Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 May 17;75(Pt 6):812–815. doi: 10.1107/S205698901900673X

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

Sevgi Kansiz a,*, Necmi Dege b, Alev Sema Aydin b, Erbil Ağar c, Igor P Matushko d,*
PMCID: PMC6658968  PMID: 31391972

In the crystal, the mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an Inline graphic(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an Inline graphic(10) ring motif, forming ribbons extended along the [2Inline graphic0] direction.

Keywords: crystal structure, Schiff base, hydrogen bonding, Hirshfeld surface analysis

Abstract

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R 2 2(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R 2 2(10) ring motif, forming ribbons extended along the [2Inline graphic0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.

Chemical context  

Compounds containing the RHC=NR fragment, obtained by the condensation reaction of primary amines with aldehydes or ketones under proper conditions, are named Schiff bases after Hugo Schiff (Schiff, 1864). Schiff bases have a wide variety of applications in many areas such as analytical, biological, and inorganic chemistry (Jain et al., 2008; Lozier et al., 1975; Calligaris & Randaccio, 1987). Many Schiff bases are biologically active and some bases show phototochromism which can be used for radiation intensity measurements, display systems or optical devices (Hadjoudis et al., 1987). In the present study, a new Schiff base, (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one, was obtained in crystalline form from the reaction of 2-amino-4-nitro­phenol with 2-hy­droxy-5-methyl­benzaldehyde. We report here the synthesis and the crystal and mol­ecular structures of the title compound along with the results of a Hirshfeld surface analysis.graphic file with name e-75-00812-scheme1.jpg

Structural commentary  

Fig. 1 illustrates the mol­ecular structure of the title compound. Its asymmetric unit contains one independent mol­ecule, which adopts the keto–enamine tautomeric form. The mol­ecule is almost planar, the C1–C6 and C8–C13 rings making a dihedral angle of 4.99 (7)°. The O4=C9, C9—C8, C8=C7, C7—N2 and N2—C5 bond lengths are typical of double and single bonds, respectively (Table 1), thus indicating that the title mol­ecule exists as a keto–enamine tautomer (Kansiz et al., 2018). The bond lengths at the N1 atom are typical of aromatic nitro groups. The mol­ecular structure is stabilized by the intra­molecular N—H⋯O hydrogen bond involving the keto O4 and amine N2 atoms (Fig. 1, Table 2).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines denote the intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif.

Table 1. Selected bond lengths (Å).

O3—C4 1.3329 (14) O2—N1 1.2213 (15)
O4—C9 1.2887 (15) N1—C1 1.4530 (15)
N2—C7 1.3070 (15) C7—C8 1.4054 (16)
N2—C5 1.4035 (15) C8—C9 1.4340 (15)
O1—N1 1.2202 (15)    

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.86 2.5661 (13) 139
O3—H3⋯O4i 0.82 1.77 2.5465 (12) 156
C6—H6⋯O1ii 0.93 2.51 3.4383 (16) 172
C7—H7⋯O1ii 0.93 2.40 3.3182 (14) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

The most important inter­molecular inter­actions in the title structure are the medium–strong O3—H3⋯O4i hydrogen bonds, which link inversion-related mol­ecules into dimers with an Inline graphic(18) ring motif (Table 2). These dimers are further connected by pairs of weak C—H⋯O hydrogen bonds with an Inline graphic(10) ring motif to form ribbons extended along the [2Inline graphic0] direction (Fig. 2).

Figure 2.

Figure 2

A view of the crystal packing of the title compound. Dashed lines denote the inter­molecular C—H⋯O and O—H⋯O hydrogen bonds forming dimers with Inline graphic(10) and Inline graphic(18) ring motifs (Table 1).

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) for the 2-[(2-hy­droxy­phenyl­iminio)meth­yl]phenolate fragment revealed 25 hits where this fragment adopts the keto–enamine tautomeric form. The enamine (N2—C7) and keto (C9—O4) bond lengths in the title compound are the same within standard uncertainties as the corresponding bond lengths in the structures of 2-{[(2-hy­droxy­phen­yl)iminio]meth­yl}-4-meth­oxy­phenolate (BALGUR02; Makal et al., 2011), 4-bromo-2-{[(2-hy­droxy-5-methyl­phen­yl)iminio]meth­yl}phenolate (EYUSIC; Takjoo et al., 2017), 2-hy­droxy-6-{[(2-hy­droxy­phen­yl)iminio]meth­­yl}phenolate methanol solvate (HEKSIC; Ezeorah et al., 2018) and 2-{(E)-[(5-bromo-2-hy­droxy­phen­yl)methyl­idene]amino}-4-chloro­phenol (SEFKUL; Ebrahimipour et al., 2012). In the structures of these typical keto–enamine tautomers, the bonds corresponding to C7—C8 in the title structure are distinctly longer, being in the range of 1.416–1.423 Å. As for the C9—O4 bond, its length compares well with 1.286 (2) Å for HEKSIC and 1.291 (2) Å for SEFKUL, but this bond is shorter than 1.298 (2) Å for EYUSIC and 1.310 (2) Å for BALGUR02. It is likely that the inter­molecular O—H⋯O hydrogen bond, where the keto O atom acts as a hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the keto–enamine form. In fact, in all 25 structures of the keto–enamine tautomers, hydrogen bonds of this type are observed.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces were mapped with different properties namely, d norm, electrostatic potential, d i and d e (Fig. 3). The Hirshfeld surfaces mapped over dnorm utilize the function of normalized distances d e and d i, where d e and d i are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour conventions used for the d norm-mapped Hirshfeld surfaces recognize long inter­molecular contacts, the contacts at the van der Waals separations, and short inter­molecular contacts, respectively. The red region is apparent around the keto oxygen atom (O4) participating in the O—H⋯O and N—H⋯O contacts mentioned above (Fig. 3, Table 2). Fig. 4 illustrates the Hirshfeld surface of the mol­ecule in the crystal, with the evident hydrogen-bonding inter­actions indicated as intense red spots.

Figure 3.

Figure 3

The Hirshfeld surfaces of the title compound mapped over (a) d norm, (b) electrostatic potential, (c) d i and (d) d e.

Figure 4.

Figure 4

d norm mapped on the Hirshfeld surfaces to visualize the inter­molecular inter­actions for the title compound.

The two-dimensional fingerprint plot derived from a Hirshfeld surface provides a convenient visual summary of the frequency of each combination of d e and d i across the surface of a mol­ecule. A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions (Tan et al., 2019). The blue colour refers to the frequency of occurrence of the (d i, d e) pairs with the full fingerprint outlined in grey. Fig. 5 a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Individual fingerprint plots (Fig. 5 b) reveal that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (33.9%). It is usually the case that the main contribution to the overall surface arises from H⋯H contacts. In addition, O⋯H/H⋯O and C⋯H/H⋯C contacts contribute 29.8% and 17.3%, respectively, to the Hirshfeld surface. In particular, the O⋯H/H⋯O and C⋯H/H⋯C contacts indicate the presence of inter­molecular O—H⋯O and C—H⋯O inter­actions, respectively. Much weaker C⋯O/O⋯C (6.8%) and C⋯C (4.8%) contacts also occur.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound, with a d norm view and the relative contributions of the atom pairs to the Hirshfeld surface.

The view of the electrostatic potential obtained using CrystalExplorer17 enables the visualization of the donors and acceptors of inter­molecular inter­actions through blue and red regions around the participating atoms corresponding to positive and negative electrostatic potential, respectively, on the surface. The view of the electrostatic potential in the range −0.0500 to 0.0500 a.u., calculated for the title compound at the HF/STO-3G level, is shown in Fig. 6. The acceptors for N—H⋯O and O—H⋯O hydrogen bonds are shown as red areas around the O4 atom related with negative electrostatic potentials (Fig. 6).

Figure 6.

Figure 6

A view of the mol­ecular electrostatic potential of the title compound in the range −0.0500 to 0.0500 a.u. calculated at the HF/STO-3 G level.

Synthesis and crystallization  

The title compound was prepared by mixing the solutions of 2-hy­droxy-5-methyl­benzaldehyde (34.0 mg, 0.25 mmol) in ethanol (15 ml) and 2-amino-4-nitro­phenol (38.5 mg, 0.25 mmol) in ethanol (15 ml) with subsequent stirring for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 523–525 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hy­droxy H atom was located in a difference-Fourier map, and the OH group was allowed to rotate during the refinement procedure (AFIX 147). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with U iso(H) = 1.2U eq(C) for aromatic H atoms and C—H = 0.96 Å with U iso(H) = 1.5U eq(C) for methyl H atoms. The amine H atom was also refined using a riding model: N—H = 0.86 Å with U iso(H) = 1.2U eq(N).

Table 3. Experimental details.

Crystal data
Chemical formula C14H12N2O4
M r 272.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.0052 (4), 7.8206 (5), 26.2985 (19)
β (°) 90.303 (5)
V3) 1235.07 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.57 × 0.43 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.946, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 8536, 3300, 2436
R int 0.028
(sin θ/λ)max−1) 0.686
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.121, 1.08
No. of reflections 3300
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.19

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b ), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901900673X/yk2122sup1.cif

e-75-00812-sup1.cif (297.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900673X/yk2122Isup2.hkl

e-75-00812-Isup2.hkl (263.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901900673X/yk2122Isup3.cml

CCDC reference: 1915380

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H12N2O4 F(000) = 568
Mr = 272.26 Dx = 1.464 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.0052 (4) Å Cell parameters from 9358 reflections
b = 7.8206 (5) Å θ = 2.6–29.6°
c = 26.2985 (19) Å µ = 0.11 mm1
β = 90.303 (5)° T = 296 K
V = 1235.07 (14) Å3 Plate, orange
Z = 4 0.57 × 0.43 × 0.19 mm

Data collection

STOE IPDS 2 diffractometer 3300 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2436 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.028
rotation method scans θmax = 29.2°, θmin = 2.7°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −7→8
Tmin = 0.946, Tmax = 0.981 k = −10→10
8536 measured reflections l = −27→36

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.0139P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3300 reflections Δρmax = 0.15 e Å3
183 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.85290 (16) 0.10060 (14) 0.53689 (4) 0.0593 (3)
H3 0.926262 0.063519 0.560850 0.089*
O4 0.85793 (15) 0.05497 (13) 0.40914 (4) 0.0573 (3)
N2 0.57371 (16) 0.20069 (12) 0.46738 (4) 0.0413 (2)
H2 0.697995 0.148587 0.462636 0.050*
O1 0.00525 (18) 0.53706 (15) 0.56524 (4) 0.0687 (3)
O2 0.0910 (2) 0.50110 (16) 0.64372 (4) 0.0716 (3)
N1 0.12631 (18) 0.47944 (14) 0.59848 (4) 0.0482 (3)
C5 0.52750 (19) 0.24767 (14) 0.51773 (4) 0.0377 (2)
C1 0.32008 (19) 0.38097 (14) 0.58331 (5) 0.0400 (3)
C6 0.34505 (19) 0.34263 (14) 0.53221 (4) 0.0394 (2)
H6 0.241371 0.379997 0.508283 0.047*
C7 0.45170 (19) 0.22613 (14) 0.42678 (4) 0.0405 (3)
H7 0.315808 0.281942 0.430109 0.049*
C4 0.68303 (19) 0.19257 (15) 0.55447 (5) 0.0423 (3)
C8 0.51880 (18) 0.17203 (15) 0.37826 (4) 0.0397 (2)
C13 0.3761 (2) 0.20126 (16) 0.33610 (5) 0.0440 (3)
H13 0.242313 0.258453 0.341190 0.053*
C9 0.72607 (19) 0.08425 (16) 0.37131 (5) 0.0432 (3)
C12 0.4290 (2) 0.14798 (17) 0.28810 (5) 0.0476 (3)
C2 0.4709 (2) 0.32843 (16) 0.61998 (5) 0.0457 (3)
H2A 0.450177 0.356630 0.653984 0.055*
C3 0.6520 (2) 0.23381 (16) 0.60524 (5) 0.0480 (3)
H3A 0.754588 0.197052 0.629487 0.058*
C11 0.6332 (2) 0.06220 (19) 0.28190 (5) 0.0541 (3)
H11 0.672078 0.024806 0.249571 0.065*
C10 0.7763 (2) 0.03164 (19) 0.32125 (5) 0.0540 (3)
H10 0.909625 −0.024955 0.315049 0.065*
C14 0.2767 (3) 0.1771 (2) 0.24318 (5) 0.0638 (4)
H14A 0.141128 0.229334 0.254508 0.096*
H14B 0.243485 0.069530 0.227267 0.096*
H14C 0.348636 0.250904 0.219161 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0503 (5) 0.0818 (6) 0.0458 (5) 0.0315 (5) −0.0095 (4) −0.0046 (5)
O4 0.0477 (5) 0.0811 (6) 0.0430 (5) 0.0271 (5) −0.0075 (4) −0.0024 (4)
N2 0.0384 (5) 0.0503 (5) 0.0352 (5) 0.0132 (4) −0.0015 (4) −0.0015 (4)
O1 0.0591 (6) 0.0891 (7) 0.0578 (6) 0.0363 (5) −0.0010 (5) −0.0009 (5)
O2 0.0699 (7) 0.0984 (8) 0.0467 (6) 0.0202 (6) 0.0138 (5) −0.0104 (5)
N1 0.0454 (6) 0.0538 (6) 0.0455 (6) 0.0084 (5) 0.0058 (5) −0.0033 (5)
C5 0.0383 (5) 0.0422 (5) 0.0327 (5) 0.0055 (4) −0.0029 (4) −0.0001 (4)
C1 0.0389 (6) 0.0429 (6) 0.0382 (6) 0.0042 (4) 0.0009 (4) −0.0006 (4)
C6 0.0375 (5) 0.0456 (6) 0.0351 (6) 0.0068 (4) −0.0033 (4) 0.0022 (4)
C7 0.0386 (5) 0.0459 (6) 0.0369 (6) 0.0103 (4) −0.0031 (4) −0.0002 (4)
C4 0.0379 (5) 0.0479 (6) 0.0409 (6) 0.0088 (5) −0.0056 (5) −0.0004 (5)
C8 0.0392 (6) 0.0443 (6) 0.0356 (5) 0.0068 (4) −0.0014 (4) 0.0011 (4)
C13 0.0416 (6) 0.0527 (6) 0.0378 (6) 0.0091 (5) −0.0042 (5) 0.0025 (5)
C9 0.0390 (6) 0.0521 (6) 0.0384 (6) 0.0080 (5) −0.0023 (5) 0.0011 (5)
C12 0.0492 (7) 0.0590 (7) 0.0344 (6) 0.0014 (5) −0.0037 (5) 0.0033 (5)
C2 0.0513 (7) 0.0517 (6) 0.0339 (6) 0.0043 (5) −0.0029 (5) −0.0021 (5)
C3 0.0477 (6) 0.0579 (7) 0.0382 (6) 0.0091 (5) −0.0125 (5) 0.0007 (5)
C11 0.0537 (7) 0.0733 (9) 0.0354 (6) 0.0060 (6) 0.0043 (5) −0.0040 (6)
C10 0.0453 (7) 0.0722 (8) 0.0445 (7) 0.0148 (6) 0.0044 (5) −0.0040 (6)
C14 0.0669 (9) 0.0863 (10) 0.0381 (7) 0.0072 (8) −0.0102 (6) 0.0039 (7)

Geometric parameters (Å, º)

O3—C4 1.3329 (14) C8—C13 1.4162 (16)
O3—H3 0.8200 C8—C9 1.4340 (15)
O4—C9 1.2887 (15) C13—C12 1.3683 (18)
N2—C7 1.3070 (15) C13—H13 0.9300
N2—C5 1.4035 (15) C9—C10 1.4134 (18)
N2—H2 0.8600 C12—C11 1.4077 (19)
O1—N1 1.2202 (15) C12—C14 1.5074 (19)
O2—N1 1.2213 (15) C2—C3 1.3726 (17)
N1—C1 1.4530 (15) C2—H2A 0.9300
C5—C6 1.3789 (15) C3—H3A 0.9300
C5—C4 1.4077 (15) C11—C10 1.3629 (19)
C1—C2 1.3823 (17) C11—H11 0.9300
C1—C6 1.3857 (16) C10—H10 0.9300
C6—H6 0.9300 C14—H14A 0.9600
C7—C8 1.4054 (16) C14—H14B 0.9600
C7—H7 0.9300 C14—H14C 0.9600
C4—C3 1.3873 (18)
C4—O3—H3 109.5 C12—C13—H13 119.0
C7—N2—C5 128.19 (10) C8—C13—H13 119.0
C7—N2—H2 115.9 O4—C9—C10 122.28 (11)
C5—N2—H2 115.9 O4—C9—C8 121.13 (11)
O1—N1—O2 122.72 (11) C10—C9—C8 116.59 (11)
O1—N1—C1 118.29 (10) C13—C12—C11 117.30 (12)
O2—N1—C1 118.99 (11) C13—C12—C14 122.28 (12)
C6—C5—N2 124.25 (10) C11—C12—C14 120.42 (12)
C6—C5—C4 120.05 (10) C3—C2—C1 118.70 (11)
N2—C5—C4 115.70 (10) C3—C2—H2A 120.6
C2—C1—C6 122.58 (11) C1—C2—H2A 120.6
C2—C1—N1 119.25 (11) C2—C3—C4 120.53 (11)
C6—C1—N1 118.17 (10) C2—C3—H3A 119.7
C5—C6—C1 118.33 (10) C4—C3—H3A 119.7
C5—C6—H6 120.8 C10—C11—C12 122.80 (12)
C1—C6—H6 120.8 C10—C11—H11 118.6
N2—C7—C8 122.26 (10) C12—C11—H11 118.6
N2—C7—H7 118.9 C11—C10—C9 121.30 (12)
C8—C7—H7 118.9 C11—C10—H10 119.4
O3—C4—C3 124.50 (10) C9—C10—H10 119.4
O3—C4—C5 115.68 (10) C12—C14—H14A 109.5
C3—C4—C5 119.81 (10) C12—C14—H14B 109.5
C7—C8—C13 119.15 (10) H14A—C14—H14B 109.5
C7—C8—C9 120.86 (10) C12—C14—H14C 109.5
C13—C8—C9 119.97 (10) H14A—C14—H14C 109.5
C12—C13—C8 122.04 (11) H14B—C14—H14C 109.5
C7—N2—C5—C6 −4.9 (2) C9—C8—C13—C12 0.05 (19)
C7—N2—C5—C4 175.61 (12) C7—C8—C9—O4 −1.11 (19)
O1—N1—C1—C2 173.86 (12) C13—C8—C9—O4 −179.47 (12)
O2—N1—C1—C2 −6.20 (19) C7—C8—C9—C10 178.60 (12)
O1—N1—C1—C6 −6.51 (18) C13—C8—C9—C10 0.25 (18)
O2—N1—C1—C6 173.42 (12) C8—C13—C12—C11 −0.1 (2)
N2—C5—C6—C1 −179.62 (11) C8—C13—C12—C14 179.34 (13)
C4—C5—C6—C1 −0.16 (17) C6—C1—C2—C3 −0.3 (2)
C2—C1—C6—C5 0.28 (18) N1—C1—C2—C3 179.26 (11)
N1—C1—C6—C5 −179.33 (10) C1—C2—C3—C4 0.3 (2)
C5—N2—C7—C8 179.95 (11) O3—C4—C3—C2 −179.58 (13)
C6—C5—C4—O3 179.56 (11) C5—C4—C3—C2 −0.2 (2)
N2—C5—C4—O3 −0.93 (17) C13—C12—C11—C10 −0.1 (2)
C6—C5—C4—C3 0.12 (18) C14—C12—C11—C10 −179.58 (15)
N2—C5—C4—C3 179.62 (11) C12—C11—C10—C9 0.4 (2)
N2—C7—C8—C13 178.88 (11) O4—C9—C10—C11 179.23 (13)
N2—C7—C8—C9 0.51 (19) C8—C9—C10—C11 −0.5 (2)
C7—C8—C13—C12 −178.33 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4 0.86 1.86 2.5661 (13) 139
O3—H3···O4i 0.82 1.77 2.5465 (12) 156
C6—H6···O1ii 0.93 2.51 3.4383 (16) 172
C7—H7···O1ii 0.93 2.40 3.3182 (14) 172

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x, −y+1, −z+1.

Funding Statement

This work was funded by Ondokuz Mayis Üniversitesi grant PYO.FEN.1906.19.001.

References

  1. Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  2. Ebrahimipour, S. Y., Mague, J. T., Akbari, A. & Takjoo, R. (2012). J. Mol. Struct. 1028, 148–155.
  3. Ezeorah, J. C., Ossai, V., Obasi, L. N., Elzagheid, M. I., Rhyman, L., Lutter, M., Jurkschat, K., Dege, N. & Ramasami, P. (2018). J. Mol. Struct. 1152, 21–28.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  7. Jain, J., Masand, N., Sinha, R., Garg, V. & Patil, V. (2008). J. Cell Tissue Res. 8, 1431–1431.
  8. Kansiz, S., Çakmak, Ş., Dege, N., Meral, G. & Kütük, H. (2018). X-ray Struct. Anal. Online, 34, 17–18.
  9. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
  10. Makal, A., Schilf, W., Kamieński, B., Szady-Chelmieniecka, A., Grech, E. & Woźniak, K. (2011). Dalton Trans. 40, 421–430. [DOI] [PubMed]
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. Schiff, H. (1864). Ann. Chem. Pharm. 131, 118–119.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  18. Takjoo, R., Akbari, A., Ebrahimipour, S. Y., Kubicki, M., Mohamadi, M. & Mollania, N. (2017). Inorg. Chim. Acta, 455, 173–182.
  19. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  20. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901900673X/yk2122sup1.cif

e-75-00812-sup1.cif (297.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900673X/yk2122Isup2.hkl

e-75-00812-Isup2.hkl (263.6KB, hkl)

Supporting information file. DOI: 10.1107/S205698901900673X/yk2122Isup3.cml

CCDC reference: 1915380

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES