Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 May 3;75(Pt 6):717–720. doi: 10.1107/S2056989019004791

Crystal structure and Hirshfeld surface analysis of N-(5-iodo-4-phenyl­thia­zol-2-yl)acetamide

Angel D Herrera-España a, Jesús Aguilera-González b, Gonzalo J Mena-Rejón b, Simón Hernández-Ortega c, David Cáceres-Castillo b,*
PMCID: PMC6658950  PMID: 31391952

The title compound crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, C—H⋯π, I⋯S and I⋯I inter­actions into a three-dimensional network.

Keywords: crystal structure; 1,3-thia­zole; Hirshfeld Surface; hydrogen bonds; I⋯I and I⋯S inter­actions

Abstract

Two crystallographically independent mol­ecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thia­zole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the mol­ecules form ⋯ABAB⋯ chains along the [001] and [010] directions through moderate N—H⋯O hydrogen bonds and C—H⋯π inter­actions, respectively. The overall three-dimensional network is formed by I⋯I and I⋯S inter­actions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯C/C⋯H (26.2%), H⋯H (20.9%), H⋯I/I⋯H (19.4%) and H⋯O/O⋯H (6.8%) inter­actions.

Chemical context  

The 1,3-thia­zole ring is a structural motif frequently found in the pharmaceutical field in anti­bacterial (Alam et al., 2014), anti­fungal (Yu et al., 2007) and anti­viral (Liu et al., 2011) agents among others. In the chemotherapy of protozoal diseases, 5-bromo-2-amino­thia­zole derivatives have been investigated as privileged structures in biological tests against intestinal parasites such as Giardia (Mocelo-Castell et al., 2015). Halo-1,3-thia­zole derivatives have proven to be suitable substrates in oxidative addition reactions in the presence of palladium (Wang et al., 2015; Hämmerle et al., 2010). The presence of halogens in the core of thia­zole derivatives opens the door to using them as suitable substrates for coupling reactions and to expand the therapeutic potential of a compound by improving the pharmaceutical properties. Transition-metal-catalysed reactions constitute one of the most important and attractive research areas in academia, as well as in the pharmaceutical and fine chemical industries (Zhao et al., 2017; Jana et al., 2011). Cross-coupling reactions usually require, in addition to a transition metal, that the electrophilic coupling partner possesses leaving groups such as Br or I among others. The development of suitable halo-1,3-thia­zole substrates for cross-coupling reactions allows us to report the crystal structure and the Hirshfeld surface analysis of N-(5-iodo-4-phenyl­thia­zol-2-yl)acetamide.

Structural commentary  

The title 2-aceto­amido­thia­zole derivative crystallizes in the monoclinic space group P21/c with two crystallographically independent mol­ecules in the asymmetric unit (Fig. 1). The principal difference between these mol­ecules is the dihedral angle between the phenyl and thia­zole rings. In mol­ecule A, the thia­zole ring (S1/N2/C3–C5) makes a dihedral angle of 38.94 (16)° with the adjacent phenyl ring (C6–C11) while for mol­ecule B the dihedral angle between the S2/N4/C14–C16 and C17–C22 rings is 32.12 (15)°. Unlike the related compound 2-acetamido-4-p-tolyl-1,3-thia­zole (Lynch et al., 2004) in which the mol­ecule is essentially flat, the presence of the iodine atom at C5 or C16 of the title compound induces rotation of the phenyl group attached to the thia­zole ring, as also observed in some bromine-substituted phenyl­thia­zole compounds (see the Database survey).graphic file with name e-75-00717-scheme1.jpg

Figure 1.

Figure 1

Mol­ecular structure of the two crystallographically independent mol­ecules in the asymmetric unit of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radius.

Supra­molecular features  

In the crystal, mol­ecules are linked by N1—H1⋯O2 and N3—H3⋯O1 moderate hydrogen bonds via a C(4) synthon (Table 1, Fig. 2), forming chains along [001] in an ⋯ABAB⋯ fashion. In the same way, the phenyl rings of mol­ecules A and B inter­act through C—H⋯π contacts along [010] and the resulting chains are further connected through I1⋯S2(1 − x, −y, 1 − z) contacts [3.7758 (9) Å] (Fig. 3). Additionally, adjacent B mol­ecules are linked by I2⋯I2(7 − x, 1 − y, 1 − z) contacts of type I [θ 1 = θ 2 = 146.91 (8)°] with a length of 3.8547 (5) Å.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of the C6–C11 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (3) 2.03 (3) 2.914 (3) 175 (3)
N3—H3⋯O1i 0.89 (2) 2.03 (2) 2.902 (3) 167 (2)
C8—H8⋯Cg4ii 0.93 2.94 3.655 (4) 134
C18—H18⋯Cg2ii 0.93 2.82 3.594 (4) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure of the title compound, showing the formation of hydrogen bonds and I⋯I contacts (red dashed lines) in the ac plane.

Figure 3.

Figure 3

Packing viewed along the a-axis direction showing C–H⋯π and I⋯S inter­actions as red dashed lines.

Hirshfeld surface analysis and two-dimensional fingerprints plots  

A Hirshfeld surface analysis was carried out using Crystal Explorer17.5 (Turner et al., 2017) in order to acquire a better understanding of the nature of the inter­molecular inter­actions in the title compound. The Hirshfeld surface was generated using a standard (high) surface resolution with the three-dimensional d norm surface mapped over a fixed color scale of −0.5372 (red) to 1.3937 (blue) a.u. (Fig. 4). The intense red spots on the surface are due to the N—H⋯O hydrogen bonds, resulting from the inter­action of the amide group of the 2-aceto­amido­thia­zole derivative. The overall two-dimensional fingerprint plot for the title compound is shown in Fig. 5 a, and those delineated into H⋯C/C⋯H, H⋯H, H⋯I/I⋯H, H⋯O/O⋯H and I⋯S/S⋯I contacts are shown in Fig. 5 bf. The major contribution to the crystal packing is from H⋯C/C⋯H inter­actions (26.2%). The pair of characteristic wings in this fingerprint plot corresponds to the C—H⋯π inter­actions between the phenyl groups (Fig. 5 b). The H⋯H and H⋯I/I⋯H contacts (Fig. 5 c and 5d) make similar contributions to the total Hirshfeld surface of 20.9 and 19.4%, respectively. The reciprocal H⋯O/O⋯H inter­actions (6.8%) are seen as sharp symmetrical spikes with tips at de + di ∼1.9 Å and arising from the N—H⋯O hydrogen bond (Fig. 5 e). Inter­molecular I⋯S/S⋯I (Fig. 5 f) and I⋯I inter­actions make smaller contributions to the Hirshfeld surface (2.2 and 1.1%, respectively).

Figure 4.

Figure 4

The three-dimensional Hirshfeld surface of the title compound mapped over d norm, showing the N—H⋯O hydrogen bonds.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the (a) all, (b) H⋯C/C⋯H (26.2%), (c) H⋯H (20.9%), (d) H⋯I/I⋯H (19.4%), (e) H⋯O/O⋯H (6.8%) and (f) I⋯S/S⋯I (2.2%) contacts in the title compound.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, update of February 2018; Groom et al., 2016) for a 1,3 thia­zole ring with a benzene ring and a halogen as substituents in positions 4 and 5, respectively, gave four entries for the organobromine compounds N-[5-bromo-4-(4-methyl­phen­yl)1,3-thia­zol-2-yl]-4-chloro­butanamide (CCDC 1443533; Ghabbour et al., 2016), 5,5′-di­bromo-4,4′-bis­(penta­fluoro­phen­yl)-2,2′-bi-1,3-thia­zole (CCDC 889644; Siram et al., 2013), 1-(5-bromo-4-phenyl-1,3-thia­zol-2-yl)pyrrolidin-2-one (CCDC 886962; Ghabbour, Kadi, et al., 2012) and 5-bromo-4-(3,4-di­meth­oxy­phen­yl)-1,3-thia­zol-2-amine (CCDC 886876; Ghabbour, Chia, et al., 2012). The dihedral angle between the thia­zole and benzene rings in these compounds are in the range 36.69 (11) to 60.83 (3)°, with exception of N-(5-bromo-4-(4-methyl­phen­yl)-1,3-thia­zol-2-yl)-4-chloro­butanamide. In this compound the dihedral angle is smaller [8.8 (3)°] as a result of an intra­molecular C—H⋯Br hydrogen bond. In the crystals of these compounds, only 5,5′-di­bromo-4,4′-bis(penta­fluoro­phen­yl)-2,2′-bi-1,3-thia­zole exhibits a type II halogen–halogen inter­action with a Br⋯Br distance of 3.6777 (3) Å and angles of 68.88 (5) and 174.77 (5)°.

Synthesis and crystallization  

A mixture of N-(4-phenyl­thia­zol-2-yl) acetamide (0.5 mmol, 109 mg, 1 eq) and iodine (1 mmol, 127 mg, 2 eq) was placed in an open vessel containing a Teflon-coated stir bar. The mixture was dissolved in 3 mL of ethanol and the vessel was placed in the microwave cavity (CEM, Discover) and subjected to MW irradiation (150 W) for 60 min, at 363 K and a pressure of 2 psi. The reaction mixture was then cooled at room temperature and 5 mL of NH4OH were added. The obtained mixture was dissolved in ethyl acetate (50 mL) and washed with brine (3×). The organic layer was separated, dehydrated with Na2SO4, and evaporated in vacuo until dryness. The product was purified by flash column chromatography (silica gel, 2–25 µm) with a mixture of petrol–di­chloro­methane–acetone (5:3:2). The title compound was obtained as pale-yellow needles in 30% yield (52.2 mg, 0.15 mmol). A diluted solution of the compound was prepared in hexane and kept on a dry and dark place at room temperature. Crystals were obtained after one week of slow evaporation. Spectroscopic data: 1H NMR (400 MHz, CDCl3): 11.37 (s, 1H), 7.80 (m, 2H), 7.43 (m, 3H), 1.62 (s, 3H). 13C NMR (100 MHz, CDCl3): 168.8 (s), 163.6 (s), 151.4 (s), 134.5 (s), 129.0 (d), 128.9 (d), 128.7 (d), 62.4 (s) 21.9 (c).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bonded to C atoms were positioned geometrically and refined using a riding model: C—H = 0.95–1.00 Å with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C11H9IN2OS
M r 344.16
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 17.4130 (6), 7.5325 (3), 18.5443 (6)
β (°) 94.567 (1)
V3) 2424.61 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.79
Crystal size (mm) 0.30 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture κ-geometry diffractometer 208039-01
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.595, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21512, 4448, 3987
R int 0.020
(sin θ/λ)max−1) 0.604
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.073, 1.12
No. of reflections 4448
No. of parameters 297
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.49

Computer programs: APEX3 and SAINT (Bruker, 2014), SHELXS2014 (Bruker, 2014), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004791/lh5897sup1.cif

e-75-00717-sup1.cif (746.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004791/lh5897Isup2.hkl

e-75-00717-Isup2.hkl (354.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004791/lh5897Isup3.cml

CCDC reference: 1908908

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JAG thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a BSc scholarship.

supplementary crystallographic information

Crystal data

C11H9IN2OS F(000) = 1328
Mr = 344.16 Dx = 1.886 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 17.4130 (6) Å Cell parameters from 9666 reflections
b = 7.5325 (3) Å θ = 2.5–25.4°
c = 18.5443 (6) Å µ = 2.79 mm1
β = 94.567 (1)° T = 298 K
V = 2424.61 (15) Å3 Prism, colourless
Z = 8 0.30 × 0.27 × 0.09 mm

Data collection

Bruker D8 Venture κ-geometry diffractometer 208039-01 4448 independent reflections
Radiation source: micro-focus X-ray source 3987 reflections with I > 2σ(I)
Detector resolution: 52.0833 pixels mm-1 Rint = 0.020
ω–scans θmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −15→21
Tmin = 0.595, Tmax = 0.745 k = −9→9
21512 measured reflections l = −21→22

Refinement

Refinement on F2 2 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.3197P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.002
4448 reflections Δρmax = 0.97 e Å3
297 parameters Δρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.20804 (2) 0.11466 (3) 0.57958 (2) 0.05010 (9)
I2 0.93426 (2) 0.36580 (3) 0.43149 (2) 0.05145 (9)
S1 0.39704 (5) 0.14260 (11) 0.59979 (4) 0.04052 (18)
S2 0.74959 (5) 0.37404 (11) 0.39534 (4) 0.03938 (18)
O1 0.55222 (13) 0.1295 (3) 0.64721 (12) 0.0505 (6)
O2 0.59773 (14) 0.3722 (3) 0.40790 (12) 0.0505 (6)
N1 0.52822 (14) 0.2346 (4) 0.53438 (13) 0.0413 (6)
H1 0.5467 (19) 0.278 (4) 0.4945 (12) 0.050*
N2 0.40840 (14) 0.2698 (4) 0.47229 (13) 0.0388 (6)
N3 0.62765 (15) 0.3834 (4) 0.29243 (13) 0.0408 (6)
H3 0.612 (2) 0.377 (4) 0.2456 (7) 0.049*
N4 0.75315 (14) 0.3745 (3) 0.25708 (13) 0.0372 (6)
C1 0.66028 (18) 0.2219 (5) 0.58392 (19) 0.0510 (8)
H1A 0.6829 0.2837 0.6256 0.076*
H1B 0.6656 0.2923 0.5414 0.076*
H1C 0.6860 0.1103 0.5792 0.076*
C2 0.57687 (17) 0.1901 (4) 0.59246 (16) 0.0393 (7)
C3 0.44875 (17) 0.2214 (4) 0.53026 (15) 0.0369 (6)
C4 0.33023 (16) 0.2505 (4) 0.47953 (15) 0.0350 (6)
C5 0.31384 (16) 0.1834 (4) 0.54453 (16) 0.0371 (6)
C6 0.27744 (17) 0.3026 (4) 0.41671 (15) 0.0365 (6)
C7 0.20880 (19) 0.3934 (4) 0.42351 (18) 0.0433 (7)
H7 0.1925 0.4152 0.4692 0.052*
C8 0.16480 (19) 0.4514 (5) 0.3630 (2) 0.0509 (8)
H8 0.1190 0.5121 0.3681 0.061*
C9 0.1884 (2) 0.4198 (5) 0.29482 (19) 0.0522 (9)
H9 0.1591 0.4607 0.2541 0.063*
C10 0.2554 (2) 0.3275 (5) 0.28749 (18) 0.0501 (8)
H10 0.2710 0.3046 0.2416 0.060*
C11 0.29986 (18) 0.2687 (4) 0.34786 (16) 0.0417 (7)
H11 0.3450 0.2060 0.3423 0.050*
C12 0.4936 (2) 0.3841 (7) 0.3156 (2) 0.0688 (12)
H12A 0.4668 0.2859 0.3350 0.103*
H12B 0.4900 0.3761 0.2638 0.103*
H12C 0.4707 0.4934 0.3298 0.103*
C13 0.57608 (18) 0.3794 (4) 0.34378 (17) 0.0413 (7)
C14 0.70669 (17) 0.3778 (4) 0.30805 (15) 0.0354 (6)
C15 0.82943 (17) 0.3668 (4) 0.28480 (15) 0.0338 (6)
C16 0.83746 (17) 0.3663 (4) 0.35831 (16) 0.0363 (6)
C17 0.88862 (17) 0.3640 (4) 0.23203 (16) 0.0340 (6)
C18 0.87296 (17) 0.4513 (5) 0.16611 (16) 0.0418 (7)
H18 0.8267 0.5121 0.1570 0.050*
C19 0.92545 (19) 0.4480 (5) 0.11460 (18) 0.0494 (8)
H19 0.9145 0.5069 0.0709 0.059*
C20 0.99420 (19) 0.3583 (5) 0.1270 (2) 0.0495 (8)
H20 1.0293 0.3562 0.0918 0.059*
C21 1.01068 (18) 0.2721 (5) 0.19149 (19) 0.0477 (8)
H21 1.0572 0.2119 0.2000 0.057*
C22 0.95846 (18) 0.2741 (4) 0.24411 (17) 0.0404 (7)
H22 0.9701 0.2152 0.2877 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.03894 (13) 0.06520 (16) 0.04648 (14) −0.01106 (9) 0.00551 (10) 0.00738 (10)
I2 0.04289 (14) 0.07225 (18) 0.03680 (13) 0.00079 (10) −0.01192 (9) −0.00143 (10)
S1 0.0370 (4) 0.0575 (5) 0.0268 (4) −0.0013 (3) 0.0002 (3) 0.0065 (3)
S2 0.0389 (4) 0.0537 (5) 0.0252 (4) −0.0033 (3) 0.0004 (3) −0.0013 (3)
O1 0.0390 (12) 0.0830 (18) 0.0287 (11) −0.0006 (11) −0.0023 (9) 0.0113 (10)
O2 0.0479 (13) 0.0750 (17) 0.0293 (12) −0.0054 (11) 0.0081 (10) −0.0006 (10)
N1 0.0318 (13) 0.0654 (18) 0.0266 (13) −0.0003 (12) 0.0010 (10) 0.0076 (12)
N2 0.0324 (13) 0.0572 (16) 0.0261 (12) 0.0005 (11) −0.0020 (10) 0.0031 (11)
N3 0.0316 (13) 0.0656 (18) 0.0249 (12) −0.0035 (11) 0.0015 (10) −0.0014 (11)
N4 0.0309 (13) 0.0530 (16) 0.0275 (12) −0.0010 (10) 0.0014 (10) −0.0009 (10)
C1 0.0359 (17) 0.071 (2) 0.0444 (18) 0.0009 (16) −0.0046 (14) 0.0087 (17)
C2 0.0363 (16) 0.0507 (18) 0.0307 (15) 0.0033 (14) 0.0006 (12) −0.0016 (13)
C3 0.0341 (15) 0.0496 (18) 0.0269 (14) −0.0006 (13) 0.0024 (12) 0.0015 (12)
C4 0.0315 (15) 0.0432 (16) 0.0300 (15) 0.0004 (12) 0.0004 (11) −0.0019 (12)
C5 0.0308 (15) 0.0481 (17) 0.0323 (15) −0.0034 (13) 0.0013 (12) 0.0022 (13)
C6 0.0325 (15) 0.0445 (17) 0.0313 (15) −0.0051 (13) −0.0044 (12) 0.0016 (13)
C7 0.0426 (18) 0.0506 (19) 0.0360 (16) 0.0042 (14) −0.0015 (14) 0.0006 (13)
C8 0.0389 (18) 0.054 (2) 0.058 (2) 0.0072 (15) −0.0064 (15) 0.0037 (17)
C9 0.050 (2) 0.063 (2) 0.0411 (19) −0.0014 (17) −0.0146 (15) 0.0079 (16)
C10 0.052 (2) 0.067 (2) 0.0300 (16) −0.0039 (17) −0.0016 (14) 0.0049 (15)
C11 0.0345 (16) 0.0541 (19) 0.0358 (16) −0.0004 (14) −0.0005 (13) 0.0053 (14)
C12 0.0346 (18) 0.129 (4) 0.044 (2) −0.005 (2) 0.0073 (16) −0.002 (2)
C13 0.0355 (16) 0.0538 (19) 0.0353 (17) −0.0041 (13) 0.0059 (13) −0.0032 (13)
C14 0.0340 (15) 0.0439 (17) 0.0279 (14) −0.0019 (12) 0.0003 (12) −0.0013 (12)
C15 0.0326 (15) 0.0380 (16) 0.0302 (15) −0.0005 (12) −0.0012 (12) −0.0020 (11)
C16 0.0328 (15) 0.0438 (17) 0.0314 (15) −0.0010 (12) −0.0028 (12) 0.0004 (12)
C17 0.0306 (15) 0.0390 (16) 0.0316 (15) −0.0027 (12) −0.0017 (12) −0.0064 (12)
C18 0.0328 (15) 0.0544 (19) 0.0376 (16) 0.0050 (14) 0.0001 (13) 0.0007 (14)
C19 0.0456 (19) 0.069 (2) 0.0339 (16) 0.0018 (17) 0.0043 (14) 0.0064 (16)
C20 0.0331 (17) 0.068 (2) 0.048 (2) −0.0023 (15) 0.0115 (15) −0.0061 (16)
C21 0.0327 (16) 0.056 (2) 0.055 (2) 0.0065 (14) 0.0008 (14) −0.0093 (16)
C22 0.0375 (16) 0.0443 (18) 0.0382 (16) 0.0021 (13) −0.0050 (13) 0.0007 (13)

Geometric parameters (Å, º)

I1—C5 2.068 (3) C7—C8 1.378 (5)
I2—C16 2.078 (3) C7—H7 0.9300
S1—C5 1.734 (3) C8—C9 1.381 (5)
S1—C3 1.735 (3) C8—H8 0.9300
S2—C16 1.727 (3) C9—C10 1.374 (5)
S2—C14 1.728 (3) C9—H9 0.9300
O1—C2 1.222 (4) C10—C11 1.382 (4)
O2—C13 1.220 (4) C10—H10 0.9300
N1—C2 1.358 (4) C11—H11 0.9300
N1—C3 1.383 (4) C12—C13 1.490 (5)
N1—H1 0.890 (10) C12—H12A 0.9600
N2—C3 1.289 (4) C12—H12B 0.9600
N2—C4 1.386 (4) C12—H12C 0.9600
N3—C13 1.360 (4) C15—C16 1.359 (4)
N3—C14 1.384 (4) C15—C17 1.477 (4)
N3—H3 0.891 (10) C17—C22 1.394 (4)
N4—C14 1.292 (4) C17—C18 1.396 (4)
N4—C15 1.387 (4) C18—C19 1.374 (4)
C1—C2 1.493 (4) C18—H18 0.9300
C1—H1A 0.9600 C19—C20 1.378 (5)
C1—H1B 0.9600 C19—H19 0.9300
C1—H1C 0.9600 C20—C21 1.371 (5)
C4—C5 1.358 (4) C20—H20 0.9300
C4—C6 1.478 (4) C21—C22 1.386 (4)
C6—C11 1.388 (4) C21—H21 0.9300
C6—C7 1.392 (4) C22—H22 0.9300
C5—S1—C3 87.64 (14) C9—C10—H10 119.8
C16—S2—C14 87.64 (14) C11—C10—H10 119.8
C2—N1—C3 125.7 (3) C10—C11—C6 120.4 (3)
C2—N1—H1 120 (2) C10—C11—H11 119.8
C3—N1—H1 114 (2) C6—C11—H11 119.8
C3—N2—C4 111.3 (2) C13—C12—H12A 109.5
C13—N3—C14 123.6 (3) C13—C12—H12B 109.5
C13—N3—H3 121 (2) H12A—C12—H12B 109.5
C14—N3—H3 115 (2) C13—C12—H12C 109.5
C14—N4—C15 111.5 (2) H12A—C12—H12C 109.5
C2—C1—H1A 109.5 H12B—C12—H12C 109.5
C2—C1—H1B 109.5 O2—C13—N3 120.9 (3)
H1A—C1—H1B 109.5 O2—C13—C12 123.9 (3)
C2—C1—H1C 109.5 N3—C13—C12 115.2 (3)
H1A—C1—H1C 109.5 N4—C14—N3 121.2 (3)
H1B—C1—H1C 109.5 N4—C14—S2 115.8 (2)
O1—C2—N1 120.9 (3) N3—C14—S2 123.0 (2)
O1—C2—C1 123.9 (3) C16—C15—N4 113.0 (3)
N1—C2—C1 115.3 (3) C16—C15—C17 130.0 (3)
N2—C3—N1 120.1 (3) N4—C15—C17 117.0 (2)
N2—C3—S1 115.8 (2) C15—C16—S2 112.0 (2)
N1—C3—S1 124.0 (2) C15—C16—I2 131.9 (2)
C5—C4—N2 113.7 (3) S2—C16—I2 116.02 (16)
C5—C4—C6 129.6 (3) C22—C17—C18 118.5 (3)
N2—C4—C6 116.7 (2) C22—C17—C15 123.1 (3)
C4—C5—S1 111.5 (2) C18—C17—C15 118.4 (3)
C4—C5—I1 128.9 (2) C19—C18—C17 120.4 (3)
S1—C5—I1 119.55 (15) C19—C18—H18 119.8
C11—C6—C7 118.7 (3) C17—C18—H18 119.8
C11—C6—C4 118.2 (3) C18—C19—C20 120.7 (3)
C7—C6—C4 122.9 (3) C18—C19—H19 119.7
C8—C7—C6 120.5 (3) C20—C19—H19 119.7
C8—C7—H7 119.7 C21—C20—C19 119.8 (3)
C6—C7—H7 119.7 C21—C20—H20 120.1
C7—C8—C9 120.2 (3) C19—C20—H20 120.1
C7—C8—H8 119.9 C20—C21—C22 120.4 (3)
C9—C8—H8 119.9 C20—C21—H21 119.8
C10—C9—C8 119.7 (3) C22—C21—H21 119.8
C10—C9—H9 120.2 C21—C22—C17 120.3 (3)
C8—C9—H9 120.2 C21—C22—H22 119.8
C9—C10—C11 120.5 (3) C17—C22—H22 119.8
C3—N1—C2—O1 1.3 (5) C14—N3—C13—O2 0.7 (5)
C3—N1—C2—C1 −178.3 (3) C14—N3—C13—C12 −179.2 (3)
C4—N2—C3—N1 −178.5 (3) C15—N4—C14—N3 −179.3 (3)
C4—N2—C3—S1 1.2 (4) C15—N4—C14—S2 0.6 (3)
C2—N1—C3—N2 179.2 (3) C13—N3—C14—N4 177.1 (3)
C2—N1—C3—S1 −0.5 (5) C13—N3—C14—S2 −2.7 (4)
C5—S1—C3—N2 −0.9 (3) C16—S2—C14—N4 −0.3 (2)
C5—S1—C3—N1 178.8 (3) C16—S2—C14—N3 179.5 (3)
C3—N2—C4—C5 −0.9 (4) C14—N4—C15—C16 −0.6 (4)
C3—N2—C4—C6 179.6 (3) C14—N4—C15—C17 −179.5 (3)
N2—C4—C5—S1 0.3 (4) N4—C15—C16—S2 0.4 (3)
C6—C4—C5—S1 179.6 (3) C17—C15—C16—S2 179.1 (2)
N2—C4—C5—I1 −175.6 (2) N4—C15—C16—I2 −177.5 (2)
C6—C4—C5—I1 3.7 (5) C17—C15—C16—I2 1.3 (5)
C3—S1—C5—C4 0.3 (3) C14—S2—C16—C15 0.0 (2)
C3—S1—C5—I1 176.6 (2) C14—S2—C16—I2 178.15 (17)
C5—C4—C6—C11 −142.8 (3) C16—C15—C17—C22 33.8 (5)
N2—C4—C6—C11 36.5 (4) N4—C15—C17—C22 −147.5 (3)
C5—C4—C6—C7 41.2 (5) C16—C15—C17—C18 −148.0 (3)
N2—C4—C6—C7 −139.5 (3) N4—C15—C17—C18 30.7 (4)
C11—C6—C7—C8 −1.3 (5) C22—C17—C18—C19 0.0 (5)
C4—C6—C7—C8 174.7 (3) C15—C17—C18—C19 −178.2 (3)
C6—C7—C8—C9 0.1 (5) C17—C18—C19—C20 0.2 (5)
C7—C8—C9—C10 1.0 (6) C18—C19—C20—C21 −0.3 (6)
C8—C9—C10—C11 −1.0 (6) C19—C20—C21—C22 0.3 (5)
C9—C10—C11—C6 −0.2 (5) C20—C21—C22—C17 0.0 (5)
C7—C6—C11—C10 1.3 (5) C18—C17—C22—C21 −0.1 (4)
C4—C6—C11—C10 −174.8 (3) C15—C17—C22—C21 178.1 (3)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg4 are the centroids of the C6–C11 and C17–C22 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.89 (3) 2.03 (3) 2.914 (3) 175 (3)
N3—H3···O1i 0.89 (2) 2.03 (2) 2.902 (3) 167 (2)
C8—H8···Cg4ii 0.93 2.94 3.655 (4) 134
C18—H18···Cg2ii 0.93 2.82 3.594 (4) 141

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.

Funding Statement

This work was funded by Consejo Nacional de Ciencia y Tecnología grant 290398.

References

  1. Alam, M. S., Ahmed, J. U. & Lee, D. (2014). Chem. Pharm. Bull. 62, 1259–1268. [DOI] [PubMed]
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ghabbour, H. A. & Al-Omar, M. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 859–860.
  4. Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632. [DOI] [PMC free article] [PubMed]
  5. Ghabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1738–o1739. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hämmerle, J., Schnürch, M., Iqbal, N., Mihovilovic, M. D. & Stanetty, P. (2010). Tetrahedron, 66, 8051–8059.
  8. Jana, R., Pathak, T. P. & Sigman, M. S. (2011). Chem. Rev. 111, 1417–1492. [DOI] [PMC free article] [PubMed]
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Liu, Y., Zhang, L., Gong, J., Fang, H., Liu, A., Du, G. & Xu, W. (2011). J. Enzyme Inhib. Med. Chem. 26, 506–513. [DOI] [PubMed]
  11. Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o815–o817. [DOI] [PubMed]
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Mocelo-Castell, R., Villanueva-Novelo, C., Cáceres-Castillo, D., Carballo, R. M., Quijano-Quiñones, R. F., Quesadas-Rojas, M., Cantillo-Ciau, Z., Cedillo-Rivera, R., Moo-Puc, R. E., Moujir, L. M. & Mena-Rejón, G. J. (2015). Open Chem. 13, 1127–1136.
  14. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  15. Siram, R. B. K., Karothu, D. P., Guru Row, T. N. & Patil, S. (2013). Cryst. Growth Des. 13, 1045–1049.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal. Explorer17. The University of Western Australia.
  18. Wang, F., Yang, Z., Liu, Y., Ma, L., Wu, Y., He, L., Shao, M., Yu, K., Wu, W., Pu, Y., Nie, C. & Chen, L. (2015). Bioorg. Med. Chem. 23, 3337–3350. [DOI] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.
  21. Zhao, K., Shen, L., Shen, Z. L. & Loh, T. P. (2017). Chem. Soc. Rev. 46, 586–602. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004791/lh5897sup1.cif

e-75-00717-sup1.cif (746.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004791/lh5897Isup2.hkl

e-75-00717-Isup2.hkl (354.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004791/lh5897Isup3.cml

CCDC reference: 1908908

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES