Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 May 10;75(Pt 6):746–750. doi: 10.1107/S2056989019006182

Crystal structure and Hirshfeld surface analysis of (E)-2-(2,4,6-tri­methyl­benzyl­idene)-3,4-di­hydro­naphthalen-1(2H)-one

Cemile Baydere a,*, Merve Taşçı b, Necmi Dege a,*, Mustafa Arslan b, Yusuf Atalay b, Irina A Golenya c,*
PMCID: PMC6658959  PMID: 31391958

In the title compound, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link adjacent mol­ecules into a three-dimensional supra­molecular network.

Keywords: chalcone, crystal structure, hydrogen bond, Hirshfeld surface analysis

Abstract

A novel chalcone, C20H20O, derived from benzyl­idene­tetra­lone, was synthesized via Claissen–Schmidt condensation between tetra­lone and 2,4,6-tri­methyl­benzaldehyde. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, producing R 2 2(20) and R 2 4(12) ring motifs. In addition, weak C—H⋯π and π-stacking inter­actions are observed. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (66.0%), H⋯C/ C⋯H (22.3%), H⋯O/O⋯H (9.3%), and C⋯C (2.4%) inter­actions. Shape-index plots show π–π stacking inter­actions and the curvedness plots show flat surface patches characteristic of planar stacking.

Chemical context  

Chalcone (systematic name 1,3-diphenyl-2-propene-1-one) is an aromatic ketone that represents the central core for various derivatives with inter­esting properties, known as chalcones (Kostanecki & Tambor, 1899). For example, chalcones are found in fruits, vegetables, spices, tea or soy, and find applications as pharmaceuticals (Di Carlo et al., 1999). Chalcones are also major inter­mediates in the synthesis of natural products and are widely used in synthetic and pharmaceutical chemistry (Dhar, 1981; Ansari et al., 2005) because they have anti­tumor (Modzelewska et al., 2006), anti­fungal (López et al., 2001), anti-inflammatory (Lee et al., 2006), anti-bacterial (Batovska et al., 2009) or anti­tubercular properties (Lin et al., 2002). In general, chalcones consist of two aromatic rings that are linked by a three-carbon α,β-unsaturated carbonyl system, leading to a completely delocalized π-electron system. Recently, chalcones have also been used in the field of materials science as non-linear optical devices (Raghavendra et al., 2017). As part of our studies in this area, we report herein the synthesis, crystal structure and Hirshfeld surface analysis of a new chalcone.graphic file with name e-75-00746-scheme1.jpg

Structural commentary  

In the title mol­ecule (Fig. 1), the cyclo­hexa­none ring (C1/C2,C7/C8,C9/C10) has an envelope conformation with the flap atom C9 deviating by 0.280 (3) Å from the least-squares plane through the ring. The cyclo­hexa­none ring is nearly co-planar with the benzene ring (C2–C7) being fused at a dihedral angle of 4.70 (18)°, but is inclined to the other benzene ring (C12–C17) by 74.95 (13)°. Torsion angles involving the methyl­ene group C10=C11 are 83.3 (5)° (C17—C12—C11—C10), 129.8 (4)° (C11—C10—C9—C8) and 27.7 (6)° (O1—C1—C10—C11).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

The main inter­molecular inter­actions in the crystal structure of the title compound are of type C—H⋯O, C—H⋯π (Table 1) and π–π. Inter­actions between a methyl group and the carbonyl O atom (C20—H20C⋯O1ii) as well as between an aromatic H atom and the carbonyl atom (C16—H16⋯O1i) lead to Inline graphic(20) and Inline graphic(12) motifs (Fig. 2), linking adjacent mol­ecules parallel to (001) (Table 2, Fig. 2). A weak C9—H9ACg2iii (Cg2 is the centroid of the C2–C7 benzene ring) inter­action is also present (Fig. 2), along with weak aromatic π-stacking inter­actions [Cg2⋯Cg2(−2 − x, −y, −1 − z) = 3.887 (3) Å] that consolidate the three-dimensional packing.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.69 3.493 (5) 145
C20—H20C⋯O1ii 0.96 2.60 3.535 (5) 165
C9—H9ACg2iii 0.97 2.90 3.865 (6) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the title structure. Blue dashed lines denote the C—H⋯O hydrogen bonds which form Inline graphic(20) and Inline graphic(12) ring motifs. C—H⋯π inter­actions are shown as green dashes lines.

Table 2. Experimental details.

Crystal data
Chemical formula C20H20O
M r 276.36
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 8.728 (2), 8.757 (2), 12.094 (3)
α, β, γ (°) 77.768 (19), 80.822 (19), 61.929 (18)
V3) 795.2 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.64 × 0.51 × 0.33
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.956, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 8143, 2726, 1102
R int 0.088
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.061, 0.155, 0.91
No. of reflections 2726
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.14

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) using (E)-2-(4-methyl­benzyl­idene)-3,4-di­hydro­naphthalen-1(2H)-one as the main skeleton revealed the presence of four structures containing the chalcone moiety with different substituents that are similar to the title compound: (E)-4-[(1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene)meth­yl]benzo­nitrile (QEVMAI; Baddeley et al., 2017); (E)-4-[(5-meth­oxy-1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene)meth­yl]benzo­nitrile (QEVMEM; Baddeley et al., 2017); (E)-4-[(6-meth­oxy-1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene)meth­yl]benzo­nitrile (QEVMIQ; Baddeley et al., 2017); 1′-(4-bromo­phen­yl)-4′-{4-[(1-oxo-3,4-di­hydro­naphthalen-2(1H)-yl­idene) meth­yl]phen­yl}-3′′,4′′-di­hydro-1′′H,2H-di­spiro­(ace­naphthyl­ene-1,2′-pyrrolidine-3′,2′′-naphthalene)-1′′,2-dione (VUZXOE; Saravanan et al., 2010). QEVMAI and VUZXOE both crystallize in space group P Inline graphic, while QEVMEM and QEVMIQ crystallize in space group P21/c. In the structures of QEVMAI, QEVMEM and QEVMIQ, the dihedral angles between the phenyl groups are 45.66 (5), 55.06 (7) and 69.78 (5)°, respectively. In the structure of VUZXOE, the central benzene ring makes a dihedral angle of 42.71 (7)° with the bromo­phenyl ring.

Hirshfeld surface analysis  

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017), using standard surface resolution with the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.0870 (red) to 1.2944 (blue) a.u.. The three-dimensional d norm surface of the title mol­ecule is illustrated in Fig. 3 a and 4. The pale-red spots symbolize short contacts and negative d norm values on the surface correspond to the C—H⋯O inter­actions described above (Table 1). The overall two-dimensional fingerprint plot is illustrated in Fig. 5 a. The Hirshfeld surfaces mapped over d norm are shown for the H⋯H, H⋯C/ C⋯H, H⋯O/O⋯H, C⋯C contacts (McKinnon et al., 2007), and the two-dimensional fingerprint plots are shown in Fig. 5 b and 5c, respectively, associated with their relative contributions to the Hirshfeld surface. The largest contribution to the overall crystal packing is from H⋯H inter­actions (66.0%); H⋯H contacts are shown in the middle region 1.10 Å < (d i + d e) < 1.18 Å. H⋯C/C⋯H contacts contribute 22.3% to the Hirshfeld surface, resulting in two pairs of characteristic wings in the fingerprint plot. The pair of tips appears at 1.10 Å < (d i + d e) < 1.65 Å. H⋯O/O⋯H contacts make a 9.3% contribution to the Hirshfeld surface. The contacts are represented by a pair of sharp spikes in the region 1.05 Å < (d i + d e) < 1.4 Å in the fingerprint plot. The C⋯C contacts are a measure of π–π stacking inter­actions and contribute 2.4% to the Hirshfeld surface. They appear as an arrow-shaped distribution at 1.80 Å < (d i + d e) < 2.0 Å.

Figure 3.

Figure 3

(a) dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions; (b) shape-index map and (c) curvedness map of the title compound.

Figure 4.

Figure 4

dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions.

Figure 5.

Figure 5

(a) The overall two-dimensional fingerprint plot and (b) Hirshfeld surface representations with the function d norm plotted onto the surface for (i) H⋯H, (ii) H⋯C/C⋯H, (iii) H⋯O/O⋯H and (iv) C⋯C inter­actions. (c) The two-dimensional fingerprint plots for the title compound, delineated into (i) H⋯H, (ii) H⋯C/ C⋯H, (iii) H⋯O/O⋯H, (iv) C⋯C inter­actions.

The shape-index map of the title mol­ecule (Fig. 3 b) was generated in the ranges −1 to 1 Å. The convex blue regions symbolize hydrogen-donor groups and concave red regions symbolize hydrogen-acceptor groups. π–π inter­actions on the shape-index map are indicated by adjacent red and blue triangles. As can be seen in Fig. 3 b, there are π–π inter­actions present between adjacent mol­ecules in the title complex.

The curvedness map of the title compound (Fig. 3 c) was generated in the range −4 to 0.4 Å. The large green regions represent a relatively flat (i.e. planar) surface area, while the blue regions demonstrate areas of curvature. The presence of π–π stacking inter­actions is also evident as flat regions around the rings on the Hirshfeld surface plotted over curvedness.

Synthesis and crystallization  

2,4,6-Tri­methyl­benzyl­idene­tetra­lone was prepared according to a literature protocol (Kumar et al., 2017). 10 ml of a NaOH solution (40%wt) was slowly added to a mixture of tetra­lone (1 mmol) and 2,4,6-tri­methyl­benzaldehyde (1 mmol) in ethanol (10 ml) at room temperature and stirred overnight. Then ice-cold water was added to the reaction mixture. The resulting precipitate was filtered off and dried in vacuo. The compound was purified by crystallization from ethanol, resulting in colourless prismatic crystals.

Yield 85%, m.p. 358 K; IR (ν, cm−1): 3060 (C—H, aromatic), 2920 (C—H, aliphatic), 1670 (C=O), 1620 (C=C, aromatic); 1H NMR (300 MHz, DMSO-d 6, δ, ppm): 7.9 (1H, d, =C—H), 7.58 (1H, s, =C—H), 7.50 (1H, t, =C—H), 7.38 (1H,t, =C—H), 7.30 (1H, d, =C—H), 6.82 (2H, s, =C—H), 2.8 (2H, t, —CH2), 2.4 (2H, t, —CH2), 2.2 (3H, s,—CH3), 2.02 (6H, s, 2 CH3); 13C NMR (75 MHz, DMSO-d 6, δ, ppm): 186.9, 144.5, 138.0, 137.2, 135.9, 135.6, 134.2, 133.5, 132.4, 129.3, 128.6, 128.0, 127.6, 28.9, 27.4, 21.3, 20.5. Analysis calculated for C20H20O: C, 86.92%; H, 7.29%; O, 5.79%. Found: C, 86.99%; H, 7.35%; O, 5.90%.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methyl groups, 0.96 Å for methyl­ene groups, 0.93 Å for aromatic hydrogen atoms and 0.98 Å for methine groups, with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019006182/wm5495sup1.cif

e-75-00746-sup1.cif (450.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019006182/wm5495Isup3.hkl

e-75-00746-Isup3.hkl (218KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019006182/wm5495Isup3.cml

CCDC reference: 1913649

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C20H20O Z = 2
Mr = 276.36 F(000) = 296
Triclinic, P1 Dx = 1.154 Mg m3
a = 8.728 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.757 (2) Å Cell parameters from 12610 reflections
c = 12.094 (3) Å θ = 2.7–30.2°
α = 77.768 (19)° µ = 0.07 mm1
β = 80.822 (19)° T = 293 K
γ = 61.929 (18)° Prism, colorless
V = 795.2 (4) Å3 0.64 × 0.51 × 0.33 mm

Data collection

Stoe IPDS 2 diffractometer 1102 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.088
rotation method scans θmax = 25.0°, θmin = 2.7°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −10→10
Tmin = 0.956, Tmax = 0.982 k = −10→10
8143 measured reflections l = −14→14
2726 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0601P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155 (Δ/σ)max < 0.001
S = 0.91 Δρmax = 0.25 e Å3
2726 reflections Δρmin = −0.14 e Å3
194 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.016 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −1.0524 (3) −0.2385 (4) −0.7862 (2) 0.0977 (9)
C12 −0.4930 (4) −0.5186 (5) −0.8354 (3) 0.0635 (9)
C2 −1.0387 (4) −0.2214 (4) −0.5971 (3) 0.0639 (9)
C17 −0.4278 (4) −0.6907 (5) −0.8516 (3) 0.0705 (10)
C1 −0.9638 (4) −0.2867 (5) −0.7056 (3) 0.0715 (10)
C10 −0.7746 (4) −0.4083 (4) −0.7133 (3) 0.0695 (10)
C13 −0.3805 (5) −0.4437 (5) −0.8456 (3) 0.0744 (10)
C11 −0.6837 (4) −0.4120 (4) −0.8119 (3) 0.0736 (11)
H11 −0.745928 −0.339613 −0.873942 0.088*
C15 −0.1364 (4) −0.7151 (5) −0.8870 (3) 0.0711 (10)
C7 −0.9379 (4) −0.2800 (5) −0.5040 (3) 0.0743 (10)
C16 −0.2502 (5) −0.7860 (5) −0.8766 (3) 0.0762 (11)
H16 −0.206551 −0.902035 −0.886559 0.091*
C14 −0.2038 (5) −0.5443 (5) −0.8704 (3) 0.0798 (11)
H14 −0.128920 −0.494447 −0.875919 0.096*
C3 −1.2113 (4) −0.0905 (5) −0.5883 (3) 0.0792 (11)
H3 −1.280000 −0.051417 −0.649452 0.095*
C9 −0.7027 (5) −0.5193 (6) −0.6044 (3) 0.1051 (15)
H9A −0.745452 −0.606334 −0.583241 0.126*
H9B −0.576855 −0.580756 −0.615353 0.126*
C8 −0.7503 (4) −0.4167 (5) −0.5111 (3) 0.0951 (13)
H8A −0.676588 −0.358974 −0.520287 0.114*
H8B −0.726257 −0.496759 −0.439895 0.114*
C4 −1.2801 (5) −0.0192 (5) −0.4895 (4) 0.0909 (13)
H4 −1.394381 0.067973 −0.484398 0.109*
C6 −1.0115 (5) −0.2062 (6) −0.4058 (3) 0.0942 (13)
H6 −0.945571 −0.244732 −0.343260 0.113*
C5 −1.1799 (6) −0.0771 (6) −0.4000 (4) 0.0988 (14)
H5 −1.226312 −0.028553 −0.333787 0.119*
C20 0.0576 (4) −0.8225 (6) −0.9157 (3) 0.1039 (15)
H20A 0.094884 −0.940932 −0.877619 0.156*
H20B 0.121224 −0.772547 −0.891430 0.156*
H20C 0.078722 −0.821651 −0.996162 0.156*
C18 −0.5449 (5) −0.7765 (5) −0.8436 (4) 0.1077 (15)
H18A −0.589023 −0.792507 −0.766309 0.162*
H18B −0.479794 −0.888378 −0.868695 0.162*
H18C −0.640231 −0.703345 −0.890605 0.162*
C19 −0.4477 (5) −0.2554 (5) −0.8281 (4) 0.1150 (16)
H19A −0.531484 −0.178397 −0.882365 0.173*
H19B −0.352349 −0.226633 −0.838182 0.173*
H19C −0.501571 −0.241994 −0.752796 0.173*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0782 (16) 0.112 (2) 0.088 (2) −0.0233 (15) −0.0269 (14) −0.0175 (16)
C12 0.069 (2) 0.057 (2) 0.060 (2) −0.0271 (19) −0.0034 (16) −0.0044 (18)
C2 0.061 (2) 0.066 (2) 0.066 (2) −0.0311 (19) −0.0055 (18) −0.0045 (19)
C17 0.079 (2) 0.061 (3) 0.073 (3) −0.032 (2) −0.0094 (18) −0.0086 (19)
C1 0.073 (2) 0.071 (3) 0.069 (3) −0.031 (2) −0.019 (2) −0.001 (2)
C10 0.062 (2) 0.070 (3) 0.062 (2) −0.0218 (19) −0.0091 (18) 0.0017 (19)
C13 0.082 (3) 0.058 (3) 0.081 (3) −0.032 (2) 0.0010 (19) −0.014 (2)
C11 0.072 (2) 0.072 (3) 0.072 (3) −0.029 (2) −0.0174 (19) −0.001 (2)
C15 0.077 (2) 0.070 (3) 0.058 (2) −0.026 (2) −0.0030 (18) −0.012 (2)
C7 0.071 (2) 0.084 (3) 0.067 (2) −0.037 (2) −0.005 (2) −0.006 (2)
C16 0.095 (3) 0.059 (3) 0.069 (2) −0.028 (2) −0.010 (2) −0.0122 (19)
C14 0.082 (3) 0.081 (3) 0.085 (3) −0.045 (2) 0.0018 (19) −0.015 (2)
C3 0.069 (2) 0.077 (3) 0.091 (3) −0.032 (2) −0.013 (2) −0.008 (2)
C9 0.092 (3) 0.101 (3) 0.079 (3) −0.013 (2) −0.015 (2) 0.003 (3)
C8 0.080 (3) 0.099 (3) 0.081 (3) −0.018 (2) −0.024 (2) −0.003 (3)
C4 0.076 (3) 0.085 (3) 0.102 (3) −0.030 (2) 0.008 (3) −0.022 (3)
C6 0.095 (3) 0.109 (3) 0.072 (3) −0.040 (3) −0.010 (2) −0.012 (3)
C5 0.101 (3) 0.107 (4) 0.085 (3) −0.045 (3) 0.008 (3) −0.025 (3)
C20 0.076 (3) 0.113 (4) 0.098 (3) −0.020 (2) 0.003 (2) −0.030 (3)
C18 0.114 (3) 0.093 (3) 0.141 (4) −0.065 (3) −0.010 (3) −0.023 (3)
C19 0.107 (3) 0.073 (3) 0.172 (5) −0.044 (2) 0.007 (3) −0.038 (3)

Geometric parameters (Å, º)

O1—C1 1.218 (4) C3—C4 1.383 (5)
C12—C17 1.384 (4) C3—H3 0.9300
C12—C13 1.393 (4) C9—C8 1.477 (5)
C12—C11 1.491 (4) C9—H9A 0.9700
C2—C7 1.396 (5) C9—H9B 0.9700
C2—C3 1.404 (4) C8—H8A 0.9700
C2—C1 1.473 (4) C8—H8B 0.9700
C17—C16 1.390 (4) C4—C5 1.359 (5)
C17—C18 1.510 (5) C4—H4 0.9300
C1—C10 1.486 (4) C6—C5 1.371 (5)
C10—C11 1.319 (4) C6—H6 0.9300
C10—C9 1.490 (5) C5—H5 0.9300
C13—C14 1.389 (4) C20—H20A 0.9600
C13—C19 1.519 (5) C20—H20B 0.9600
C11—H11 0.9300 C20—H20C 0.9600
C15—C14 1.373 (5) C18—H18A 0.9600
C15—C16 1.377 (5) C18—H18B 0.9600
C15—C20 1.524 (4) C18—H18C 0.9600
C7—C6 1.390 (5) C19—H19A 0.9600
C7—C8 1.508 (5) C19—H19B 0.9600
C16—H16 0.9300 C19—H19C 0.9600
C14—H14 0.9300
C17—C12—C13 119.7 (3) C10—C9—H9A 109.0
C17—C12—C11 120.0 (3) C8—C9—H9B 109.0
C13—C12—C11 120.3 (3) C10—C9—H9B 109.0
C7—C2—C3 119.0 (3) H9A—C9—H9B 107.8
C7—C2—C1 121.2 (3) C9—C8—C7 114.6 (4)
C3—C2—C1 119.8 (4) C9—C8—H8A 108.6
C12—C17—C16 119.0 (3) C7—C8—H8A 108.6
C12—C17—C18 121.7 (3) C9—C8—H8B 108.6
C16—C17—C18 119.3 (4) C7—C8—H8B 108.6
O1—C1—C2 121.3 (3) H8A—C8—H8B 107.6
O1—C1—C10 121.8 (3) C5—C4—C3 119.6 (4)
C2—C1—C10 116.9 (4) C5—C4—H4 120.2
C11—C10—C1 119.9 (3) C3—C4—H4 120.2
C11—C10—C9 125.0 (3) C5—C6—C7 120.9 (4)
C1—C10—C9 115.1 (3) C5—C6—H6 119.6
C14—C13—C12 119.3 (3) C7—C6—H6 119.6
C14—C13—C19 119.7 (4) C4—C5—C6 121.0 (4)
C12—C13—C19 121.1 (3) C4—C5—H5 119.5
C10—C11—C12 127.7 (3) C6—C5—H5 119.5
C10—C11—H11 116.2 C15—C20—H20A 109.5
C12—C11—H11 116.2 C15—C20—H20B 109.5
C14—C15—C16 117.6 (3) H20A—C20—H20B 109.5
C14—C15—C20 121.2 (4) C15—C20—H20C 109.5
C16—C15—C20 121.2 (4) H20A—C20—H20C 109.5
C6—C7—C2 118.9 (3) H20B—C20—H20C 109.5
C6—C7—C8 120.4 (4) C17—C18—H18A 109.5
C2—C7—C8 120.6 (3) C17—C18—H18B 109.5
C15—C16—C17 122.4 (4) H18A—C18—H18B 109.5
C15—C16—H16 118.8 C17—C18—H18C 109.5
C17—C16—H16 118.8 H18A—C18—H18C 109.5
C15—C14—C13 122.0 (4) H18B—C18—H18C 109.5
C15—C14—H14 119.0 C13—C19—H19A 109.5
C13—C14—H14 119.0 C13—C19—H19B 109.5
C4—C3—C2 120.6 (4) H19A—C19—H19B 109.5
C4—C3—H3 119.7 C13—C19—H19C 109.5
C2—C3—H3 119.7 H19A—C19—H19C 109.5
C8—C9—C10 112.8 (4) H19B—C19—H19C 109.5
C8—C9—H9A 109.0
C13—C12—C17—C16 0.7 (5) C3—C2—C7—C8 −178.2 (3)
C11—C12—C17—C16 178.2 (3) C1—C2—C7—C8 −2.0 (5)
C13—C12—C17—C18 −178.9 (3) C14—C15—C16—C17 0.8 (5)
C11—C12—C17—C18 −1.3 (5) C20—C15—C16—C17 −179.4 (3)
C7—C2—C1—O1 178.4 (4) C12—C17—C16—C15 −0.7 (5)
C3—C2—C1—O1 −5.3 (5) C18—C17—C16—C15 178.9 (3)
C7—C2—C1—C10 −3.8 (5) C16—C15—C14—C13 −1.0 (5)
C3—C2—C1—C10 172.5 (3) C20—C15—C14—C13 179.2 (3)
O1—C1—C10—C11 27.7 (6) C12—C13—C14—C15 1.0 (5)
C2—C1—C10—C11 −150.1 (3) C19—C13—C14—C15 −179.9 (4)
O1—C1—C10—C9 −152.2 (4) C7—C2—C3—C4 0.7 (5)
C2—C1—C10—C9 30.0 (5) C1—C2—C3—C4 −175.6 (3)
C17—C12—C13—C14 −0.8 (5) C11—C10—C9—C8 129.8 (4)
C11—C12—C13—C14 −178.4 (3) C1—C10—C9—C8 −50.3 (5)
C17—C12—C13—C19 −179.9 (4) C10—C9—C8—C7 43.9 (5)
C11—C12—C13—C19 2.6 (5) C6—C7—C8—C9 163.5 (4)
C1—C10—C11—C12 177.2 (3) C2—C7—C8—C9 −18.7 (6)
C9—C10—C11—C12 −2.9 (7) C2—C3—C4—C5 −0.4 (6)
C17—C12—C11—C10 83.3 (5) C2—C7—C6—C5 −0.3 (6)
C13—C12—C11—C10 −99.2 (5) C8—C7—C6—C5 177.5 (4)
C3—C2—C7—C6 −0.4 (5) C3—C4—C5—C6 −0.3 (7)
C1—C2—C7—C6 175.9 (3) C7—C6—C5—C4 0.7 (7)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
C16—H16···O1i 0.93 2.69 3.493 (5) 145
C20—H20C···O1ii 0.96 2.60 3.535 (5) 165
C9—H9A···Cg2iii 0.97 2.90 3.865 (6) 175

Symmetry codes: (i) x+1, y−1, z; (ii) −x−1, −y−1, −z−2; (iii) −x+1, −y, −z+1.

Funding Statement

This work was funded by Ondokuz Mayis Üniversitesi grant PYO.FEN.1906.19.001.

References

  1. Ansari, F. L., Nazir, S., Noureen, H. & Mirza, B. (2005). Chem. Biodivers. 2, 1656–1664. [DOI] [PubMed]
  2. Baddeley, T. C., Gomes, L. R., Low, J. N., Turner, A. B., Wardell, J. L. & Watson, G. J. R. (2017). Z. Kristallogr. 232, 317–333.
  3. Batovska, D., Parushev, S., Stamboliyska, B., Tsvetkova, I., Ninova, M. & Najdenski, H. (2009). Eur. J. Med. Chem. 44, 2211–2218. [DOI] [PubMed]
  4. Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: Wiley.
  5. Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Kostanecki, S. V. & Tambor, J. (1899). Ber. Dtsch. Chem. Ges. 32, 1921–1926.
  9. Kumar, B., Smita, K. & Flores, L. C. (2017). Arabian J. Chem. 10, S2335–S2342.
  10. Lee, S. H., Seo, G. S., Kim, Y., Jin, X. Y., Kim, H. D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178–186. [DOI] [PubMed]
  11. Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802. [DOI] [PubMed]
  12. López, S. N., Castelli, M. V., Zacchino, S. A., Dom\?ínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodr\?íguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013. [DOI] [PubMed]
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495. [DOI] [PubMed]
  16. Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.
  17. Saravanan, B., Rajesh, R., Raghunathan, R., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o2801. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  23. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019006182/wm5495sup1.cif

e-75-00746-sup1.cif (450.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019006182/wm5495Isup3.hkl

e-75-00746-Isup3.hkl (218KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019006182/wm5495Isup3.cml

CCDC reference: 1913649

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES