The title Schiff base compound displays an E configuration with respect to the C=N double bond. The pyridine and benzene rings subtend a dihedral angle of 29.63 (7)°. In the crystal, the molecules are linked by N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding interactions.
Keywords: crystal structure, Schiff base, intermolecular interactions, Hirshfeld surface analysis
Abstract
The molecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features intermolecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding interactions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) interactions. The title compound has also been characterized by frontier molecular orbital analysis.
Chemical context
Schiff bases are nitrogen-containing compounds that were first obtained by the condensation reaction of aromatic amines and aldehydes (Schiff, 1864 ▸). A wide range of these compounds, with the general formula RHC=NR
1 (R and R
1 can be alkyl, aryl, cycloalkyl or heterocyclic groups) have been synthesized. Schiff bases are of great importance in the field of coordination chemistry because they are able to form stable complexes with metal ions (Souza et al., 1985 ▸). The chemical and biological significance of Schiff bases can be attributed to the presence of a lone electron pair in the sp
2-hybridized orbital of the nitrogen atom of the azomethine group (Singh et al., 1975 ▸). These compounds are used in the fields of organic synthesis, chemical catalysis, medicine and pharmacy, as well as other new technologies (Tanaka et al., 2010 ▸). Schiff bases are also used as probes for investigating the structure of DNA (Tiwari et al., 2011 ▸) and have gained special attention in pharmacophore research and in the development of several bioactive lead molecules (Muralisankar et al., 2016 ▸). Schiff bases showing photochromic and thermochromic properties have been used in information storage, electronic display systems, optical switching devices and ophthalmic glasses (Amimoto et al., 2005 ▸). As a further contribution to this field of research, we report herein the crystal structure of the title compound, (E)-N′-(3-hydroxy-4-methoxybenzylidene)nicotinohydrazide monohydrate.
Structural commentary
The asymmetric unit of the title compound (Fig. 1 ▸) consists of one independent Schiff base molecule displaying a trans configuration with respect to the C=N bond and a water molecule. All the bond lengths are within the normal ranges (Allen et al., 1987 ▸). The C7=N3 bond length of 1.274 (2) Å is consistent with a double-bond character. The C6—N2 and N2—N3 bond lengths of 1.343 (2) and 1.3866 (16) Å, respectively, are comparable to those observed in related compounds (Sivajeyanthi et al., 2017 ▸; Balasubramani et al., 2018 ▸). The O1/C6/N2/N3/C7 core is almost planar (r.m.s. deviation = 0.022 Å) and forms dihedral angles of 20.75 (7) and 8.93 (5)°, respectively, with the pyridine and benzene rings.
Figure 1.
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level..
Supramolecular features
In the crystal of the title compound (Fig. 2 ▸), the water molecule interacts with three neighbouring nicotinohydrazide molecules with the O4 water oxygen atom acting as a hydrogen acceptor through N2—H2N⋯O4 and C2—H2⋯O4 hydrogen bonds (Table 1 ▸), and both water H atoms acting as bifurcated donors to form rings of (5) graph-set motif. The nicotinohydrazide molecules are further linked by O—H⋯N and C—H⋯O hydrogen bonds to form a three-dimensional network.
Figure 2.
Crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O4—H4WA⋯O2i | 0.85 | 2.28 | 3.0483 (17) | 150 |
O4—H4WA⋯O3i | 0.85 | 2.49 | 3.2011 (16) | 141 |
O4—H4WB⋯O1ii | 0.85 | 2.08 | 2.8429 (19) | 150 |
O4—H4WB⋯N3ii | 0.85 | 2.50 | 3.1875 (18) | 139 |
N2—H2N⋯O4 | 0.86 | 2.06 | 2.8889 (18) | 162 |
O2—H10⋯N1iii | 0.82 | 1.96 | 2.7411 (17) | 159 |
C2—H2⋯O4 | 0.93 | 2.25 | 3.129 (2) | 156 |
C4—H4⋯O3iv | 0.93 | 2.45 | 3.347 (2) | 163 |
Symmetry codes: (i) ; (ii)
; (iii)
; (iv)
.
Hirshfeld surface analysis
The three-dimensional d norm surface is a useful tool for analysing and visualizing the intermolecular interactions, as it shows negative or positive values depending on whether an intermolecular contact is shorter or longer, respectively, than the sum of the van der Waals radii (Spackman & Jayatilaka, 2009 ▸; McKinnon et al., 2007 ▸). The d norm surface of the title compound is shown in Fig. 3 ▸. The red points, which represent closer contacts and negative d norm values, correspond to the N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O interactions. Two-dimensional fingerprint plots from the Hirshfeld surface analysis (Fig. 4 ▸) provide information about the intermolecular contacts and their percentage distributions on the Hirshfeld surface. The percentage of H⋯H contacts as closest contacts on the Hirshfeld surfaces is a universally applicable measure of the crystal lattice energy and can be used as a reference for the importance of other types of contacts. In the title compound, the percentage contributions of the various intermolecular contacts to the total Hirshfeld surface are as follows: H⋯H (37.0%), C⋯H/H⋯C (17.6%), N⋯H/H⋯N (11.9%), C⋯N/N⋯C (3.7%), O⋯H/H⋯O (23.7%), C⋯C (4.5%), N⋯N (0.3%) and O⋯C/C⋯O (1.2%).
Figure 3.
Hirshfeld surfaces of the title compound mapped over d norm.
Figure 4.
Two-dimensional fingerprint plots for the title compound and relative contributions of the atom pairs to the Hirshfeld surface.
Frontier molecular orbitals
The HOMO (highest occupied molecular orbital) acts as an electron donor and LUMO (lowest occupied molecular orbital) acts as an electron acceptor. If the HOMO–LUMO energy gap is small, then the molecule is highly polarizable and has high chemical reactivity. The energy levels for the title compound were computed by DFT-B3LYP/6-311G++(d,p) method (Sivajeyanthi et al., 2017 ▸). The energy levels, energy gaps, chemical hardness, chemical potential, electronegativity and electrophilicity index are given in Table 2 ▸. As shown in Fig. 5 ▸, the frontier molecular orbital LUMO is located over the whole of the molecule. The energy gap of the molecule clearly shows the charge-transfer interaction involving donor and acceptor groups. If the HOMO–LUMO energy gap is small, then the molecule is defined as soft, i.e. it is highly polarizable and has high chemical reactivity, whereas if the energy gap is large the molecule can be defined as hard. Therefore from Table 2 ▸ we conclude that the title molecule belongs to the really hard materials.
Table 2. Calculated frontier molecular orbital energies (eV).
FMO | Energy |
---|---|
E HOMO | −5.7171 |
E LUMO | −1.8174 |
E HOMO−1 | −6.5750 |
E LUMO+1 | −1.2770 |
(E HOMO − E LUMO) gap | 3.8997 |
(E HOMO−1 − E LUMO+1) gap | 5.2980 |
Chemical hardness | 1.9498 |
Chemical potential | 3.7672 |
Electronegativity | −3.7672 |
Electrophilicity index | 3.6393 |
Figure 5.
Molecular orbital energy levels of the title compound.
Database survey
A search of the Cambridge Structural Database (Version 5.40, update November 2018; Groom et al., 2016 ▸) for uncoordinated N′-(benzylidene)nicotinohydrazide derivatives O-substituted at the 3,4 positions of the benzene ring yielded three hits, namely N′-(1,3-benzodioxol-5-ylmethylene)nicotinohydrazide monohydrate (refcode BUDNIY; Bao et al., 2009 ▸), N′-(3,4-dimethoxybenzylidene)nicotinohydrazide monohydrate (XODZOH; Novina et al., 2014 ▸) and the isomer N′-(4-hydroxy-3-methoxybenzylidene)nicotinohydrazide monohydrate (SEZREV; Shi et al., 2007 ▸). The conformation of the last molecule differs from the title compound mainly in the relative orientation of the pyridine ring with respect to the carbonyl group, as indicated by the value of 158.03 (15)° for the O1—C6—C1—C2 torsion angle in the title compound and of 10.2 (3)° for the corresponding angle in SEZREV. Moreover, in SEZREV the water molecule acts as acceptor of three H atoms from the same nicotinohydrazide molecule and as donor in two O—H⋯O hydrogen bonds.
Synthesis and crystallization
The title compound was synthesized by the reaction of a 1:1 molar ratio mixture of a hot ethanolic solution (20 ml) of nicotinohydrazide (0.137 mg) and a hot ethanolic solution of 3-hydroxy-4-methoxy benzaldehyde (0.152 mg). After refluxing for 8 h, the solution was then cooled and kept at room temperature to precipitate. Colourless block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of a 10 ml dimethyl sulfoxide/water (1:1 v/v) solution.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. H atoms were positioned geometrically (O—H = 0.82 Å, N–H = 0.86 Å, C—H = 0.93–0.96 Å) and refined as riding with U iso(H) = 1.2U eq(C,N) or 1.5U eq(O, C-methyl)
Table 3. Experimental details.
Crystal data | |
Chemical formula | C14H13N3O3·H2O |
M r | 289.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.1153 (4), 11.0075 (6), 18.2771 (10) |
β (°) | 105.766 (5) |
V (Å3) | 1377.64 (14) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.25 × 0.18 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012 ▸) |
T min, T max | 0.969, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8396, 2549, 2027 |
R int | 0.027 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.036, 0.101, 1.04 |
No. of reflections | 2549 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.13 |
Supplementary Material
Crystal structure: contains datablock(s) global, I, 1. DOI: 10.1107/S2056989019006492/rz5252sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019006492/rz5252Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019006492/rz5252Isup3.cml
CCDC reference: 1587259
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
C14H13N3O3·H2O | F(000) = 608 |
Mr = 289.29 | Dx = 1.395 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1153 (4) Å | Cell parameters from 3729 reflections |
b = 11.0075 (6) Å | θ = 3.9–29.2° |
c = 18.2771 (10) Å | µ = 0.10 mm−1 |
β = 105.766 (5)° | T = 295 K |
V = 1377.64 (14) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.25 × 0.18 mm |
Data collection
Agilent Xcalibur Eos diffractometer | 2549 independent reflections |
Radiation source: fine-focus sealed tube | 2027 reflections with I > 2σ(I) |
Detector resolution: 15.9821 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 25.5°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −8→8 |
Tmin = 0.969, Tmax = 0.981 | k = −13→12 |
8396 measured reflections | l = −22→22 |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0462P)2 + 0.2987P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2549 reflections | Δρmax = 0.16 e Å−3 |
192 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.030 (3) |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O3 | −0.03769 (14) | 0.40424 (10) | 0.06695 (6) | 0.0455 (3) | |
O2 | 0.20750 (15) | 0.23383 (10) | 0.06507 (7) | 0.0537 (3) | |
H10 | 0.287088 | 0.178188 | 0.073527 | 0.081* | |
O1 | 1.15498 (17) | 0.21431 (11) | 0.30304 (8) | 0.0604 (4) | |
N3 | 0.85559 (17) | 0.37007 (12) | 0.26300 (7) | 0.0418 (3) | |
N2 | 1.03456 (17) | 0.40123 (12) | 0.31206 (7) | 0.0410 (3) | |
H2N | 1.053128 | 0.472235 | 0.332397 | 0.049* | |
N1 | 1.61018 (19) | 0.51282 (12) | 0.42610 (8) | 0.0452 (4) | |
C8 | 0.5291 (2) | 0.43898 (15) | 0.20366 (8) | 0.0371 (4) | |
C9 | 0.4682 (2) | 0.33704 (14) | 0.15750 (8) | 0.0384 (4) | |
H9 | 0.555924 | 0.274429 | 0.157443 | 0.046* | |
C10 | 0.2791 (2) | 0.32888 (14) | 0.11216 (8) | 0.0372 (4) | |
C11 | 0.1465 (2) | 0.42290 (14) | 0.11294 (8) | 0.0355 (4) | |
C12 | 0.2059 (2) | 0.52410 (15) | 0.15746 (9) | 0.0409 (4) | |
H12 | 0.118419 | 0.586791 | 0.157676 | 0.049* | |
C13 | 0.3972 (2) | 0.53171 (15) | 0.20196 (9) | 0.0423 (4) | |
H13 | 0.437730 | 0.600772 | 0.231319 | 0.051* | |
C14 | −0.1795 (2) | 0.49637 (17) | 0.06553 (10) | 0.0492 (4) | |
H14A | −0.192906 | 0.508196 | 0.115902 | 0.074* | |
H14B | −0.302791 | 0.472017 | 0.032256 | 0.074* | |
H14C | −0.138193 | 0.570937 | 0.047468 | 0.074* | |
C7 | 0.7260 (2) | 0.45278 (15) | 0.25379 (8) | 0.0411 (4) | |
H7 | 0.758441 | 0.525352 | 0.280265 | 0.049* | |
C6 | 1.1785 (2) | 0.31829 (14) | 0.32729 (9) | 0.0390 (4) | |
C2 | 1.4323 (2) | 0.47808 (14) | 0.38578 (8) | 0.0387 (4) | |
H2 | 1.343594 | 0.537888 | 0.362746 | 0.046* | |
C1 | 1.3728 (2) | 0.35815 (13) | 0.37638 (8) | 0.0354 (4) | |
C5 | 1.5059 (2) | 0.27035 (15) | 0.41019 (10) | 0.0502 (4) | |
H5 | 1.472088 | 0.188603 | 0.404400 | 0.060* | |
C4 | 1.6891 (2) | 0.30435 (17) | 0.45260 (11) | 0.0599 (5) | |
H4 | 1.780614 | 0.246398 | 0.476287 | 0.072* | |
C3 | 1.7334 (2) | 0.42511 (17) | 0.45907 (10) | 0.0533 (5) | |
H3 | 1.857046 | 0.447633 | 0.488254 | 0.064* | |
O4 | 1.07802 (17) | 0.65762 (11) | 0.34578 (7) | 0.0594 (4) | |
H4WA | 1.034030 | 0.696974 | 0.377588 | 0.089* | |
H4WB | 1.043530 | 0.692674 | 0.302788 | 0.089* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0286 (5) | 0.0448 (7) | 0.0558 (7) | 0.0044 (5) | −0.0009 (5) | −0.0023 (5) |
O2 | 0.0385 (6) | 0.0378 (6) | 0.0712 (8) | 0.0062 (5) | −0.0085 (5) | −0.0115 (6) |
O1 | 0.0513 (7) | 0.0382 (7) | 0.0744 (9) | −0.0022 (5) | −0.0127 (6) | −0.0079 (6) |
N3 | 0.0309 (6) | 0.0455 (8) | 0.0416 (7) | −0.0061 (6) | −0.0029 (5) | 0.0026 (6) |
N2 | 0.0311 (6) | 0.0390 (7) | 0.0448 (7) | −0.0032 (6) | −0.0037 (5) | −0.0026 (6) |
N1 | 0.0361 (7) | 0.0419 (8) | 0.0509 (8) | −0.0062 (6) | 0.0006 (6) | 0.0030 (6) |
C8 | 0.0317 (7) | 0.0424 (9) | 0.0351 (8) | −0.0033 (7) | 0.0054 (6) | 0.0051 (7) |
C9 | 0.0306 (7) | 0.0373 (8) | 0.0437 (8) | 0.0036 (6) | 0.0039 (6) | 0.0062 (7) |
C10 | 0.0343 (8) | 0.0327 (8) | 0.0408 (8) | −0.0019 (6) | 0.0038 (6) | 0.0024 (7) |
C11 | 0.0281 (7) | 0.0388 (9) | 0.0369 (8) | −0.0003 (6) | 0.0039 (6) | 0.0052 (7) |
C12 | 0.0369 (8) | 0.0403 (9) | 0.0435 (8) | 0.0051 (7) | 0.0073 (6) | −0.0004 (7) |
C13 | 0.0399 (8) | 0.0422 (9) | 0.0412 (8) | −0.0020 (7) | 0.0049 (7) | −0.0052 (7) |
C14 | 0.0325 (8) | 0.0598 (11) | 0.0520 (10) | 0.0118 (8) | 0.0056 (7) | 0.0013 (8) |
C7 | 0.0348 (8) | 0.0446 (9) | 0.0397 (8) | −0.0055 (7) | 0.0030 (6) | 0.0012 (7) |
C6 | 0.0370 (8) | 0.0345 (9) | 0.0398 (8) | −0.0047 (7) | 0.0007 (6) | 0.0025 (7) |
C2 | 0.0320 (8) | 0.0364 (8) | 0.0432 (8) | −0.0003 (6) | 0.0023 (6) | 0.0041 (7) |
C1 | 0.0321 (7) | 0.0359 (8) | 0.0345 (7) | −0.0008 (6) | 0.0026 (6) | 0.0024 (6) |
C5 | 0.0457 (9) | 0.0361 (9) | 0.0580 (10) | −0.0003 (7) | −0.0041 (8) | 0.0050 (8) |
C4 | 0.0432 (10) | 0.0477 (11) | 0.0728 (13) | 0.0060 (8) | −0.0114 (9) | 0.0120 (9) |
C3 | 0.0328 (8) | 0.0540 (11) | 0.0611 (11) | −0.0043 (8) | −0.0075 (7) | 0.0063 (9) |
O4 | 0.0627 (8) | 0.0475 (7) | 0.0583 (7) | 0.0186 (6) | −0.0002 (6) | −0.0017 (6) |
Geometric parameters (Å, º)
O3—C11 | 1.3664 (17) | C12—C13 | 1.386 (2) |
O3—C14 | 1.4257 (19) | C12—H12 | 0.9300 |
O2—C10 | 1.3627 (18) | C13—H13 | 0.9300 |
O2—H10 | 0.8198 | C14—H14A | 0.9600 |
O1—C6 | 1.2223 (19) | C14—H14B | 0.9600 |
N3—C7 | 1.274 (2) | C14—H14C | 0.9600 |
N3—N2 | 1.3866 (16) | C7—H7 | 0.9300 |
N2—C6 | 1.343 (2) | C6—C1 | 1.4950 (19) |
N2—H2N | 0.8602 | C2—C1 | 1.383 (2) |
N1—C3 | 1.333 (2) | C2—H2 | 0.9300 |
N1—C2 | 1.3355 (19) | C1—C5 | 1.376 (2) |
C8—C13 | 1.381 (2) | C5—C4 | 1.376 (2) |
C8—C9 | 1.400 (2) | C5—H5 | 0.9300 |
C8—C7 | 1.459 (2) | C4—C3 | 1.364 (3) |
C9—C10 | 1.378 (2) | C4—H4 | 0.9300 |
C9—H9 | 0.9300 | C3—H3 | 0.9300 |
C10—C11 | 1.404 (2) | O4—H4WA | 0.8500 |
C11—C12 | 1.377 (2) | O4—H4WB | 0.8495 |
C11—O3—C14 | 117.37 (12) | H14A—C14—H14B | 109.5 |
C10—O2—H10 | 109.5 | O3—C14—H14C | 109.5 |
C7—N3—N2 | 114.41 (13) | H14A—C14—H14C | 109.5 |
C6—N2—N3 | 118.71 (13) | H14B—C14—H14C | 109.5 |
C6—N2—H2N | 120.6 | N3—C7—C8 | 123.07 (15) |
N3—N2—H2N | 120.7 | N3—C7—H7 | 118.5 |
C3—N1—C2 | 116.76 (14) | C8—C7—H7 | 118.5 |
C13—C8—C9 | 118.80 (13) | O1—C6—N2 | 122.66 (13) |
C13—C8—C7 | 117.90 (14) | O1—C6—C1 | 120.37 (14) |
C9—C8—C7 | 123.31 (14) | N2—C6—C1 | 116.97 (13) |
C10—C9—C8 | 120.43 (14) | N1—C2—C1 | 123.65 (14) |
C10—C9—H9 | 119.8 | N1—C2—H2 | 118.2 |
C8—C9—H9 | 119.8 | C1—C2—H2 | 118.2 |
O2—C10—C9 | 124.50 (13) | C5—C1—C2 | 117.67 (13) |
O2—C10—C11 | 115.81 (12) | C5—C1—C6 | 118.33 (14) |
C9—C10—C11 | 119.69 (14) | C2—C1—C6 | 123.84 (13) |
O3—C11—C12 | 125.07 (13) | C4—C5—C1 | 119.55 (15) |
O3—C11—C10 | 114.71 (13) | C4—C5—H5 | 120.2 |
C12—C11—C10 | 120.22 (13) | C1—C5—H5 | 120.2 |
C11—C12—C13 | 119.40 (14) | C3—C4—C5 | 118.38 (15) |
C11—C12—H12 | 120.3 | C3—C4—H4 | 120.8 |
C13—C12—H12 | 120.3 | C5—C4—H4 | 120.8 |
C8—C13—C12 | 121.44 (15) | N1—C3—C4 | 123.96 (15) |
C8—C13—H13 | 119.3 | N1—C3—H3 | 118.0 |
C12—C13—H13 | 119.3 | C4—C3—H3 | 118.0 |
O3—C14—H14A | 109.5 | H4WA—O4—H4WB | 109.5 |
O3—C14—H14B | 109.5 |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4WA···O2i | 0.85 | 2.28 | 3.0483 (17) | 150 |
O4—H4WA···O3i | 0.85 | 2.49 | 3.2011 (16) | 141 |
O4—H4WB···O1ii | 0.85 | 2.08 | 2.8429 (19) | 150 |
O4—H4WB···N3ii | 0.85 | 2.50 | 3.1875 (18) | 139 |
N2—H2N···O4 | 0.86 | 2.06 | 2.8889 (18) | 162 |
O2—H10···N1iii | 0.82 | 1.96 | 2.7411 (17) | 159 |
C2—H2···O4 | 0.93 | 2.25 | 3.129 (2) | 156 |
C4—H4···O3iv | 0.93 | 2.45 | 3.347 (2) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x+2, −y+1/2, z+1/2.
Funding Statement
This work was funded by Department of Science and Technology, Ministry of Science and Technology, Science and Engineering Research Board grant SB/FT/CS-058/2013 to K. Balasubramani and P. Sivajeyanthi.
References
- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207–226.
- Balasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500–1503. [DOI] [PMC free article] [PubMed]
- Bao, F.-Y., Zhang, H.-Y., Zhou, Y.-X. & Hui, S. (2009). Acta Cryst. E65, o2331. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
- Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.
- Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2014). Acta Cryst. E70, o793–o794. [DOI] [PMC free article] [PubMed]
- Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.
- Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.
- Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Coll. 11-12, 220-231.
- Souza, P., Garcia-Vazquez, J. A. & Masaguer, J. R. (1985). Transition Met. Chem. 10, 410–412.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Tanaka, K., Shimoura, R. & Caira, M. R. (2010). Tetrahedron Lett. 51, 449–452.
- Tiwari, A. D., Mishra, A. K., Mishra, B. B., Mamba, B. B., Maji, B. & Bhattacharya, S. (2011). Spectrochim. Acta A, 79, 1050–1056. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I, 1. DOI: 10.1107/S2056989019006492/rz5252sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019006492/rz5252Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019006492/rz5252Isup3.cml
CCDC reference: 1587259
Additional supporting information: crystallographic information; 3D view; checkCIF report