Abstract
The noninvasive assessment of myocardial viability in patients with coronary artery disease and depressed left ventricular function has proven clinically useful for identifying those patients with ischemic cardiomyopathy who benefit most from coronary revascularization. Thallium‐201 (201T1) imaging at rest has been the radionuclide imaging technique most often utilized for distinguishing viable myocardium from scar. However, new technetium‐99m (99mTc) perfusion agents such as 99mTc‐sestamibi and 99mTc‐tetrofosmin have emerged as alternatives to 201T1 for imaging of regional myocardial perfusion. Whether these new agents, which have better physical properties for imaging with a gamma camera than 201T1, are valid for use in assessing myocardial viability is still uncertain. Recent clinical studies have demonstrated that these agents, when imaged using quantitative SPECT, can identify patients with myocardial hibernation who exhibit improved regional systolic function following revascularization. Experimental laboratory studies have shown that the uptake of 99mTc‐sestamibi and 99mTc‐tetrofosmin in ischemic myocardium is only slightly lower than the uptake of 201T1. These 99mTc‐labeled agents remain bound intracellularly in mitochondria of viable myocytes under conditions of myocardial stunning and short‐term hibernation, producing severe myocardial asynergy. With respect to determination of viability, the inferior wall region is at times problematic since attenuation of 99mTc‐sestamibi and 99mTc‐tetrofosmin is greatest in this area. Demonstration of preserved systolic thickening on ECG‐gated SPECT images is indicative of viability in the instance of decreased regional 99mTc counts due to attenuation and not scar. Administration of nitrates prior to tracer injection improves the sensitivity for identifying viable myocardial segments using rest imaging with 99mTc‐sestamibi or 99mTc‐tetrofosmin.
Thus, it appears that the new 99mTc perfusion imaging agents can be successfully employed for the determination of myocardial viability in the setting of severe regional dysfunction and chronic coronary artery disease. The greater the myocardial uptake of these agents in the resting state, the greater the probability of improved systolic function after coronary revascularization.
Keywords: technetium‐99m‐sestamibi (99mTc), 99mTc‐tetrofosmin, thallium‐201, radionuclide imaging, myocardial perfusion imaging, coronary artery disease, left ventricular dysfunction
Full Text
The Full Text of this article is available as a PDF (955.5 KB).
References
- 1. Iskandrian A, Heo J, Stanberry C: When is myocardial viability an important clinical issue? J Nucl Med 1994: 35 (suppl): 4S–7S [PubMed] [Google Scholar]
- 2. Schoeder H, Friedrich M, Topp H: Myocardial viability: What do we need? Eur J Nucl Med 1993; 20: 792–803 [DOI] [PubMed] [Google Scholar]
- 3. Gimple LW, Beller GA: Myocardial viability: Assessment by cardiac scintigraphy. Cardiol Clin 1994; 12: 317–332 [PubMed] [Google Scholar]
- 4. Hendel RC: Single‐photon perfusion imaging for the assessment of myocardial viability. J Nucl Med 1994; 35 (suppl): 23S–31S [PubMed] [Google Scholar]
- 5. Jain D, Zaret BL: Nuclear imaging techniques for the assessment of myocardial viability. Cardiol Clin 1995: 13: 43–57 [PubMed] [Google Scholar]
- 6. McGhie AI, Weyman A: Searching for hibernating myocardium. Time to reevaluate investigative strategies? (editorial) Circulation 1996; 94: 2685–2688 [DOI] [PubMed] [Google Scholar]
- 7. Dilsizian V: Myocardial viability: Contractile reserve or cell membrane integrity? (editorial) J Am Coll Cardiol 1996; 28: 443–446 [DOI] [PubMed] [Google Scholar]
- 8. Saha GB, MacIntyre WJ, Brunken RC, Go RT, Raja S, Wong CO, Chen EQ: Present assessment of viability by nuclear imaging. Semin Nucl Med 1996; 26; 315–335 [DOI] [PubMed] [Google Scholar]
- 9. Hendel RC, Chaudhry FA, Bonow RO: Myocardial viability. Curr Probl Cardiol 1996; 21: 145–221 [PubMed] [Google Scholar]
- 10. Bonow RO: The hibernating myocardium: Implications for management of congestive heart failure. Am J Cardiol 1995: 75: 17A–25A [DOI] [PubMed] [Google Scholar]
- 11. Beller GA: Comparison of 201T1 scintigraphy and low‐dose dobutamine echocardiography for the noninvasive assessment of myocardial viability (editorial). Circulation 1996; 94: 2681–2684 [DOI] [PubMed] [Google Scholar]
- 12. Gioia G, Powers J, Heo J, Iskandrian AS: Prognostic value of restredistribution tomographic thallium‐201 imaging in ischemic cardiomyopathy. Am J Cardiol 1995; 75: 759–762 [DOI] [PubMed] [Google Scholar]
- 13. DiCarli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, Czernin J, Rokhsar S, Stevenson LW, Laks H, Hawkins R, Schelbert HR, Phelps ME, Maddahi J: Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994; 73: 527–533 [DOI] [PubMed] [Google Scholar]
- 14. Schelbert HR: Metabolic imaging to assess myocardial viability. J Nucl Med 1994; 35 (suppl): 8S–14S [PubMed] [Google Scholar]
- 15. Bergmann SR: Use and limitations of metabolic tracers labeled with positron‐emitting radionuclides in identification of viable myocardium. J Nucl Med 1994; 35 (suppl): 15S–22S [PubMed] [Google Scholar]
- 16. Bonow RO, Dilisizian V, Cuocolo A, Bacharach SL: Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F‐fluorodeoxyglucose. Circulation 1991; 83: 26–37 [DOI] [PubMed] [Google Scholar]
- 17. Dilsizian V, Freedman NM, Bacharach SL, Perrone‐Filardi P, Bonow RO: Regional thallium uptake in irreversible defects. Magnitude of change in thallium activity after reinjection distinguishes viable from nonviable myocardium. Circulation 1992; 85: 627–634 [DOI] [PubMed] [Google Scholar]
- 18. Schafers M, Matheja P, Hasfeld M, Bartenstein P, Lerch H, Breithardt G, Scheld H, Schober O: The clinical impact of thallium‐201 reinjection for the detection of myocardial hibernation. Eur J Nucl Med 1996; 23: 407–413 [DOI] [PubMed] [Google Scholar]
- 19. Cuocolo A, Pace L, Ricciardalli B, Chiariello M, Trimarco B, Salvatore M: Identification of viable myocardium in patients with chronic coronary artery disease. Comparison of thallium‐201 scintigraphy with reinjection and technetium‐99m‐methoxyisobutyl isonitrile. J Nucl Med 1992; 33: 505–511 [PubMed] [Google Scholar]
- 20. Maurea S, Cuocolo A, Nicolai E, Salvatore M: Improved detection of viable myocardium with thallium‐201 reinjection in chronic coronary artery disease: Comparison with technetium‐99m‐MIBI imaging. J Nucl Med 1994; 35: 621–624 [PubMed] [Google Scholar]
- 21. Marzullo P, Sambuceti G, Parodi O: The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability. J Nucl Med 1992; 33: 1925–1930 [PubMed] [Google Scholar]
- 22. Sawada SG, Allman KC, Muzik O, Beanlands RS, Wolfe ER Jr, Gross M, Fig L, Schwaiger M: Positron emission tomography detects evidence of viability in rest technetium‐99m sestamibi defects. J Am Coll Cardiol 1994; 23: 92–98 [DOI] [PubMed] [Google Scholar]
- 23. Dilsizian V, Arrighi JA, Diodati JG, Quyyumi AA, Alavi K, Bacharach SL, Marin‐Neto JA, Katsiyiannis PT, Bonow RO: Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc‐sestamibi with thallium reinjection and [18F] fluorodeoxyglucose [erratum, Circulation 1995; 91: 3026]. [DOI] [PubMed] [Google Scholar]; Circulation 1994; 89: 578–587 [DOI] [PubMed] [Google Scholar]
- 24. Altehoefer C, Kaiser HJ, Dorr R, Feinendegen C, Beilin I, Uebis R, Buell U: Fluorine‐18 deoxyglucose PET for assessment of viable myocardium in perfusion defects in 99mTc‐MIBI SPET: A comparative study in patients with coronary artery disease. Eur J Nucl Med 1992: 19: 334–342 [DOI] [PubMed] [Google Scholar]
- 25. Verani MS, Jeroudi MO, Mahmarian JJ, Boyce TM, Borges‐Neto S, Patel B, Bolli R: Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium‐99m hexakis 2‐methoxyisobutyl isonitrile. J Am Coll Cardiol 1988; 12: 1573–1581 [DOI] [PubMed] [Google Scholar]
- 26. Freeman I, Grunwald AM, Hoory S, Bodenheimer MM: Effect of coronary occlusion and myocardial viability on myocardial activity of technetium‐99m‐sestamibi. J Nucl Med 1991; 32: 292–298 [PubMed] [Google Scholar]
- 27. Sinusas AJ, Watson DD, Cannon JM Jr, Beller GA: Effect of ischemia and postischemic dysfunction on myocardial uptake of technetium‐99m‐labeled methoxyisobutyl isonitrile and thallium‐201. J Am Coll Cardiol 1989; 14: 1785–1793 [DOI] [PubMed] [Google Scholar]
- 28. Beanlands RS, Dawood F, Wen WH, McLaughlin PR, Butany J, D'Amati G, Liu PP: Are the kinetics of technetium‐99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990; 82: 1802–1814 [DOI] [PubMed] [Google Scholar]
- 29. Beller GA, Glover DK, Edwards NC, Ruiz M, Simanis JP, Watson DD: 99mTc‐sestamibi uptake and retention during myocardial ischemia and reperfusion. Circulation 1993; 87: 2033–2042 [DOI] [PubMed] [Google Scholar]
- 30. Gibbons RJ, Verani MS, Behrenbeck T, Pellikka PA, O'Connor MK, Mahmarian JJ, Chesebro JH, Wackers FJ: Feasibiltiy of tomographic 99mTc‐hexakis‐2‐methoxy‐2‐methylpropyl‐isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 1989; 80: 1277–1286 [DOI] [PubMed] [Google Scholar]
- 31. Maublant JC, Citron B, Lipiecki J, Mestas D, Bailly P, Veyre A, de Riberolles C, Ponsonnaille J: Rest technetium‐99m‐sestamibi tomoscintigraphy in hibernating myocardium. Am Heart J 1995; 129: 306–314 [DOI] [PubMed] [Google Scholar]
- 32. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, Shea NL, Oates E, Konstam MA: Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201T1 and 99mTc‐sestamibi. Circulation 1994; 89: 2552–2561 [DOI] [PubMed] [Google Scholar]
- 33. Leavitt JI, Better N, Tow DE, Rocco TP: Demonstration of viable, stunned myocardium with technetium‐99m‐sestamibi. J Nucl Med 1994; 35: 1805–1807 [PubMed] [Google Scholar]
- 34. Maes AF, Borgers M, Flameng W, Nuyts JL, van de Werf F, Ausma JJ, Sergeant P, Mortelmans LA: Assessment of myocardial viability in chronic coronary artery disease using technetium‐99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow‐up. J Am Coll Cardiol 1997; 29: 62–68 [DOI] [PubMed] [Google Scholar]
- 35. Kauffman GJ, Boyne TS, Watson DD, Smith WH, Beller GA: Comparison of rest thallium‐201 imaging and rest technetium‐99m sestamibi imaging for assessment of myocardial viability in patients with coronary artery disease and severe left ventricular dysfunction. J Am Coll Cardiol 1996; 27: 1592–1597 [DOI] [PubMed] [Google Scholar]
- 36. Sansoy V, Glover D, Watson DD, Ruiz M, Smith WH, Simanis JP, Beller GA: Comparison of thallium‐201 resting redistribution with technetium‐99m‐sestamibi uptake and functional response to dobutamine for assessment of myocardial viability. Circulation 1995: 92: 994–1004 [DOI] [PubMed] [Google Scholar]
- 37. Braunwald E, Kloner RA: The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–1149 [DOI] [PubMed] [Google Scholar]
- 38. Kloner RA, Allen J, Cox TA, Zheng J, Ruiz CE: Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 1991; 68: 329–334 [DOI] [PubMed] [Google Scholar]
- 39. Braunwald E, Rutherford JD: Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium.” J Am Coll Cardiol 1986; 8: 1467–1470 [DOI] [PubMed] [Google Scholar]
- 40. Rahimtoola SH: The hibernating myocardium. Am Heart J 1989: 117: 211–221 [DOI] [PubMed] [Google Scholar]
- 41. Heo J, Herman GA, Iskandrian AS, Askenase A, Segal BL: New myocardial perfusion imaging agents: Description and applications. Am Heart J 1988; 115: 1111–1117 [DOI] [PubMed] [Google Scholar]
- 42. Piwnica‐Worms D, Kronauge JF, Chiu ML: Uptake and retention of hexakis (2‐methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation 1990; 82: 1826–1838 [DOI] [PubMed] [Google Scholar]
- 43. Okada RD, Glover D, Gaffney T, Williams S: Myocardial kinetics of technetium‐99m‐hexakis‐2‐methoxy‐2‐methylpropyl‐isonitrile. Circulation 1988; 77: 491–498 [DOI] [PubMed] [Google Scholar]
- 44. Crane P, Laliberte R, Heminway S, Thoolen M, Orlandi C: Effect of mitochondrial viability and metabolism on technetium‐99m‐sestamibi myocardial retention. Eur J Nucl Med 1993; 20: 20–25 [DOI] [PubMed] [Google Scholar]
- 45. Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof‐Delaloye A, Camin L, McKusick K: Technetium‐99m hexakis 2‐methoxyisobutyl isonitrile: Human biodistribution, dosimetry, safety, and preliminary comparison to thallium‐201 for myocardial perfusion imaging. J Nucl Med 1989; 30: 301–311 [PubMed] [Google Scholar]
- 46. Kiat H, Maddahi J, Roy LT, Van Train K, Friedman J, Resser K, Berman DS: Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989; 117: 1–11 [DOI] [PubMed] [Google Scholar]
- 47. Kahn JK, McGhie I, Akers MS, Sills MN, Faber TL, Kulkarni PV, Willerson JT, Corbett JR: Quantitative rotational tomography with 201T1 and 99mTc‐2‐methoxy isobutyl isonitrile: A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989; 79: 1282–1293 [DOI] [PubMed] [Google Scholar]
- 48. Wackers FJ, Gibbons RJ, Verani MS, Kayden DS, Pellikka PA, Behrenbeck T, Mahmarian JJ, Zaret BL: Serial quantitative planar technetium‐99m isonitrile imaging in acute myocardial infarction: Efficacy for noninvasive assessment of thrombolytic therapy. J Am Coll Cardiol 1989; 14: 861–873 [DOI] [PubMed] [Google Scholar]
- 49. Soufer R, Dey HM, Ng CK, Zaret BL: Comparison of sestamibi single‐photon emission computed tomography with positron emission tomography for estimating left ventricular myocardial viability. Am J Cardiol 1995; 75: 1214–1219 [DOI] [PubMed] [Google Scholar]
- 50. Dilsizian V, Perrone‐Filardi P, Arrighi J, Bacharach SL, Quyyumi AA, Freedman NM, Bonow RO: Concordance and discordance between stress‐redistribution‐reinjection and rest‐redistribution thallium imaging for assessing viable myocardium. Comparison with metabolic activity by positron emission tomography. Circulation 1993; 88: 941–952 [DOI] [PubMed] [Google Scholar]
- 51. Sciagra R, Bisi G, Santoro GM, Agnolucci M, Zoccarato O, Fazzini PF: Influence of the assessment of defect severity and intravenous nitrate administration during tracer injection on the detection of viable hibernating myocardium with data‐based quantitative technetium‐99m‐labeled sestamibi single‐photon emission computed tomography. J Nucl Cardiol 1996; 3: 221–230 [DOI] [PubMed] [Google Scholar]
- 52. Sinusas AJ, Bergin JD, Edwards NC, Watson DD, Ruiz M, Makuch RW, Smith WH, Beller GA: Redistribution of 99mTc‐sestamibi and 201T1 in the presence of a severe coronary artery stenosis. Circulation 1994; 89: 2332–2341 [DOI] [PubMed] [Google Scholar]
- 53. Glover DK, Okada RD: Myocardial technetium 99m sestamibi kinetics after reperfusion in a canine model. Am Heart J 1993; 125: 657–666 [DOI] [PubMed] [Google Scholar]
- 54. Taillefer R, Primeau M, Costi P, Lambert R, Léveillé J, Latour Y: Technetium‐99m‐sestamibi myocardial perfusion imaging in detection of coronary artery disease: Comparison between initial (1‐hour) and delayed (3‐hour) postexercise images. J Nucl Med 1991; 32: 1961–1965 [PubMed] [Google Scholar]
- 55. Villanueva‐Meyer J, Mena I, Diggles L, Narahara KA: Assessment of myocardial perfusion defect size after early and delayed SPECT imaging with technetium‐99m‐hexakis 2‐methoxyisobutyl isonitrile after stress. J Nucl Med 1993; 34: 187–192 [PubMed] [Google Scholar]
- 56. Palmas W, Friedman JD, Diamond GA, Silber H, Kiat H, Berman DS: Incremental value of simultaneous assessment of myocardial function and perfusion with technetium‐99m sestamibi for prediction of extent of coronary artery disease. J Am Coll Cardiol 1995; 25: 1024–1031 [DOI] [PubMed] [Google Scholar]
- 57. Villanueva‐Meyer J, Mena I, Narahara KA: Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium‐99m‐methoxy isobutyl isonitrile at stress and rest in patients with angina: Comparison with thallium‐201 SPECT. J Nucl Med 1990; 31: 457–463 [PubMed] [Google Scholar]
- 58. Mannting F, Morgan‐Mannting MG: Gated SPECT with technetium‐99m‐sestamibi for assessment of myocardial perfusion abnormalities. J Nucl Med 1993; 34: 601–608 [PubMed] [Google Scholar]
- 59. DePuey EG, Rozanski A: Using gated technetium‐99m‐sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995; 36: 952–955 [PubMed] [Google Scholar]
- 60. Quaife RA, Corbett JR: The presence of segmental thickening by gated sestamibi SPECT predicts rest T1‐201 segmental viability (abstr). Circulation 1994; 90 (suppl): I‐11 [Google Scholar]
- 61. Chua T, Kiat H, Germano G, Maurer G, van Train K, Friedman J, Berman D: Gated technetium‐99m‐sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. J Am Coll Cardiol 1994; 23: 1107–1114 [DOI] [PubMed] [Google Scholar]
- 62. Maunoury C, Chen CC, Chua KB, Thompson CJ: Quantification of left ventricular function with thallium‐201 and technetium‐99m‐sestamibi myocardial gated SPECT. J Nucl Med 1997; 38: 958–961 [PubMed] [Google Scholar]
- 63. Worsley DF, Fung AY, Jue J, Burns RJ: Identification of viable myocardium with technetium‐99m‐MIBI infusion. J Nucl Med 1995: 36: 1037–1039 [PubMed] [Google Scholar]
- 64. Galli M, Marcassa C, Imparato A, Campini R, Orrego PS, Giannuzzi P: Effects of nitroglycerin by technetium‐99m sestamibi tomoscintigraphy on resting regional myocardial hypoperfusion in stable patients with healed myocardial infaction. Am J Cardiol 1994; 74: 843–848 [DOI] [PubMed] [Google Scholar]
- 65. Bisi G, Sciagra R, Santoro G, Fazzini FP: Rest technetium‐99m‐sestamibi tomography in combination with short‐term administration of nitrates: Feasibility and reliability for prediction of post‐revascularization outcome of asynergic territories. J Am Coll Cardiol 1994; 24: 1282–1289 [DOI] [PubMed] [Google Scholar]
- 66. Nakajima K, Taki J, Shuke N, Bunko H, Takata S, Hisada K: Myocardial perfusion imaging and dynamic analysis with technetium‐99m‐tetrofosmin. J Nucl Med 1993; 34: 1478–1484 [PubMed] [Google Scholar]
- 67. Rigo P, Leclercq B, Itti R, Lahiri A, Braat S: Technetium‐99m‐tetrofosmin myocardial imaging: A comparison with thallium‐201 and angiography. J Nucl Med 1994; 35: 587–593 [PubMed] [Google Scholar]
- 68. Zaret BL, Rigo P, Wackers FJ, Hendel RC, Braat SH, Iskandrian AS, Sridhara BS, Jain D, Itti R, Serafini AN, Goris ML, Lahiri A: Myocardial perfusion imaging with 99mTc‐tetrofosmin. Comparison to 201T1 imaging and coronary angiography in a phase III multicenter trial. Tetrofosmin International Trial Study Group. Circulation 1995; 91: 313–319 [DOI] [PubMed] [Google Scholar]
- 69. Sinusas AJ, Shi Q, Saltzberg MT, Vitols P, Jain D, Wackers FJ, Zaret BL: Technetium‐99m‐tetrofosmin to assess myocardial blood flow: Experimental validation in an intact canine model of ischemia. J Nucl Med 1994: 35: 664–671 [PubMed] [Google Scholar]
- 70. Koplan BA, Beller GA, Ruiz M, Yang JY, Watson DD, Glover DK: Comparison between thallium‐201 uptake and technetium‐99m‐tetrofosmin uptake with sustained low flow and profound systolic dysfunction. J Nucl Med 1996: 37: 1398–1402 [PubMed] [Google Scholar]
- 71. Galassi AR, Centamore G, Liberti F, Coppola A, Palazzo G, Di Primo A, Fiscella A, Musumeci S, Galassi A: Quantitative SPECT 99mTc‐tetrofosmin for the assessment of myocardial viability in patients with severe left ventricular dysfunction (abstr). J Nucl Cardiol 1995: 2 (suppl): S23 [DOI] [PubMed] [Google Scholar]
- 72. Hendel RC, Dahlberg ST, Weinstein H, Leppo JA: Comparison of teboroxime and thallium for the reversibility of exercise‐induced myocardial perfusion defects. Am Heart J 1993; 126: 856–862 [DOI] [PubMed] [Google Scholar]
- 73. Stewart RE, Schwaiger M, Hutchins GD, Chiao PC, Gallagher KP, Nguyen N, Petry NA, Rogers WL: Myocardial clearance kinetics of technetium‐99m‐SQ30217: A marker of regional myocardial blood flow. J Nucl Med 1990: 31; 1183–1190 [PubMed] [Google Scholar]
- 74. Links JM, Frank TL, Becker LC: Effect of differential tracer washout during SPECT acquisition. J Nucl Med 1991: 32: 2253–2257 [PubMed] [Google Scholar]
- 75. Johnson LL, Seldin DW: Clinical experience with teehnetium‐99m teboroxime, a neutral, lipophilic myocardial perfusion imaging agent. Am J Cardiol 1990; 66: 63E–67E [DOI] [PubMed] [Google Scholar]
- 76. Gray WA, Gewirtz H: Comparison of 99mTc‐teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 1991; 84: 1796–1807 [DOI] [PubMed] [Google Scholar]
- 77. Hendel RC, Gerson MC, Verani MS, Miller DD, Cerqueira MD, Botvinick EH, McMahon M, Wackers FJ: Perfusion imaging with Tc‐99m furifosmin (Q12): Multicenter phase III trial to evaluate safety and comparative efficacy (abstr). Circulation 1994; 90 (suppl): I‐449 [Google Scholar]
- 78. Pasqualini R, Duatti A, Bellande E, Comazzi V, Brucato V, Hoffschir D, Fagret D, Comet M: Bis(dithiocarbamato) nitrido technetium‐99 radiopharmaceuticals: A class of neutral myocardial imaging agents. J Nucl Med 1994: 35: 334–341 [PubMed] [Google Scholar]
- 79. Sandler MP, Patton JA: Fluorine 18‐labeled fluorodeoxyglucose myocardial single‐photon emission computed tomography: An alternative for determining myocardial viability. J Nucl Cardiol 1996; 3: 342–349 [DOI] [PubMed] [Google Scholar]
