOI] [PubMed] [Google Scholar]
- 52. Swan HJC, Ganz W, Forrester J, Marcus H, Diamond G, Chonette G: Catheterization of the heart in man with use of a flow‐directed balloon‐tipped catheter. N Engl J Med 1970; 283: 447–451 [DOI] [PubMed] [Google Scholar]
- 53. Kringe KP, Greb H, Bayha G, Kranich S, Mitrovic V: HPLCRoutineanalytik von freiem Noradrenalin und Adrenalin. Ihre Bestimmung in Plasma, Urin und Gewebe mittels Hochleistungsflüssigkeits‐Chromatographie und elektrochemischer Detektion. LABO‐Fachzeitschriftfür Labortechnik 1986; 17: 7–12 [Google Scholar]
- 54. Mitrovic V, Oehm E, Strasser R, Schlepper M, Pitschner HP: Der neue Kalium‐Kanalblocker Tedisamil und seine hämodynamische, antiischamische und neurohumorale Wirkung bei Patienten mil koronarer Herzerkrankung. Z Kardiol 1996; 85: 961–972 [PubMed] [Google Scholar]
- 55. Thormann J, Mitrovic V, Strasser R, Pitschner HF, Riedel H, Bahavar H, Schlepper M: Wird die bradykardisierende Wirkung von Tedisamil mit Inotropie‐Einbusse erkauft? Eine Druck Volumen‐Analyse mit der Conductance‐(Volumen‐) Katheiertechnik bei Patienten mit koronarer Gefässkrankheit. Z Kardiol 1993; 82: 211–221 [PubMed] [Google Scholar]
- 56. Escande D, Henry P: Potassium channels as pharmacological targets in cardiovascular medicine. Eur Heart J 1993; 14 (suppl B): 2–9 [DOI] [PubMed] [Google Scholar]
- 57. Robertson DW, Steinberg MI: Potassium channel modulators: Scientific applications and therapeutic promise. J Med Chem 1990; 33 (6): 1529–1541 [DOI] [PubMed] [Google Scholar]
- 58. Gazes PC, Richardson JA, Woods EF: Plasma catecholamine concentrations in myocardial infarction and angina pectoris. Circulation 1959; 19: 657–661 [DOI] [PubMed] [Google Scholar]
- 59. Remme WJ, de Leeuw PW, Bootsma M, Look MP, Kruijssen DACM: Systemic neurohumoral activation and vasoconstriction during pacing‐induced acute myocardial ischemia in patients with stable angina pectoris. Am J Cardiol 1991; 68: 181–186 [DOI] [PubMed] [Google Scholar]
- 60. Löllgen H, Just H, Wollschläger H, Kersting F: Hemodynamic actions of alinidine during exercise in patients with coronary artery disease. Z Kardiol 1981; 70: 425–428 [PubMed] [Google Scholar]
- 61. Schweizer MWF, Brachmann J, Kirchner U, Walter‐Sack I, Dickhaus H, Metze C, Ktibler W: Heart rate variability in time and frequency domains: Effects of gallopamil, nifedipine, and metoprolol compared with placebo. Br Heart J 1993; 70: 252–258 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross J Jr: Effects of beta‐blockade on regional myocardial flow and function during exercise. Am J Physiol 1984; 247: H52–H60 [DOI] [PubMed] [Google Scholar]
- 63. Gulh BD, Heusch G, Seitelberger R, Ross R. Jr: Elimination of exercise‐induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis. Circulation 1987; 75 (3): 661–669 [DOI] [PubMed] [Google Scholar]
- 64. O' Brien P, Drage D, Saeian K, Brooks HL, Warltier DC: Regional redistribution of myocardial perfusion by UL‐FS 49, a selective bradycardic agent. Am Heart J 1992; 123: 566–574 [DOI] [PubMed] [Google Scholar]
- 65. Shub C: Stable angina pectoris: 3. Medical treatment. Mayo Clin Proc 1990; 65: 256–273 [DOI] [PubMed] [Google Scholar]
- 66. Frishman WH, Sonnenblick EH: Calcium channel blockers In The Heart (Eds. Hurst JW, Schlant RC, Rackley CE, Sonnenblick EH, Wenger NK.). Seventh Edition New York: McGraw‐Hill Information Services Company, 1990. [Google Scholar]