Skip to main content
Clinical Cardiology logoLink to Clinical Cardiology
. 2009 Feb 3;22(12):775–786. doi: 10.1002/clc.4960221205

Coronary artery blood how: Physiologic and pathophysiologic regulation

Lillybeth Feliciano 1, Robert J Henning 2
PMCID: PMC6656097  PMID: 10626079

Abstract

Acute myocardial ischemia, which results from a significant imbalance between myocardial oxygen demands and myocardial oxygen supply, occurs in as many as six million persons with atherosclerotic coronary artery disease in the United States. Accordingly, a clear understanding of the physiologic and pathophysiologic factors that influence coronary artery blood flow is important to the clinician and provides the basis for the judicious use of medications for the treatment of patients with atherosclerotic coronary artery disease. This review discusses the endothelial, metabolic, myogenic, and neurohumoral mechanisms of coronary blood flow regulation and the interaction of the different mechanisms in the regulation of coronary blood flow. The importance of nitric oxide in coronary blood flow regulation is emphasized. We also discuss the common clinical problems of hyperlipidemia and coronary atherosclerosis, coronary artery spasm, and systemic arterial hypertension that result in coronary artery endothelial dysfunction, the impaired production and increased inactivation of nitric oxide, and impairment in coronary blood flow regulation. This information is important to clinicians because more than forty million people in the United States have atherosclerotic or hypertensive heart disease and therefore are at risk for significant myocardial complications due to impairment of coronary blood flow regulation.

Keywords: coronary blood flow, regulation of coronary blood flow, autoregulation, vascular endothelium, nitric oxide, adenosine, hyperlipidemia, atherosclerosis

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  • 1. Yang SS, Bentivoglio LG, Maranhao V, Goldberg H: Assessment of ventricular function In From Cardiac Catheterization Data to Hemodynamic Parameters, p. 207–208. Philadelphia: F.A. Davis Company, 1988. [Google Scholar]
  • 2. Rooke GA, Feigl EO: Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 1982; 50: 273–286 [DOI] [PubMed] [Google Scholar]
  • 3. Rubio R, Berne RM: Regulation of coronary blood flow. Prog Cardiovasc Dis 1975; 18 (2): 105–122 [DOI] [PubMed] [Google Scholar]
  • 4. Marcus M: Metabolic regulation of coronary blood flow In The Coronary Circulation in Health and Disease, p. 65–92. New York: McGraw Hill, 1983. [Google Scholar]
  • 5. Kelley KO, Feigl EO: Segmental alpha‐receptor‐mediated vasoconstriction in the canine coronary circulation. Circ Res 1978; 43: 908–917 [DOI] [PubMed] [Google Scholar]
  • 6. Chilian WM, Kuo L, DeFily DV, Jones CJH, Davis MJ: Endothelial regulation of coronary microvascular tone under physiological and pathophysiological conditions. Eur Heart J 1993; 14 (suppl I): 55–59 [PubMed] [Google Scholar]
  • 7. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML: Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 1989; 256:H383–390 [DOI] [PubMed] [Google Scholar]
  • 8. Braunwald E, Sobel BE: Coronary blood flow and myocardial ischemia In Heart Disease, A Textbook of Cardiovascular Medicine, 4th Ed. (Ed. Braunwald E.), p. 1161–1199. Philadelphia: WB. Saunders, 1992. [Google Scholar]
  • 9. Schlant RC, Sonnenblick EH: Pathophysiology of heart failure In The Heart (Eds. Schlant RC, Alexander RW.), p. 528–529. New York: McGraw‐Hill, Inc., 1994. [Google Scholar]
  • 10. National Heart, Lung, and Blood Institute : Morbidity from Coronary Heart Disease in the United States. NHLBI Data Fact Sheet, June 1990. [Google Scholar]
  • 11. Kelm M, Schrader J: Control of coronary vascular tone by nitric oxide. Circ Res 1990; 66: 1561–1575 [DOI] [PubMed] [Google Scholar]
  • 12. Quyyumi AA, Dakak N, Andrews NP, Gilligan DM, Panza JA, Cannon RO: Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 1995; 92: 320–326 [DOI] [PubMed] [Google Scholar]
  • 13. Jones CJH, Kuo L, Davis MJ, DeFily DV, Chilian WM: Role of nitric oxide in the coronary microvascular response to adenosine and increased metabolic demand. Circulation 1995; 91: 1807–1813 [DOI] [PubMed] [Google Scholar]
  • 14. Losano G, Pagliaro P, Gattullo D, Marsh NA: Control of coronary blood flow by endothelial release of nitric oxide. Clin Experim Pharmacol Physiol 1994; 21: 783–789 [DOI] [PubMed] [Google Scholar]
  • 15. Kuo L, Davis MI, Chilian WM: Endothelium‐dependent, flow‐induced dilation of isolated coronary arterioles. Am J Physiol 1990; 259: H1063–1070 [DOI] [PubMed] [Google Scholar]
  • 16. Jones CJH, Kuo L Davis MJ, Chilian WM: Regulation of coronary blood flow: Coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 1995; 29 (5): 585–596 [PubMed] [Google Scholar]
  • 17. Liao JC, Kuo L: Interaction between adenosine and flow‐induced dilation in coronary microvascular network. Am J Physiol 1997; 272: H1571–1581 [DOI] [PubMed] [Google Scholar]
  • 18. Drexler H, Zeiher AM, Wollschlager H, Meinertz T, Just H, Bonzel T: Flow‐dependent coronary artery dilation in humans. Circulation 1989; 80: 466–474 [DOI] [PubMed] [Google Scholar]
  • 19. Kuo L, Chilian WM, Davis MJ: Interaction of pressure‐ and flow‐induced responses in porcine coronary resistance vessels. Am J Physiol 1991; 261: H1706–1715 [DOI] [PubMed] [Google Scholar]
  • 20. Furchgott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376 [DOI] [PubMed] [Google Scholar]
  • 21. Kuo L, Davis MJ, Cannon MS, Chilian WM: Pathophysiological consequences of atherosclerosis extend to the microcirculation. Circ Res 1992; 70: 465–476 [DOI] [PubMed] [Google Scholar]
  • 22. Pohl U, Busse R, Kuon E, Bassenge E: Pulsatile perfusion stimulates the release of endothelial autacoids. J Appl Cardiol 1986; 1: 215–235 [Google Scholar]
  • 23. Shen J, Luscinskas FW, Connolly A, Forbes Dewey C, Gimbrone MA: Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol 1992; 262: C384–C390 [DOI] [PubMed] [Google Scholar]
  • 24. Airman JD, Kinn J, Duncker JK, Bache RJ: Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in dog. Cardiovasc Res 1994; 28: 119–124 [DOI] [PubMed] [Google Scholar]
  • 25. Gattullo D, Pagliaro P, Linden RJ, Merletti, Losano G : The role of nitric oxide in the initiation and in the duration of some vasodilator responses in the coronary circulation. Pflugers Arch — Eur J Physiol 1995; 430: 96–104 [DOI] [PubMed] [Google Scholar]
  • 26. Hintze TH, Vatner SF: Reactive dilation of large coronary arteries in conscious dogs. Circ Res 1984; 54: 50–57 [DOI] [PubMed] [Google Scholar]
  • 27. Lamontagne D, Pohl U, Busse R: Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium‐derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 1992; 70: 123–130 [DOI] [PubMed] [Google Scholar]
  • 28. Bassenge E: Control of coronary blood flow by autacoids. Basic Res Cardiol 1995; 90: 125–141 [DOI] [PubMed] [Google Scholar]
  • 29. Parent R, al‐Obaidi M, Lavall M: Nitric oxide formation contributes to α‐adrenergic dilation of resistance coronary vessels in conscious dogs. Circ Res 1993; 73: 241–251 [DOI] [PubMed] [Google Scholar]
  • 30. Miller WL, Belardinelli L, Bacchus A, Foley DH, Rubio R, Berne RM: Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation. Circ Res 1979; 45 (6): 708–718 [DOI] [PubMed] [Google Scholar]
  • 31. Van Winkle DM, Feigl EO: Acetylcholine causes coronary vasodilation in dogs and baboons. Circ Res 1989; 65: 1580–1593 [DOI] [PubMed] [Google Scholar]
  • 32. Broten TP, Miyashiro JK, Moncada S, Feigl EO: Role of endothelium‐derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol 1992; 262: H1579–H584 [DOI] [PubMed] [Google Scholar]
  • 33. Pelc LR, Gross GJ, Warltier DC: Changes in regional myocardial perfusion by muscarinic receptor subtypes in dogs. Cardiovasc Res 1986; 20 (7): 482–489 [DOI] [PubMed] [Google Scholar]
  • 34. Ren LM, Nakane T, Chiba S: Muscarinic receptor subtypes mediating vasodilation and vasoconstriction in isolated, perfused simian coronary arteries. J Cardiovasc Pharmacol 1993; 22: 841–846 [DOI] [PubMed] [Google Scholar]
  • 35. Muller JM, Davis MJ, Chilian WM: Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res 1996; 32: 668–678 [PubMed] [Google Scholar]
  • 36. Jones CJH, DeFily DV, Patterson J, Chilian WM: Endothelium‐dependent relaxation competes with α1 and α2‐adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 1993; 87: 1264–1275 [DOI] [PubMed] [Google Scholar]
  • 37. Angus JA, Cocks TM, Satoh K: Alpha2‐adrenoceptors and endothelium‐dependent relaxation in canine large arteries. Br J Pharmacol 1986; 88: 767–777 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Nagao T, Vanhoutte PM: Endothelium‐derived hyperpolarizing factor and endothelium‐dependent relaxations. Am J Respir Cell & Mol Biol 1993. (8): 1–6 [DOI] [PubMed]
  • 39. Mehta J: Endothelium, coronary vasodilation, and organic nitrates. Am Heart J 1995; 129: 382–391 [DOI] [PubMed] [Google Scholar]
  • 40. Dinerman JL, Mehta JL: Endothelial, platelet and leukocyte interactions in ischemic heart disease: Insights into potential mechanisms and their clinical relevance. J Am Coll Cardiol 1990; 16: 207–222 [DOI] [PubMed] [Google Scholar]
  • 41. Bennet BM, Waldman SA: Cyclic nucleotides and protein phosphorylation in vascular smooth muscle relaxation, In Physiology and Pathophysiology of the Heart (Ed. Sperelakis N.), p. 975–998. Norwell, Mass.: Kluwer Academic Publishers, 1995. [Google Scholar]
  • 42. Sperelakis N, Xiong G, Haddad H, Masuda H: Regulation of slow calcium channels of myocardial cells and vascular smooth muscle cells by cyclic nucleotides and phosphorylation. Mol Cell Biochem 1994; 140 (2): 103–117 [DOI] [PubMed] [Google Scholar]
  • 43. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415 [DOI] [PubMed] [Google Scholar]
  • 44. Rubanyi GM, Polokoff MA: Endothelins: Molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994; 46 (3): 328–415 [PubMed] [Google Scholar]
  • 45. Luscher TF, Wenzel RR, Noll G: Local regulation of the coronary circulation in health and disease: Role of nitric oxide and endothelin. Eur Heart J 1995; 16 (suppl C): 51–58 [DOI] [PubMed] [Google Scholar]
  • 46. Hori M, Kitakaze M: Adenosine, the heart, and coronary circulation. Hypertension 1991; 18: 565–574 [DOI] [PubMed] [Google Scholar]
  • 47. Bache RJ, Dai XZ, Schwartz JS, Homans DC: Role of adenosine in coronary vasodilation during exercise. Circ Res 1988; 62: 846–853 [DOI] [PubMed] [Google Scholar]
  • 48. Berne RM: The role of adenosine in the regulation of coronary blood flow. Circ Res 1980; 47 (6): 807–813 [DOI] [PubMed] [Google Scholar]
  • 49. Narishige T, Egashira K, Akatsuka Y, Katsuda Y, Numaguchi K, Sakata M, Takeshita A: Glibenclamide, a putative ATP‐sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs. Circ Res 1993; 73: 771–776 [DOI] [PubMed] [Google Scholar]
  • 50. Kusachi S, Thompson RD, Olsson RA: Ligand selectivity of dog adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. J Pharmacol Exp Ther 1983; 227: 316–321 [PubMed] [Google Scholar]
  • 51. Bruns RF, Lu GH, Pugsley TA: Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 1986; 29: 331–346 [PubMed] [Google Scholar]
  • 52. Broten TP, Feigl EO: Role of myocardial oxygen and carbon dioxide in coronary autoregulation. Am J Physiol 1992; 262:H1231–H1237 [DOI] [PubMed] [Google Scholar]
  • 53. DeFily DV, Chilian WM: Coronary microcirculation: Autoregulation and metabolic control. Basic Res Cardiol 1995; 90: 112–118 [DOI] [PubMed] [Google Scholar]
  • 54. Jones CJH, Kuo L, Davis MJ, Chilian WM: Distribution and control of coronary microvascular resistance In Interactive Phenomena in the Cardiac System (Eds. Sideman S, Beyar R.), p. 181–188. New York: Plenum Press, 1993. [DOI] [PubMed] [Google Scholar]
  • 55. Jones CJH, Kuo L, Davis MJ, Chilian WM: Myogenic and flow‐dependent control mechanisms in the coronary circulation. Basic Res Cardiol 1993; 88: 2–10 [DOI] [PubMed] [Google Scholar]
  • 56. Kuo L, Davis MI, Chilian WM: Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol 1988; 255:H1558–H1562 [DOI] [PubMed] [Google Scholar]
  • 57. Davis MJ, Donovitz JA, Hood JD: Stretch‐activated single‐channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 1992; 262:C1083–C1088 [DOI] [PubMed] [Google Scholar]
  • 58. Meininger GA, Davis MJ: Cellular mechanisms involved in the myogenic response. Am J Physiol 1992; 263:H647–H659 [DOI] [PubMed] [Google Scholar]
  • 59. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT: Hyperpolarizing vasodilators activate ATP‐sensitive K+ channels in arterial smooth muscle. Science 1989; 254: 177–180 [DOI] [PubMed] [Google Scholar]
  • 60. Komaru T, Kanatsuka H, Dellsperger K, Takishima T: The role of ATP‐sensitive potassium channels in regulating coronary microcirculation. Biorheology 1993; 30: 371–380 [DOI] [PubMed] [Google Scholar]
  • 61. Dole WP: Autoregulation of the coronary circulation. Prog Cardiovasc Dis 1987; 29 (4): 293–323 [DOI] [PubMed] [Google Scholar]
  • 62. Smith TP Jr, Canty JM Jr: Modulation of coronary autoregulatory responses by nitric oxide: Evidence for flow‐dependent resistance adjustments in conscious dogs. Circ Res 1993; 73: 232–240 [DOI] [PubMed] [Google Scholar]
  • 63. Boatwright RB, Downey HF, Bashour FA, Crystal GJ: Transmural variation in autoregulation of coronary blood flow in hyperperfused canine myocardium. Circ Res 1980: 47: 599–609 [DOI] [PubMed] [Google Scholar]
  • 64. Dole WP, Montville WJ, Bishop VS: Dependency of myocardial reactive hyperemia on coronary artery pressure in the dog. Am J Physiol 1981: 240 (5):H709–H715 [DOI] [PubMed] [Google Scholar]
  • 65. Kanatsuka H, Lamping KG, Eastham CL, Marcus ML: Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Circ Res 1990; 66: 389–396 [DOI] [PubMed] [Google Scholar]
  • 66. Chilian WM, Layne SM: Coronary microvascular responses to reductions in perfusion pressure: Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion. Circ Res 1990: 66: 1227–1238 [DOI] [PubMed] [Google Scholar]
  • 67. Feigl EO: Coronary physiology. Physiol Rev 1983; 63: 1–205 [DOI] [PubMed] [Google Scholar]
  • 68. Ueeda M, Silvia SK, Olsson RA: Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 1992; 70: 1296–1303 [DOI] [PubMed] [Google Scholar]
  • 69. Chilian WM, Layne SM, Eastham CL, Marcus ML: Heterogeneous microvascular coronary α‐adrenergic vasoconstriction. Circ Res 1989; 64: 376–388 [DOI] [PubMed] [Google Scholar]
  • 70. Marcus ML: Neural control of the coronary circulation In The Coronary Circulation in Health and Disease, Chapter 6, p. 129–146. New York: McGraw‐Hill, 1983. [Google Scholar]
  • 71. Woodman OL, Vatner SF: Coronary vasoconstriction mediated by α1‐ and α2‐adrenoceptors in conscious dogs (Part 2 of 2). Am J Physiol 1987; 253:H388–H393 [DOI] [PubMed] [Google Scholar]
  • 72. Marcus ML: Humoral control of the coronary circulation In The Coronary Circulation in Health and Disease, Chapter 8, p. 155–187. New York: McGraw‐Hill, 1987. [Google Scholar]
  • 73. Kelley KO, Feigl EO: Segmental α‐receptor mediated vasoconstriction in the canine coronary circulation. Circ Res 1978; 43 (6): 908–917 [DOI] [PubMed] [Google Scholar]
  • 74. Chen DG, Dai X, Bache RJ: Post‐synaptic adrenoreceptor‐mediated vasoconstriction in coronary and femoral vascular beds. Am J Physiol 1988; 254:H984–H992 [DOI] [PubMed] [Google Scholar]
  • 75. Young MA, Vatner SF: Regulation of large coronary arteries. Circ Res 1986; 59 (6): 579–596 [DOI] [PubMed] [Google Scholar]
  • 76. Jones CJH, DeFily DV, Patterson JL, Chilian WM: Endothelium‐dependent relaxation competes with α1‐ and α2‐adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 1993; 87: 1264–1274 [DOI] [PubMed] [Google Scholar]
  • 77. Chilian WM: Functional distribution of α1‐ and α2‐adrenergic receptors in the coronary microcirculation. Circulation 1991; 84: 2108–2122 [DOI] [PubMed] [Google Scholar]
  • 78. Nakane T, Tsujimoto G, Hashimoto K, Chiba S: Beta adrenoceptors in the canine large coronary arteries: Beta‐1 adrenoceptors predominate in vasodilation. J Pharmacol Exp Ther 1988; 245: 936–943 [PubMed] [Google Scholar]
  • 79. Murphree SS, Saffitz JE: Delineation of the distribution of α‐adrenergic receptor subtypes in canine myocardium. Circ Res 1988; 63: 117–125 [DOI] [PubMed] [Google Scholar]
  • 80. Duncker DJ, Stubenitsky R, Verdouw PD: Autonomic control of vasomotion in the procine coronary circulation during treadmill exercise. Evidence for feed‐forward β‐adrenergic control. Circ Res 1998; 82: 1312–1322 [DOI] [PubMed] [Google Scholar]
  • 81. Jaiswal N, Malik KU: Methoctramine, a cardioselective antagonist: Muscarinic receptor mediating prostaglandin synthesis in isolated rabbit heart. Eur J Pharmacol 1991; 192 (l): 63–70 [DOI] [PubMed] [Google Scholar]
  • 82. Hoover DB, Neely DA: Differentiation of muscarinic receptors mediating negative chronotropic and vasoconstrictior responses to acetylcholine in isolated rat hearts. J Pharmacol Exp Ther 1997; 282: 1337–1344 [PubMed] [Google Scholar]
  • 83. Yamanoue T, Brum JM, Estafanous FG, Khairallah PA, Ferrario CM: Fentanyl attenuates porcine coronary arterial contraction through M3‐ muscarinic antagonism. Anesth Analg 1993: 76: 382–390 [PubMed] [Google Scholar]
  • 84. Su N, Narayanan N: Age related alterations in cholinergic but not α adrenergic response of rat coronary vasculature. Cardiovasc Res 1993; 27: 284–290 [DOI] [PubMed] [Google Scholar]
  • 85. Forssman WG, Triepel J, Daffner C, Heym CH: Vasoactive intestinal peptide in the heart. Ann NY Acad Sci 1988; 527: 405–420 [DOI] [PubMed] [Google Scholar]
  • 86. Gu J, Polak JM, Adrian TE, Tatemoto K, Allen JM, Bloom SR: Neuropeptide tyrosine (NPY)—a major cardiac neuropeptide. Lancet 1983. I(8332):1008–1010 [DOI] [PubMed] [Google Scholar]
  • 87. Franco‐Cereceda A, Lundberg JM: Potent effects of neuropeptide Y and calcitonin gene‐related peptide on human coronary vascular tone in vitro. Acta Physiol Scand 1987; 131: 159–160 [DOI] [PubMed] [Google Scholar]
  • 88. Huang M, Rorstad OP: VIP receptors in mesenteric and coronary arteries: A radioligand binding study. Peptides 1987; 8 (3): 477–485 [DOI] [PubMed] [Google Scholar]
  • 89. Chujo M, Mori H, Tanaka E, Nakazawa H, Okino H: Inhibitory effects of nicorandil on sympathetic coronary vasoconstriction. Cardiovasc Res 1994; 28: 917–922 [DOI] [PubMed] [Google Scholar]
  • 90. Rudehill A, Sollevi A, Franco‐Cereceda A, Lundberg JM: Neuropeptide Y (NPY) and the pig heart: Release and coronary vasoconstrictor effects. Peptides 1986; 7: 821–826 [DOI] [PubMed] [Google Scholar]
  • 91. Feliciano L, Henning RJ: Vagal nerve stimulation during muscarinic and beta‐adrenergic blockade causes significant coronary artery dilation. J Autonom New Syst 1998; 68: 78–88 [DOI] [PubMed] [Google Scholar]
  • 92. Feliciano L, Henning RJ: Vagal nerve stimulation releases vasoactive intestinal peptide which significantly increases coronary artery blood flow. Cardiovasc Res 1998; 40: 45–55 [DOI] [PubMed] [Google Scholar]
  • 93. Aizawa Y, Murata M, Hayashi M, Funazaki T, Ito S, Shibata A: Vasoconstrictor effect of neuropeptide Y (NPY) on canine coronary artery. Jpn Circ J 1985; 49: 584–588 [DOI] [PubMed] [Google Scholar]
  • 94. Weihe E, Reinecke M: Peptidergic innervation of the mammalian sinus nodes: Vasoactive intestinal polypeptide, neurotensin, substance P. Neurosci Lett 1981; 26 (3): 283–288 [DOI] [PubMed] [Google Scholar]
  • 95. Brum JM, Bove AA, Sufan Q, Reilly W, Go Vay LW: Action and localization of vasoactive intestinal peptide in the coronary circulation: Evidence for nonadrenergic, noncholinergic coronary regulation. J Am Coll Cardiol 1986; 7 (20): 406–413 [DOI] [PubMed] [Google Scholar]
  • 96. Popma JJ, Smitherman TC, Bedotto JB, Eichhorn EJ, Said SI, Dehmer GJ: Direct coronary vasodilation induced by intracoronary vasoactive intestinal peptide. J Cardiovasc Pharmacol 190; 16(6): 1000–1006 [DOI] [PubMed] [Google Scholar]
  • 97. Alexander RW, Pratt CM, Roberts R: Diagnosis and management of patients with acute myocardial infarction In Hurst's The Heart (Eds. Alexander RW, Schlant RC, Fuster V.), p. 1345–1434. New York: McGraw‐Hill, 1988. [Google Scholar]
  • 98. Drexler H, Zeiher AM, Meinzer K, Just H: Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L‐arginine. Lancet 1991; 338: 1546–1550 [DOI] [PubMed] [Google Scholar]
  • 99. Zeiher AM, Drexler H, Wollschalger H, Just H: Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991; 84: 1984–1992 [DOI] [PubMed] [Google Scholar]
  • 100. Treasure CB, Klein JL, Vita JA, Manoukian SU, Remwick G, Selwyn A, Ganz P, Alexander W: Hypertension and left ventricular hypertrophy are associated with impaired endothelium‐mediated relaxation in human coronary resistance vessels. Circulation 1993; 87: 86–93 [DOI] [PubMed] [Google Scholar]
  • 101. Treasure CB, Vita JA, Cox DA: Endothelium‐dependent dilation of the coronary microvasculture is impaired in dilated cardiomyopathy. Circulation 1990; 81: 772–779 [DOI] [PubMed] [Google Scholar]
  • 102. Liao JK: Nitric oxide and vascular disease. Cardiol Rounds 1998; 2 (5): 1–7 [Google Scholar]
  • 103. Zeiher AM, Drexler H, Wollschlager H, Just H: Modulation of coronary vasomotor tone: Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391–401 [DOI] [PubMed] [Google Scholar]
  • 104. Chilian WM, Dellsperger KC, Layne SM, Eastham CL, Armstrong MA, Marcus ML, Heistad DD: Effects of atherosclerosis on the coronary microcirculation. Am J Physiol 1990; 258:H529–H539 [DOI] [PubMed] [Google Scholar]
  • 105. Selke FW, Armstrong ML, Harrison DG: Endothelium‐dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 1990; 81: 1586–1593 [DOI] [PubMed] [Google Scholar]
  • 106. Cohen RA, Zitnay KM, Haudenschild CC, Cunningham LD: Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res 1988; 63: 903–910 [DOI] [PubMed] [Google Scholar]
  • 107. Luscher TF, Noll G: Endothelium dysfunction in the coronary circulation. J Cardiovasc Pharmacol 1994; 24 (suppl 3): S16–S26 [PubMed] [Google Scholar]
  • 108. Strauer BE: The concept of coronary flow reserve. J Cardiovasc Pharmacol 1992; 19 (suppl. 5): S67–S80 [PubMed] [Google Scholar]
  • 109. Bradley AJ, Alpert JS: Coronary flow reserve. Am Heart J 1991: 122 (4): 1116–1128 [DOI] [PubMed] [Google Scholar]
  • 110. Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M: Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 1996; 94 (12): 3232–3238 [DOI] [PubMed] [Google Scholar]
  • 111. Harrison DG, Marcus ML, Dellsperger KC, Lamping KG, Tomanek RJ: Pathophysiology of myocardial perfusion in hypertension. Circulation 1991; 83 (suppl III): III‐14–III‐18. [PubMed] [Google Scholar]
  • 112. Zeiher AM, Krause T, Schachinger V, Minners J, Moser E: Impaired endothelium‐dependent vasodilation of coronary resistance vessels is associated with exercise‐induced myocardial ischemia. Circulation 1995; 91: 2345–2352 [DOI] [PubMed] [Google Scholar]
  • 113. Quyyumi AA, Dakak N, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO: Nitric oxide activity in atherosclerotic human coronary circulation. J Am Coll Cardiol 1997; 29 (2): 308–317 [DOI] [PubMed] [Google Scholar]
  • 114. Chester AH, O'Neil GS, Moncada S, Tadjkarimi S, Yacoub MH: Low basal and stimulated release of nitric oxide in atherosclerotic epicardial vessels. Lancet 1990; 336: 897–900 [DOI] [PubMed] [Google Scholar]
  • 115. Yla‐Herttuala S, Rosenfeld ME, Parthasarathy S, Sigal E, Sarkioja T, Witztum J, Steinberg D: Gene expression in macrophage‐rich human atherosclerotic lesions. J Clin Invest 1991; 87: 1146–1152 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Tanner FC, Noll G, Boulanger CM, Luscher TF: Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium‐derived nitric oxide. Circulation 1991; 83: 2012–2020 [DOI] [PubMed] [Google Scholar]
  • 117. Flavahan NA: Atherosclerosis or lipoprotein‐induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF /nitric oxide activity. Circulation 1992: 85 (5): 1927–1938 [DOI] [PubMed] [Google Scholar]
  • 118. Ross R: The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362: 801–809 [DOI] [PubMed] [Google Scholar]
  • 119. Yang Z, Arnet U, Bauer E, von Segesser L, Siebenmann R Turina M, Luscher TF: Thrombin‐induced endothelium‐dependent inhibition and direct activation of platelet‐vessel wall interaction. Role of prostacyclin, nitric oxide, and thromboxane A2. Circulation 1994; 89: 2266–2272 [DOI] [PubMed] [Google Scholar]
  • 120. Abrams J: Role of endothelial dysfunction in coronary artery disease. Am J Cardiol 1997; 79 (12B): 2–9 [DOI] [PubMed] [Google Scholar]
  • 121. Steinberg D: Oxidative modification of LDL and atherogenesis. Circulation 1997; 95: 1062–1071 [DOI] [PubMed] [Google Scholar]
  • 122. Kinlay S, Ganz P: Role of endothelial dysfunction in coronary artery disease and implications for therapy. Am J Cardiol 1997; 80 (9A): 11I–16I [DOI] [PubMed] [Google Scholar]
  • 123. Kuo L, Davis MJ, Cannon MS, Chilian WM: Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium‐dependent responses by L‐arginine. Circ Res 1992; 70: 465–476 [DOI] [PubMed] [Google Scholar]
  • 124. Tarry WC, Makhoul RG: L‐arginine improves endothelium‐dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscler Thromb 1994; 14: 938–943 [DOI] [PubMed] [Google Scholar]
  • 125. Yasue H, Omote S, Takizawa A, Nagano M: Coronary arterial spasm in ischemic heart disease and its pathogenesis. Circ Res 1983; 52 (suppl I): 147–152 [PubMed] [Google Scholar]
  • 126. Maseri A, Seven S, De Nes MD, L'Abbate A, Chierchia S, Marzilli M, Ballestra AM, Parodi O, Biagini A, Distante A: “Variant” angina: One aspect of a continuous spectrum of vasospastic myocardial ischemia. Am J Cardiol 1978; 42: 1019–1035 [DOI] [PubMed] [Google Scholar]
  • 127. Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, Yoshimura M, Myotoyama T, Inobe Y, Kawano H: Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 1996; 94: 266–272 [DOI] [PubMed] [Google Scholar]
  • 128. Maseri A: Role of coronary artery spasm in symptomatic and silent myocardial ischemia. J Am Coll Cardiol 1987; 9 (2): 249–262 [DOI] [PubMed] [Google Scholar]
  • 129. Kugiyama, K , Ohgushi M, Motoyama T, Sugiyama, S , Ogawa H, Yoshimura M, Inobe Y, Hirashima O, Kawano H, Soejima H, Yasue H: Nitric oxide‐mediated flow‐dependent dilation is impaired in coronary arteries in patients with coronary spastic angina. J Am Coll Cardiol 1997; 30 (4): 920–926 [DOI] [PubMed] [Google Scholar]
  • 130. Shepherd JT, Katusic ZS, Vedernikov Y, Vanhoutte PM: Mechanisms of coronary vasospasm: Role of the endothelium. J Mol Cell Cardiol 1991: 23 (suppl I): 125–131 [DOI] [PubMed] [Google Scholar]
  • 131. Cohen RA: Platelet‐induced neurogenic coronary arterial contractions due to accumulation of the false neurotransmitter, 5‐hydroxytryptamine. J Clin Invest 1985: 75: 286–293 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Harrison DG, Treasure CB, Mugge A, Dellsperger KC, Lamping KC: Hypertension and the coronary circulation. With special attention to endothelial regulation. Am J Hypertens 1991; 4: 454S–459S [DOI] [PubMed] [Google Scholar]
  • 133. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE: Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993; 88: 993–1003 [DOI] [PubMed] [Google Scholar]
  • 134. Brush JE, Cannon RO, Schenke BA, Bonow RO, Leon MB, Maron BJ, Epstein SE: Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 1988: 319: 1302–1307 [DOI] [PubMed] [Google Scholar]
  • 135. Brush JE, Faxon DP, Salmon S, Jacobs AK, Ryan TJ: Abnormal endothelium‐dependent coronary vasomotion in hypertensive patients. J Am Coll Cardiol 1992; 19(4):809–815 [DOI] [PubMed] [Google Scholar]
  • 136. Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG: Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross‐tolerance. J Clin Invest 1995; 95: 187–194 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Raman VK, Lee Y‐A, Lindpaintner K: The cardiac renin‐angiotensin‐aldosterone system and hypertensive cardiac hypertrophy. Am J Cardiol 1995; 76: 18D–23D [DOI] [PubMed] [Google Scholar]
  • 138. Chobanian AV, Lichtenstein AH, Nilakhe V, Haudenschild CC, Drago R, Nickerson C: Influence on aortic atherosclerosis in the Watanabe rabbit. Hypertension 1989; 14: 203–209 [DOI] [PubMed] [Google Scholar]
  • 139. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Matsuda M, Hamashima Y, Kawai C: Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 1987: 75: 1130–1139 [DOI] [PubMed] [Google Scholar]
  • 140. Suzuki M, Ikebuchi M, Shinozaki K, Hara Y, Tsushima M, Matsuyama T, Harano Y: Mechanism and clinical implication of insulin resistance syndrome. Diabetes 1996; 45 (suppl 3): S52–S54 [DOI] [PubMed] [Google Scholar]
  • 141. Mancini GBJ: Role of angiotensin‐converting enzyme inhibition in reversal of endothelial dysfunction in coronary artery disease. Am J Med 1998; 105 (1A): 40S–47S [DOI] [PubMed] [Google Scholar]
  • 142. Weber MA: Role of hypertension in coronary artery disease. Am J Nephrol 1996; 16: 210–216 [DOI] [PubMed] [Google Scholar]
  • 143. Dahlof B, Pennert K, Hansson L: Reversal of left ventricular hypertrophy in hypertensive patients. A meta‐analysis of 109 treatment studies. Am J Hypertens 1992; 5: 95–110 [DOI] [PubMed] [Google Scholar]

Articles from Clinical Cardiology are provided here courtesy of Wiley

RESOURCES