The molecular structure of the title compound, C23H34N2O4, has C2 symmetry. In the crystal, interlocked dimers are formed through quadruple N—H⋯O hydrogen bonds between pyrrole N—H groups and carbonyl O atoms.
Keywords: dipyrromethane-dicarboxylate, crystal structure, hydrogen bonding
Abstract
The molecular structure of the title compound, C23H34N2O4, has C2 symmetry. In the crystal, interlocked dimers are formed through quadruple N—H⋯O hydrogen bonds between pyrrole N—H groups and carbonyl O atoms.
Chemical context
Hydrogen-bonding interactions play an important role in the design of functional assemblies that exhibit a variety of properties and functions (Prins et al., 2001 ▸; Steiner, 2002 ▸). Pyrrole-2-carboxylate possesses one hydrogen-bond donor (N—Hpyrrole) and one acceptor (C=O), which favour the formation of centrosymmetric dimers with pairs of N—H⋯O hydrogen bonds (Figueira et al., 2015 ▸). The dimer motif is structurally similar to classic Watson–Crick nucleotide base-pairs. Calculations have revealed the dimer motif to be a robust supramolecular synthon in crystal engineering (Dubis et al., 2002 ▸). In previous work, we have shown a way to use the 2-carbonyl pyrrole dimer as a supramolecular connector to construct hexagonal and grid architectures (Yin et al., 2006 ▸). Here, we report the self-assembly of the title compound, via quadruple N—H⋯N hydrogen bonds.
Structural commentary
The structure of the title compound is shown in Fig. 1 ▸. The asymmetric unit contains one half-molecule as it possesses C2 symmetry. In the molecule, the two pyrrole-2-carboxylate groups are both in a syn conformation, with the carbonyl group arranged syn to its adjacent pyrrole NH group. The O1—C8—C7—N1 torsion angle is −8.2 (5)°. The dihedral angle between the pyrrole rings is 72.8 (2)°.
Figure 1.
ORTEP diagram for the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (A) x,
− y,
− z.]
Supramolecular features
Pairs of molecules of the title compound form interlocked dimers through four N1—H1⋯O1 hydrogen bonds between the pyrrole carbonyl oxygen atoms and pyrrole NH protons (Table 1 ▸, Fig. 2 ▸). This type of dimer has also been observed in our previous work (Yin et al., 2007 ▸). The dimers are connected into a three-dimensional supramolecular structure through C—H⋯π contacts (Table 1 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the N1/C4–C7 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯O1i | 0.86 | 2.12 | 2.962 (3) | 165 |
| C12—H12C⋯Cg1ii | 0.96 | 3.21 | 3.944 (3) | 135 |
Symmetry codes: (i)
; (ii)
.
Figure 2.
Part of the crystal packing showing molecules linked by N—H⋯O hydrogen bonds (red dashed lines) and C—H⋯π contacts (green dashed lines). [Symmetry codes: (i) −x +
, −y +
, z; (ii) x +
, y +
− z.]
Hirshfeld surface
A Hirshfeld surface analysis with CrystalExplorer (Turner et al., 2017 ▸) was performed to give insights into the important intermolecular interactions. These are normalized by van der Waals radii through a red–white–blue color scheme, where the red spots denote close contacts of molecules. The three-dimensional d norm surface of the title compound is shown in Fig. 3 ▸. The red points represent closer contacts and negative d norm values on the surface corresponding to the N—H⋯O and C—H⋯π interactions mentioned above. The two-dimensional fingerprint plots in Fig. 4 ▸ shown the intermolecular contacts and their percentage distributions on the Hirshfeld surface. H⋯H interactions (74.8%) are present as a major contributor while H⋯O/O⋯H (14.5%), H⋯C/C⋯H (5.4%), C⋯C (2.7%) and H⋯N/N⋯H (0.9%) contacts also give significant contributions to the Hirshfeld surface.
Figure 3.
The Hirshfeld surface of the title compound mapped over d norm in the range −0.486 to 1.895 a.u. The intermolecular contacts can be seen in the red regions.
Figure 4.
The two-dimensional fingerprint plots of title compound: (a) all contacts; (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H and (f) C⋯C.
Database survey
A search in the Cambridge Structural Database (Groom et al., 2016 ▸) returned over 60 entries for dipyrromethane-1,9-dicarbonyl derivatives, including seven entries whose supramolecular structures feature interlocked dimers (ILITAY, Love et al., 2003 ▸; ODUMOQ,Yin et al., 2007 ▸; PIRJAB, Xie et al., 1994 ▸; NIQBAR01, Mahanta et al., 2012 ▸; VACRID, Deliomeroglu et al., 2016 ▸; PUJMAJ, Kim, 2010 ▸ and SAVDUQ, Uppal et al., 2012 ▸). In the crystal of PUJMAJ (Kim, 2010 ▸), only one of the carbonyl groups is involved in hydrogen bonds with two pyrrole N—H groups.
Synthesis and crystallization
n-Butyl alcohol (370 mg, 5 mmol), 2,2′-ditrichlordipyrrolemethane (980 mg, 2 mmol) and triethylamine (0.5 mL) were added to acetonitrile (20 mL), and then the mixture was refluxed for 2h. The solution was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1:2), affording the title compound (white powder, 672 mg, 71%), m.p. = 388 K. 1H NMR (400 MHz, DMSO-d 6); δ 0.64 (t, 6H, J = 7.2 Hz, –CH3), 0.90 (t, 6H, J = 7.2 Hz, –CH3), 1.31–1.41 (m, 4H, –CH2–), 1.58–1.65 (m, 4H, –CH2–), 2.15 (q, 4H, J = 7.2 Hz, Å –CH2–), 4.15 (q, 4H, J = 6.8 Hz, –CH2–), 5.97 (s, 2H, PyCH), 6.66 (s, 2H, PyCH), 11.22 (s, 2H, NH); HRMS (ESI) m/z calculated for C23H34N2O4, (M + H)+ 403.25186; found 403.25224. Crystals suitable for X-ray diffraction analysis were obtained by the slow evaporation of a CH3OH solution of the title compound.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. N—H hydrogen atoms were located from a difference-Fourier map and freely refined. Other H atoms were placed in difference calculated positions (C—H = 0.96 or 0.97 Å) and included in the final cycles of refinement using a riding model, with U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C23H34N2O4 |
| M r | 402.52 |
| Crystal system, space group | Orthorhombic, F d d d |
| Temperature (K) | 296 |
| a, b, c (Å) | 14.358 (6), 17.333 (7), 38.902 (19) |
| V (Å3) | 9681 (7) |
| Z | 16 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.08 |
| Crystal size (mm) | 0.32 × 0.28 × 0.26 |
| Data collection | |
| Diffractometer | Bruker SMART CCD area detector |
| Absorption correction | Multi-scan (SADABS; Bruker, 2001 ▸) |
| T min, T max | 0.822, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 11878, 2156, 1501 |
| R int | 0.031 |
| (sin θ/λ)max (Å−1) | 0.595 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.081, 0.278, 1.05 |
| No. of reflections | 2156 |
| No. of parameters | 134 |
| No. of restraints | 2 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.38, −0.34 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901900567X/ff2158sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900567X/ff2158Isup2.hkl
CCDC reference: 1912079
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C23H34N2O4 | Dx = 1.105 Mg m−3 |
| Mr = 402.52 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Fddd | Cell parameters from 3608 reflections |
| a = 14.358 (6) Å | θ = 2.4–23.4° |
| b = 17.333 (7) Å | µ = 0.08 mm−1 |
| c = 38.902 (19) Å | T = 296 K |
| V = 9681 (7) Å3 | Block, colourless |
| Z = 16 | 0.32 × 0.28 × 0.26 mm |
| F(000) = 3488 |
Data collection
| Bruker SMART CCD area detector diffractometer | 1501 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.031 |
| phi and ω scans | θmax = 25.0°, θmin = 1.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −17→16 |
| Tmin = 0.822, Tmax = 1.000 | k = −20→18 |
| 11878 measured reflections | l = −46→44 |
| 2156 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.081 | H-atom parameters constrained |
| wR(F2) = 0.278 | w = 1/[σ2(Fo2) + (0.1517P)2 + 16.1858P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.002 |
| 2156 reflections | Δρmax = 0.38 e Å−3 |
| 134 parameters | Δρmin = −0.34 e Å−3 |
| 2 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.68341 (16) | 0.20703 (14) | 0.05576 (7) | 0.0943 (8) | |
| O2 | 0.65735 (17) | 0.33467 (14) | 0.05760 (8) | 0.1078 (10) | |
| N1 | 0.51592 (15) | 0.18458 (13) | 0.09406 (6) | 0.0673 (7) | |
| H1 | 0.5364 | 0.1412 | 0.0865 | 0.081* | |
| C1 | 0.2522 (3) | 0.1657 (3) | 0.08110 (13) | 0.1320 (17) | |
| H1A | 0.2131 | 0.1822 | 0.0997 | 0.198* | |
| H1B | 0.2142 | 0.1459 | 0.0628 | 0.198* | |
| H1C | 0.2880 | 0.2087 | 0.0729 | 0.198* | |
| C2 | 0.3186 (2) | 0.1018 (2) | 0.09382 (9) | 0.0941 (11) | |
| H2A | 0.3591 | 0.0869 | 0.0750 | 0.113* | |
| H2B | 0.2819 | 0.0570 | 0.1001 | 0.113* | |
| C3 | 0.3798 (3) | 0.1250 | 0.1250 | 0.0756 (11) | |
| C4 | 0.44025 (19) | 0.19324 (17) | 0.11502 (7) | 0.0704 (8) | |
| C5 | 0.4317 (2) | 0.27091 (19) | 0.12144 (10) | 0.0906 (10) | |
| H5 | 0.3864 | 0.2937 | 0.1352 | 0.109* | |
| C6 | 0.5026 (3) | 0.31011 (19) | 0.10378 (10) | 0.0919 (10) | |
| H6 | 0.5126 | 0.3631 | 0.1036 | 0.110* | |
| C7 | 0.5546 (2) | 0.25550 (17) | 0.08689 (8) | 0.0749 (8) | |
| C8 | 0.6375 (2) | 0.26101 (19) | 0.06550 (9) | 0.0810 (9) | |
| C9 | 0.7383 (3) | 0.3480 (3) | 0.03496 (16) | 0.141 (2) | |
| H9A | 0.7953 | 0.3356 | 0.0471 | 0.169* | |
| H9B | 0.7342 | 0.3149 | 0.0149 | 0.169* | |
| C10 | 0.7401 (4) | 0.4274 (4) | 0.02437 (19) | 0.164 (2) | |
| H10A | 0.7967 | 0.4359 | 0.0113 | 0.197* | |
| H10B | 0.7440 | 0.4592 | 0.0448 | 0.197* | |
| C11 | 0.6604 (5) | 0.4549 (4) | 0.0035 (2) | 0.193 (3) | |
| H11A | 0.6551 | 0.4210 | −0.0162 | 0.232* | |
| H11B | 0.6045 | 0.4478 | 0.0172 | 0.232* | |
| C12 | 0.6597 (7) | 0.5314 (4) | −0.0088 (2) | 0.211 (4) | |
| H12A | 0.6611 | 0.5666 | 0.0102 | 0.316* | |
| H12B | 0.6042 | 0.5399 | −0.0221 | 0.316* | |
| H12C | 0.7133 | 0.5398 | −0.0231 | 0.316* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0756 (14) | 0.0847 (16) | 0.1227 (19) | 0.0097 (12) | 0.0142 (12) | 0.0162 (13) |
| O2 | 0.0842 (17) | 0.0826 (16) | 0.157 (2) | 0.0004 (12) | 0.0174 (15) | 0.0302 (14) |
| N1 | 0.0571 (13) | 0.0653 (13) | 0.0796 (15) | 0.0047 (10) | −0.0016 (10) | 0.0003 (11) |
| C1 | 0.089 (3) | 0.169 (4) | 0.138 (4) | −0.001 (3) | −0.041 (3) | 0.027 (3) |
| C2 | 0.072 (2) | 0.116 (3) | 0.095 (2) | −0.0173 (18) | −0.0137 (16) | 0.0109 (19) |
| C3 | 0.053 (2) | 0.090 (3) | 0.083 (2) | 0.000 | 0.000 | 0.006 (2) |
| C4 | 0.0570 (15) | 0.0767 (18) | 0.0775 (17) | 0.0077 (13) | −0.0020 (12) | 0.0027 (14) |
| C5 | 0.084 (2) | 0.083 (2) | 0.104 (2) | 0.0180 (17) | 0.0106 (18) | −0.0065 (18) |
| C6 | 0.088 (2) | 0.0640 (18) | 0.124 (3) | 0.0049 (15) | 0.005 (2) | 0.0003 (18) |
| C7 | 0.0648 (17) | 0.0672 (17) | 0.093 (2) | 0.0018 (13) | −0.0053 (15) | 0.0099 (14) |
| C8 | 0.0659 (18) | 0.0748 (19) | 0.102 (2) | 0.0011 (15) | −0.0014 (16) | 0.0153 (16) |
| C9 | 0.075 (2) | 0.129 (3) | 0.219 (6) | −0.003 (2) | 0.039 (3) | 0.043 (4) |
| C10 | 0.136 (4) | 0.149 (4) | 0.206 (6) | −0.016 (4) | 0.033 (4) | 0.071 (4) |
| C11 | 0.156 (6) | 0.205 (6) | 0.219 (7) | 0.028 (5) | 0.033 (5) | 0.085 (6) |
| C12 | 0.276 (11) | 0.175 (5) | 0.182 (6) | 0.040 (7) | 0.051 (6) | 0.036 (5) |
Geometric parameters (Å, º)
| O1—C8 | 1.205 (4) | C5—H5 | 0.9300 |
| O2—C8 | 1.344 (4) | C5—C6 | 1.404 (5) |
| O2—C9 | 1.477 (5) | C6—H6 | 0.9300 |
| N1—H1 | 0.8600 | C6—C7 | 1.372 (5) |
| N1—C4 | 1.367 (4) | C7—C8 | 1.456 (5) |
| N1—C7 | 1.377 (4) | C9—H9A | 0.9700 |
| C1—H1A | 0.9600 | C9—H9B | 0.9700 |
| C1—H1B | 0.9600 | C9—C10 | 1.436 (7) |
| C1—H1C | 0.9600 | C10—H10A | 0.9700 |
| C1—C2 | 1.542 (6) | C10—H10B | 0.9700 |
| C2—H2A | 0.9700 | C10—C11 | 1.481 (9) |
| C2—H2B | 0.9700 | C11—H11A | 0.9700 |
| C2—C3 | 1.551 (4) | C11—H11B | 0.9700 |
| C3—C2i | 1.551 (4) | C11—C12 | 1.412 (8) |
| C3—C4 | 1.518 (4) | C12—H12A | 0.9600 |
| C3—C4i | 1.518 (4) | C12—H12B | 0.9600 |
| C4—C5 | 1.375 (4) | C12—H12C | 0.9600 |
| C8—O2—C9 | 116.9 (3) | N1—C7—C8 | 120.3 (3) |
| C4—N1—H1 | 125.0 | C6—C7—N1 | 107.4 (3) |
| C4—N1—C7 | 110.1 (2) | C6—C7—C8 | 132.3 (3) |
| C7—N1—H1 | 125.0 | O1—C8—O2 | 123.4 (3) |
| H1A—C1—H1B | 109.5 | O1—C8—C7 | 125.1 (3) |
| H1A—C1—H1C | 109.5 | O2—C8—C7 | 111.5 (3) |
| H1B—C1—H1C | 109.5 | O2—C9—H9A | 109.8 |
| C2—C1—H1A | 109.5 | O2—C9—H9B | 109.8 |
| C2—C1—H1B | 109.5 | H9A—C9—H9B | 108.2 |
| C2—C1—H1C | 109.5 | C10—C9—O2 | 109.6 (4) |
| C1—C2—H2A | 108.6 | C10—C9—H9A | 109.8 |
| C1—C2—H2B | 108.6 | C10—C9—H9B | 109.8 |
| C1—C2—C3 | 114.5 (3) | C9—C10—H10A | 108.1 |
| H2A—C2—H2B | 107.6 | C9—C10—H10B | 108.1 |
| C3—C2—H2A | 108.6 | C9—C10—C11 | 116.8 (6) |
| C3—C2—H2B | 108.6 | H10A—C10—H10B | 107.3 |
| C2—C3—C2i | 111.0 (4) | C11—C10—H10A | 108.1 |
| C4i—C3—C2i | 109.02 (17) | C11—C10—H10B | 108.1 |
| C4i—C3—C2 | 108.81 (18) | C10—C11—H11A | 107.4 |
| C4—C3—C2i | 108.81 (18) | C10—C11—H11B | 107.4 |
| C4—C3—C2 | 109.02 (17) | H11A—C11—H11B | 106.9 |
| C4i—C3—C4 | 110.2 (3) | C12—C11—C10 | 119.7 (8) |
| N1—C4—C3 | 121.5 (2) | C12—C11—H11A | 107.4 |
| N1—C4—C5 | 106.7 (3) | C12—C11—H11B | 107.4 |
| C5—C4—C3 | 131.7 (3) | C11—C12—H12A | 109.5 |
| C4—C5—H5 | 125.7 | C11—C12—H12B | 109.5 |
| C4—C5—C6 | 108.7 (3) | C11—C12—H12C | 109.5 |
| C6—C5—H5 | 125.7 | H12A—C12—H12B | 109.5 |
| C5—C6—H6 | 126.4 | H12A—C12—H12C | 109.5 |
| C7—C6—C5 | 107.1 (3) | H12B—C12—H12C | 109.5 |
| C7—C6—H6 | 126.4 | ||
| O2—C9—C10—C11 | −62.9 (8) | C4i—C3—C4—N1 | 44.80 (19) |
| N1—C4—C5—C6 | 0.7 (4) | C4i—C3—C4—C5 | −140.2 (4) |
| N1—C7—C8—O1 | −8.2 (5) | C4—C5—C6—C7 | −0.5 (4) |
| N1—C7—C8—O2 | 171.6 (3) | C5—C6—C7—N1 | 0.1 (4) |
| C1—C2—C3—C2i | 59.3 (3) | C5—C6—C7—C8 | −178.0 (3) |
| C1—C2—C3—C4 | −60.5 (4) | C6—C7—C8—O1 | 169.8 (4) |
| C1—C2—C3—C4i | 179.2 (3) | C6—C7—C8—O2 | −10.4 (5) |
| C2—C3—C4—N1 | −74.5 (3) | C7—N1—C4—C3 | 175.5 (2) |
| C2i—C3—C4—N1 | 164.3 (3) | C7—N1—C4—C5 | −0.6 (3) |
| C2—C3—C4—C5 | 100.5 (4) | C8—O2—C9—C10 | 170.1 (5) |
| C2i—C3—C4—C5 | −20.7 (4) | C9—O2—C8—O1 | 1.8 (6) |
| C3—C4—C5—C6 | −174.9 (3) | C9—O2—C8—C7 | −178.0 (4) |
| C4—N1—C7—C6 | 0.3 (3) | C9—C10—C11—C12 | −177.5 (6) |
| C4—N1—C7—C8 | 178.7 (3) |
Symmetry code: (i) x, −y+1/4, −z+1/4.
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the N1/C4–C7 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···O1ii | 0.86 | 2.12 | 2.962 (3) | 165 |
| C12—H12C···Cg1iii | 0.96 | 3.21 | 3.944 (3) | 135 |
Symmetry codes: (ii) −x+5/4, −y+1/4, z; (iii) x+1/4, y+1/4, −z.
Funding Statement
This work was funded by National Natural Science Foundation of China grant 21172174.
References
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deliomeroglu, M. K., Lynch, V. M. & Sessler, J. L. (2016). Chem. Sci. 7, 3843–3850. [DOI] [PMC free article] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dubis, A. T. & Grabowski, S. J. (2002). New J. Chem. 26, 165–169.
- Figueira, C. A., Lopes, P. S., Gomes, C. S. B., Veiros, L. F. & Gomes, P. T. (2015). CrystEngComm, 17, 6406–6419.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kim, H.-J. (2010). Acta Cryst. E66, o566. [DOI] [PMC free article] [PubMed]
- Love, J. B., Blake, A. J., Wilson, C., Reid, S. D., Novak, A. & Hitchcock, P. B. (2003). Chem. Commun. pp. 1682–1683.
- Mahanta, S. P., Kumar, B. S., Baskaran, S., Sivasankar, C. & Panda, P. K. (2012). Org. Lett. 14, 548–551. [DOI] [PubMed]
- Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
- Uppal, T., Hu, X., Fronczek, F. R., Maschek, S., Bobadova-Parvanova, P. & Vicente, M. G. H. (2012). Chem. Eur. J. 18, 3893–3905. [DOI] [PubMed]
- Xie, H., Lee, D. A., Senge, M. O. & Smith, K. M. (1994). J. Chem. Soc. Chem. Commun. pp. 791–792.
- Yin, Z. & Li, Z. (2006). Tetrahedron Lett. 47, 7875–7879.
- Yin, Z., Zhang, Y., He, J. & Cheng, J.-P. (2007). Chem. Commun. pp. 2599–2601. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901900567X/ff2158sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900567X/ff2158Isup2.hkl
CCDC reference: 1912079
Additional supporting information: crystallographic information; 3D view; checkCIF report




