Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 May 24;75(Pt 6):892–895. doi: 10.1107/S2056989019007424

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

Fouad El Kalai a,*, Cemile Baydere b,*, Said Daoui a, Rafik Saddik c, Necmi Dege b, Khalid Karrouchi d, Noureddine Benchat a
PMCID: PMC6658951  PMID: 31391989

In the title pyridazinone derivative, the unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)°, whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°], C21H19ClN2O3, contains one independent mol­ecule. C—H⋯O hydrogen bonds, weak C—H⋯π and weak offset π–π stacking inter­actions stabilize the packing.

Keywords: crystal structure, pyridazine, Hirshfeld surface analysis

Abstract

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R 2 2(10) and R 2 2(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.

Chemical context  

Pyridazines are an important family of six-membered aromatic heterocycles (Akhtar et al., 2016). The related compound pyridazinone is an important pharmacophore with a wide range of biological applications (Asif, 2015), and its chemistry has been studied for several decades. Pyridazinones are used as scaffolds for potential drug candidates (Dubey & Bhosle, 2015; Thakur et al., 2010) because of their significant potential as anti­microbial (Sönmez et al., 2006), anti­depressant (Boukharsa et al., 2016), anti-inflammatory (Barberot et al., 2018), anti­hypertensive (Siddiqui et al., 2011), analgesic (Gökçe et al., 2009), anti-HIV (Livermore et al., 1993), anti­convulsant (Partap et al., 2018; Sharma et al., 2014), cardiotonic (Wang et al., 2008), anti­histaminic (Tao et al., 2012), glucan synthase inhibitors (Zhou et al., 2011), phospho­diesterase (PDE) inhibitors (Ochiai et al., 2012) and herbicidal (Asif, 2013) agents.graphic file with name e-75-00892-scheme1.jpg

In this context and in a continuation of our work in this field (Chkirate et al., 2019a ,b ; Karrouchi et al., 2015, 2016a ,b ), we report herein the synthesis and the mol­ecular and crystal structures of the title pyridazinone derivative, together with its Hirshfeld surface analysis.

Structural commentary  

The mol­ecule of the title compound is not planar (Fig. 1). The unsubstituted phenyl ring (C12–C17) and the pyridazine ring (C8–C11/N1/N2) are twisted relative to each other, making a dihedral angle of 17.41 (13)°; the chloro-substituted phenyl ring (C1–C6) is inclined to the pyridazine ring by 88.19 (13)°. Atoms C8 and N2 of the pyridazine ring show the largest deviations from planarity (root-mean-square deviation = 0.0236 Å) in positive and negative directions [C8 = 0.0357 (15) Å; N2 = −0.0319 (14) Å]. The O1=C8 bond length of the pyridazinone carbonyl function is 1.230 (3) Å, and the N1—N2 bond length in the pyridazine ring is 1.362 (2) Å, both in accordance with values for related pyridazinones.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

The crystal packing exhibits C—H⋯O hydrogen bonds between aryl or methyl­ene groups and carbonyl O atoms (Table 1), as well as C—H⋯π inter­actions and van der Waals contacts. Inter­molecular C7—H7B⋯O1 and C14—H14⋯O2 hydrogen bonds produce Inline graphic(10) and Inline graphic(24) motif rings (Fig. 2), supplemented by C15—H15⋯O1 contacts, forming chains extending parallel to the c axis (Fig. 2). A weak C20—H20BCg2 (−x + 1, −y, −z + 1; Cg2 is the centroid of the C1–C6 phenyl ring) contact is also present in this chain (Table 1; Fig. 2). Weak aromatic π–π stacking inter­actions between adjacent pyridazine rings [Cg1⋯Cg1(−x + 1, −y + 1, −z + 1) = 3.8833 (13) Å, where Cg1 is the centroid of the C8–C11/N1/N2 ring] along the a axis lead to the formation of a three-dimensional network.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 phenyl ring

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.53 3.416 (3) 160
C7—H7B⋯O1ii 0.97 2.54 3.485 (3) 164
C15—H15⋯O1iii 0.93 2.66 3.474 (3) 147
C20—H20BCg2iv 0.97 2.81 3.759 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the crystal structure of the title compound. Black dashed lines symbolize inter­molecular C—H⋯O hydrogen bonds; C—H⋯π inter­actions are shown as green dashes lines.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) revealed two structures containing a similar pyridazinone moiety as in the title structure but with different substituents, viz. 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009) and ethyl 3-methyl-6-oxo-5-(3-(tri­fluoro­meth­yl)phen­yl)-1,6-di­hydro-1-pyridazine­acetate (QANVOR; Xu et al., 2005). In the crystal structure of YOTVIN, the mol­ecules are connected two-by-two through N—H⋯O hydrogen bonds with an Inline graphic(8) graph-set motif, forming dimers arranged around an inversion center. Weak C—H⋯O hydrogen bonds and weak offset π–π stacking stabilize the packing. In the crystal structure of QANVOR, the phenyl and pyridazinone rings are approximately co-planar, making a dihedral angle of 4.84 (13)°. Centrosymmetrically related mol­ecules form dimers through non-classical inter­molecular C—H⋯O hydrogen bonds.

Hirshfeld surface analysis  

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017), using a standard (high) surface resolution with the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.1647 (red) to 1.1730 (blue) a.u. The three-dimensional d norm surface of the title mol­ecule is illustrated in Fig. 3 a. The pale-red spots symbolize short contacts and negative d norm values on the surface and correspond to the C—H⋯O inter­actions (Table 1).

Figure 3.

Figure 3

(a) d norm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions, (b) shape-index map of the title compound and (c) curvedness map of the title compound.

The shape-index map of the title mol­ecule was generated in the range −1 to 1 Å (Fig. 3 b). The convex blue regions symbolize hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. π–π inter­actions are generally indicated by adjacent red and blue triangles in the shape-index map, as is the case for the title mol­ecule.

The curvedness map of the title complex was generated in the range −4.0 to 0.4 Å (Fig. 3 c). The curvedness plot of the title complex shows large regions of green with a relatively flat (i.e. planar) surface area, indicating the presence of π–π stacking inter­actions, while the blue regions demonstrate areas of curvature.

The overall two-dimensional fingerprint plot is illustrated in Fig. 4 a, delineated into H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 4 bf, respectively. The most important inter­molecular inter­action is H⋯H, contributing 44.5% to the overall crystal packing, with the centre of the peak d e = d i = 1.18 Å (Fig. 4 b). H⋯C/ C⋯H contacts, with a 18.5% contribution to the Hirshfeld surface, indicate the presence of the weak C—H⋯π inter­action (Table 1). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at d e + d i ∼2.8 Å are present (Fig. 4 c). H⋯O/O⋯H contacts arising from inter­molecular C—H⋯O hydrogen bonding make a 15.6% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region d e + d i ∼2.35 Å The C⋯C contacts are a measure of π–\p stacking inter­actions and contribute 2.8% of the Hirshfeld surface. They appear as an arrow-shaped distribution at d e + d i ∼3.3 Å. Another contact to the Hirshfeld surface is from H⋯Cl/Cl⋯H inter­actions (10.6%).

Figure 4.

Figure 4

(a) The overall two-dimensional fingerprint plot, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯Cl/Cl⋯H and (f) C⋯C inter­actions.

Synthesis and crystallization  

To a solution (0.99 g, 3 mmol) of 4-(3-di­chloro­benz­yl)-6-phenyl­pyridazin-3(2H)-one in 30 ml of tetra­hydro­furan (THF), potassium carbonate (0.5 g, 3.5 mmol) was added. The mixture was refluxed for 1 h. After cooling, ethyl bromo­acetate (0.66 g, 4 mmol) was added and the mixture was refluxed for 8 h. The precipitated material was removed by filtration and the solvent evaporated under vacuum. The residue was purified through silica gel column chromatography using hexa­ne/ethyl acetate (4:6 v/v). Slow evaporation at room temperature led to formation of single crystals with a yield of 70%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl [U iso(H) = 1.2U eq(C)], C—H = 0.96 Å for methyl­ene [U iso(H) = 1.5U eq(C)], C—H = 0.93 Å for aromatic [U iso(H) = 1.2U eq(C)] and C—H = 0.98 Å for methine [U iso(H) = 1.2U eq(C)] H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C21H19ClN2O3
M r 382.83
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 8.8410 (11), 10.3043 (12), 11.3610 (12)
α, β, γ (°) 94.801 (9), 103.596 (9), 106.905 (9)
V3) 949.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.88 × 0.53 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.876, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 9612, 3716, 2058
R int 0.031
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.127, 0.91
No. of reflections 3716
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.34

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019007424/wm5505sup1.cif

e-75-00892-sup1.cif (521.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019007424/wm5505Isup2.hkl

e-75-00892-Isup2.hkl (296.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019007424/wm5505Isup3.cml

CCDC reference: 1917654

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C21H19ClN2O3 Z = 2
Mr = 382.83 F(000) = 400
Triclinic, P1 Dx = 1.339 Mg m3
a = 8.8410 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.3043 (12) Å Cell parameters from 11025 reflections
c = 11.3610 (12) Å θ = 3.0–31.4°
α = 94.801 (9)° µ = 0.23 mm1
β = 103.596 (9)° T = 296 K
γ = 106.905 (9)° Prism, yellow
V = 949.6 (2) Å3 0.88 × 0.53 × 0.19 mm

Data collection

Stoe IPDS 2 diffractometer 2058 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.031
rotation method scans θmax = 26.0°, θmin = 3.0°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −10→10
Tmin = 0.876, Tmax = 0.960 k = −12→12
9612 measured reflections l = −14→14
3716 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
3716 reflections Δρmax = 0.26 e Å3
245 parameters Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29831 (14) 0.53925 (11) −0.10674 (8) 0.1264 (4)
O3 0.72303 (19) 0.86361 (16) 0.93869 (13) 0.0654 (5)
O2 0.4976 (2) 0.87323 (18) 0.80559 (15) 0.0704 (5)
O1 0.6649 (2) 0.89797 (17) 0.57180 (15) 0.0725 (5)
N1 0.4130 (2) 0.57611 (18) 0.60996 (15) 0.0503 (5)
N2 0.5368 (2) 0.69655 (18) 0.62523 (15) 0.0542 (5)
C12 0.1658 (3) 0.4089 (2) 0.49033 (17) 0.0463 (5)
C11 0.3033 (3) 0.5381 (2) 0.50375 (17) 0.0462 (5)
C19 0.6111 (3) 0.8315 (2) 0.83046 (19) 0.0536 (6)
C10 0.3151 (3) 0.6166 (2) 0.40745 (18) 0.0507 (5)
H10 0.238158 0.583782 0.331377 0.061*
C9 0.4352 (3) 0.7377 (2) 0.42376 (19) 0.0528 (6)
C13 0.0216 (3) 0.3784 (2) 0.39727 (19) 0.0556 (6)
H13 0.012681 0.437926 0.340794 0.067*
C8 0.5539 (3) 0.7869 (2) 0.5427 (2) 0.0557 (6)
C5 0.3334 (3) 0.7688 (2) 0.2046 (2) 0.0602 (6)
C17 0.1752 (3) 0.3177 (2) 0.5723 (2) 0.0617 (6)
H17 0.270130 0.335520 0.636054 0.074*
C18 0.6531 (3) 0.7357 (2) 0.7459 (2) 0.0618 (6)
H18A 0.762208 0.780076 0.737838 0.074*
H18B 0.654649 0.653680 0.781667 0.074*
C14 −0.1095 (3) 0.2608 (3) 0.3867 (2) 0.0659 (7)
H14 −0.206077 0.242734 0.324506 0.079*
C6 0.3669 (3) 0.6883 (3) 0.1175 (2) 0.0693 (7)
H6 0.465811 0.669538 0.134709 0.083*
C15 −0.0967 (4) 0.1717 (3) 0.4678 (3) 0.0735 (7)
H15 −0.183752 0.091911 0.460255 0.088*
C7 0.4550 (3) 0.8283 (2) 0.3280 (2) 0.0659 (7)
H7A 0.565102 0.846300 0.318471 0.079*
H7B 0.444144 0.915570 0.356666 0.079*
C20 0.6983 (3) 0.9534 (3) 1.0330 (2) 0.0697 (7)
H20A 0.592464 0.912468 1.048073 0.084*
H20B 0.702185 1.041629 1.007747 0.084*
C16 0.0439 (4) 0.1999 (3) 0.5596 (3) 0.0749 (8)
H16 0.051884 0.138934 0.614912 0.090*
C1 0.2528 (4) 0.6351 (3) 0.0037 (2) 0.0752 (8)
C4 0.1844 (4) 0.7928 (3) 0.1767 (2) 0.0752 (8)
H4 0.160060 0.847345 0.234301 0.090*
C2 0.1061 (4) 0.6593 (3) −0.0218 (3) 0.0839 (9)
H2 0.030067 0.622809 −0.097796 0.101*
C3 0.0711 (4) 0.7371 (3) 0.0646 (3) 0.0902 (9)
H3 −0.029726 0.752677 0.047719 0.108*
C21 0.8330 (5) 0.9709 (4) 1.1455 (3) 0.1279 (16)
H21A 0.936252 1.019422 1.131745 0.192*
H21B 0.834403 0.882260 1.164831 0.192*
H21C 0.815587 1.022374 1.212596 0.192*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1545 (9) 0.1266 (8) 0.0925 (6) 0.0370 (7) 0.0468 (6) −0.0221 (5)
O3 0.0619 (10) 0.0768 (11) 0.0468 (8) 0.0251 (9) −0.0023 (8) −0.0084 (7)
O2 0.0597 (11) 0.0818 (12) 0.0620 (10) 0.0286 (9) 0.0007 (8) −0.0056 (8)
O1 0.0687 (11) 0.0536 (10) 0.0731 (11) −0.0058 (9) 0.0156 (9) −0.0070 (8)
N1 0.0517 (11) 0.0514 (11) 0.0437 (10) 0.0153 (9) 0.0090 (8) 0.0008 (8)
N2 0.0504 (11) 0.0545 (11) 0.0460 (10) 0.0091 (10) 0.0048 (8) −0.0036 (8)
C12 0.0519 (13) 0.0456 (12) 0.0411 (11) 0.0144 (10) 0.0158 (10) 0.0004 (9)
C11 0.0502 (13) 0.0478 (12) 0.0386 (11) 0.0162 (11) 0.0100 (10) 0.0005 (9)
C19 0.0475 (13) 0.0558 (13) 0.0452 (12) 0.0093 (11) 0.0012 (10) 0.0008 (9)
C10 0.0563 (14) 0.0501 (13) 0.0401 (11) 0.0141 (11) 0.0086 (10) 0.0009 (9)
C9 0.0594 (14) 0.0458 (12) 0.0505 (12) 0.0126 (11) 0.0175 (11) 0.0015 (9)
C13 0.0589 (14) 0.0537 (13) 0.0475 (12) 0.0142 (12) 0.0098 (11) −0.0004 (10)
C8 0.0573 (15) 0.0511 (13) 0.0525 (13) 0.0119 (12) 0.0145 (11) −0.0035 (10)
C5 0.0752 (17) 0.0482 (13) 0.0541 (13) 0.0100 (12) 0.0218 (12) 0.0158 (10)
C17 0.0624 (16) 0.0636 (15) 0.0562 (13) 0.0174 (13) 0.0130 (12) 0.0126 (11)
C18 0.0541 (14) 0.0672 (15) 0.0505 (12) 0.0165 (12) −0.0014 (11) −0.0082 (11)
C14 0.0514 (15) 0.0637 (16) 0.0668 (15) 0.0067 (13) 0.0084 (12) −0.0105 (13)
C6 0.0742 (18) 0.0634 (15) 0.0690 (16) 0.0162 (13) 0.0246 (14) 0.0100 (12)
C15 0.0699 (18) 0.0566 (16) 0.0838 (18) 0.0018 (13) 0.0295 (15) −0.0022 (14)
C7 0.0793 (18) 0.0524 (14) 0.0592 (14) 0.0114 (12) 0.0179 (13) 0.0110 (11)
C20 0.0812 (19) 0.0734 (17) 0.0524 (13) 0.0277 (14) 0.0147 (13) −0.0022 (12)
C16 0.091 (2) 0.0592 (16) 0.0750 (17) 0.0149 (16) 0.0318 (16) 0.0214 (13)
C1 0.095 (2) 0.0646 (16) 0.0622 (16) 0.0137 (16) 0.0299 (15) 0.0051 (12)
C4 0.089 (2) 0.0779 (18) 0.0639 (16) 0.0308 (16) 0.0244 (15) 0.0151 (13)
C2 0.092 (2) 0.085 (2) 0.0601 (16) 0.0142 (17) 0.0099 (16) 0.0108 (14)
C3 0.088 (2) 0.101 (2) 0.083 (2) 0.0356 (18) 0.0183 (17) 0.0193 (17)
C21 0.156 (3) 0.171 (4) 0.0489 (16) 0.091 (3) −0.0186 (19) −0.0337 (18)

Geometric parameters (Å, º)

Cl1—C1 1.724 (3) C17—H17 0.9300
O3—C19 1.331 (2) C18—H18A 0.9700
O3—C20 1.454 (3) C18—H18B 0.9700
O2—C19 1.187 (3) C14—C15 1.362 (4)
O1—C8 1.230 (3) C14—H14 0.9300
N1—C11 1.304 (2) C6—C1 1.391 (4)
N1—N2 1.362 (2) C6—H6 0.9300
N2—C8 1.378 (3) C15—C16 1.359 (4)
N2—C18 1.450 (3) C15—H15 0.9300
C12—C17 1.383 (3) C7—H7A 0.9700
C12—C13 1.385 (3) C7—H7B 0.9700
C12—C11 1.487 (3) C20—C21 1.484 (4)
C11—C10 1.420 (3) C20—H20A 0.9700
C19—C18 1.502 (3) C20—H20B 0.9700
C10—C9 1.347 (3) C16—H16 0.9300
C10—H10 0.9300 C1—C2 1.360 (4)
C9—C8 1.447 (3) C4—C3 1.378 (4)
C9—C7 1.500 (3) C4—H4 0.9300
C13—C14 1.386 (3) C2—C3 1.363 (4)
C13—H13 0.9300 C2—H2 0.9300
C5—C6 1.378 (3) C3—H3 0.9300
C5—C4 1.380 (4) C21—H21A 0.9600
C5—C7 1.503 (3) C21—H21B 0.9600
C17—C16 1.384 (4) C21—H21C 0.9600
C19—O3—C20 116.13 (18) C13—C14—H14 120.1
C11—N1—N2 116.83 (18) C5—C6—C1 120.0 (3)
N1—N2—C8 126.86 (17) C5—C6—H6 120.0
N1—N2—C18 114.58 (19) C1—C6—H6 120.0
C8—N2—C18 118.35 (19) C16—C15—C14 119.7 (2)
C17—C12—C13 117.8 (2) C16—C15—H15 120.1
C17—C12—C11 121.31 (19) C14—C15—H15 120.1
C13—C12—C11 120.81 (19) C9—C7—C5 114.18 (19)
N1—C11—C10 121.6 (2) C9—C7—H7A 108.7
N1—C11—C12 116.04 (18) C5—C7—H7A 108.7
C10—C11—C12 122.40 (17) C9—C7—H7B 108.7
O2—C19—O3 125.0 (2) C5—C7—H7B 108.7
O2—C19—C18 126.11 (19) H7A—C7—H7B 107.6
O3—C19—C18 108.9 (2) O3—C20—C21 106.6 (2)
C9—C10—C11 121.50 (19) O3—C20—H20A 110.4
C9—C10—H10 119.3 C21—C20—H20A 110.4
C11—C10—H10 119.3 O3—C20—H20B 110.4
C10—C9—C8 118.4 (2) C21—C20—H20B 110.4
C10—C9—C7 125.0 (2) H20A—C20—H20B 108.6
C8—C9—C7 116.5 (2) C15—C16—C17 121.1 (3)
C12—C13—C14 121.3 (2) C15—C16—H16 119.4
C12—C13—H13 119.4 C17—C16—H16 119.4
C14—C13—H13 119.4 C2—C1—C6 120.6 (3)
O1—C8—N2 120.3 (2) C2—C1—Cl1 119.6 (2)
O1—C8—C9 125.2 (2) C6—C1—Cl1 119.8 (3)
N2—C8—C9 114.5 (2) C3—C4—C5 120.9 (3)
C6—C5—C4 118.5 (2) C3—C4—H4 119.6
C6—C5—C7 121.1 (3) C5—C4—H4 119.6
C4—C5—C7 120.4 (2) C1—C2—C3 119.7 (3)
C12—C17—C16 120.2 (2) C1—C2—H2 120.1
C12—C17—H17 119.9 C3—C2—H2 120.1
C16—C17—H17 119.9 C2—C3—C4 120.3 (3)
N2—C18—C19 112.24 (19) C2—C3—H3 119.9
N2—C18—H18A 109.2 C4—C3—H3 119.9
C19—C18—H18A 109.2 C20—C21—H21A 109.5
N2—C18—H18B 109.2 C20—C21—H21B 109.5
C19—C18—H18B 109.2 H21A—C21—H21B 109.5
H18A—C18—H18B 107.9 C20—C21—H21C 109.5
C15—C14—C13 119.8 (2) H21A—C21—H21C 109.5
C15—C14—H14 120.1 H21B—C21—H21C 109.5

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 phenyl ring

D—H···A D—H H···A D···A D—H···A
C14—H14···O2i 0.93 2.53 3.416 (3) 160
C7—H7B···O1ii 0.97 2.54 3.485 (3) 164
C15—H15···O1iii 0.93 2.66 3.474 (3) 147
C20—H20B···Cg2iv 0.97 2.81 3.759 (3) 165

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x−1, y−1, z; (iv) −x+1, −y, −z+1.

References

  1. Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. [DOI] [PubMed]
  2. Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.
  3. Asif, M. (2015). Mini Rev. Med. Chem. 14, 1093–1103. [DOI] [PubMed]
  4. Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., Bentaher, A., Médebielle, M., Bouillon, J. P., Hénon, E., Sapi, J., Velard, F. & Gérard, S. (2018). Eur. J. Med. Chem. 146, 139–146. [DOI] [PubMed]
  5. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
  6. Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158. [DOI] [PMC free article] [PubMed]
  7. Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. [DOI] [PMC free article] [PubMed]
  8. Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891. [DOI] [PMC free article] [PubMed]
  13. Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883–886.
  14. Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839–841.
  15. Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. [DOI] [PubMed]
  16. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  17. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  18. Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644–1658. [DOI] [PubMed]
  19. Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. [DOI] [PMC free article] [PubMed]
  20. Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. [DOI] [PubMed]
  21. Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. [DOI] [PubMed]
  25. Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. [DOI] [PubMed]
  26. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  27. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  28. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  29. Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. [DOI] [PubMed]
  30. Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem, 3, 265–271.
  31. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  32. Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. [DOI] [PubMed]
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  34. Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.
  35. Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019007424/wm5505sup1.cif

e-75-00892-sup1.cif (521.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019007424/wm5505Isup2.hkl

e-75-00892-Isup2.hkl (296.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019007424/wm5505Isup3.cml

CCDC reference: 1917654

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES