Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 25;75(Pt 7):1057–1060. doi: 10.1107/S2056989019008570

Crystal structure of hexa-μ-chlorido-μ4-oxido-tetra­kis­{[1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole-κN 3]copper(II)} containing short NO2⋯NO2 contacts

Ja-Shin Wu a, Daniel G Shlian b, Joshua H Palmer b, Rita K Upmacis c,*
PMCID: PMC6659319  PMID: 31392024

The title tetra­nuclear cluster contains a tetra­hedral arrangement of copper(II) ions bonded to a central oxygen atom. The extended structure shows short O⋯N inter­actions between the nitro groups of adjacent clusters, which are oriented perpendicular to each other in a manner that has previously been described as an ONO2⋯π(N)NO2 inter­action.

Keywords: crystal structure, tetra­nuclear copper, metronidazole, bridging chloride, NO2 Inter­actions

Abstract

The title tetra­nuclear copper complex, [Cu4Cl6O(C6H9N3O3)4] or [Cu4Cl6O­(MET)4] [MET is 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole or metronidazole], contains a tetra­hedral arrangement of copper(II) ions. Each copper atom is also linked to the other three copper atoms in the tetra­hedron via bridging chloride ions. A fifth coordination position on each metal atom is occupied by a nitro­gen atom of the monodentate MET ligand. The result is a distorted CuCl3NO trigonal–bipyramidal coordination polyhedron with the axial positions occupied by oxygen and nitro­gen atoms. The extended structure displays O—H⋯O hydrogen bonding, as well as unusual short O⋯N inter­actions [2.775 (4) Å] between the nitro groups of adjacent clusters that are oriented perpendicular to each other. The scattering contribution of disordered water and methanol solvent mol­ecules was removed using the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–16] in PLATON [Spek (2009). Acta Cryst. D65, 148–155].

Chemical context  

Metronidazole (C6H9N3O3; MET) is a medication that was discovered to be effective against both bacteria and parasites more than 50 years ago (Samuelson, 1999). MET is currently incorporated in the World Health Organization (WHO) list of essential medicines, i.e. medications that are considered to be effective and safe to meet the most important needs in a health system (WHO, 2015). Despite the widespread use of MET as a drug, relatively little structural data concerning its inter­actions with metal ions exist, and there are few structurally characterized copper compounds of MET (Galván-Tejada et al., 2002; Barba-Behrens et al., 1991; Athar et al., 2005; Ratajczak-Sitarz et al., 1998; Bharti et al., 2002). Our recent work has sought to develop further metal–MET chemistry and we have reported structures containing Cu (Palmer et al., 2015; Quinlivan & Upmacis, 2016), as well as Ag (Palmer & Upmacis, 2015) and Au (Quinlivan et al., 2015). Tetra­nuclear copper(II) compounds of the form [Cu4OX 6 L 4] are relatively well known, with the first example described in 1996 (Bertrand & Kelley, 1966). In this regard, although the structure of a [Cu4OX 6 L 4] structure, where L = imidazole, has been previously described (Atria et al., 1999), a counterpart containing L = MET has not been reported. Herein, we describe the structure of a tetra­nuclear Cu–MET complex [Cu4Cl6O(MET)4] that is obtained by the reaction of anhydrous copper(I) chloride with MET in MeOH under aerobic conditions.graphic file with name e-75-01057-scheme1.jpg

Structural commentary  

The structure of the [Cu4Cl6O(MET)4] complex is shown in Fig. 1. Four copper atoms are arranged around an oxygen atom in a tetra­hedral fashion, with Cu—O distances ranging from 1.8960 (18) to 1.913 (2) Å. The Cu—O—Cu angles range from 108.36 (10) to 110.80 (9)°, indicating a fairly uniform tetra­hedron with little distortion. In fact, the degree of distortion from a tetra­hedral arrangement can be readily quan­ti­fied by the τ4 four-coordinate geometry index that is reported and discussed elsewhere (Yang et al., 2007; Palmer et al., 2015, Brescia et al., 2018). Briefly, τ4 is obtained from the expression, τ4 = [360 − (α +  β)]/141, where α and β represent the two largest angles; a τ4 value of 1.00 indicates an idealized tetra­hedral geometry, whereas a value of 0.00 indicates an idealized square-planar geometry. In the title complex, α = 110.80 (9)° and β = 109.55 (9)°, such that τ4 is 0.990, which indicates negligible deviation from a tetra­hedral geometry for oxygen (Yang et al., 2007).

Figure 1.

Figure 1

The mol­ecular structure of [Cu4Cl6O(MET)4]. For clarity, hydrogen atoms have been omitted. The eth­oxy group of the MET ligand attached to Cu3 (comprising C34, C35 and O31) is disordered over two sets of sites in a 0.515 (19):0.485 (19) ratio.

Each of the four copper atoms is linked to the other three copper atoms via three chloride bridges, with the Cu—Cl bridging distances varying from 2.3579 (10) to 2.4435 (9) Å (for Cu2—Cl6 and Cu1—Cl2, respectively). Each copper atom is also bound to a nitro­gen atom of a MET ligand. The Cu—N lengths range from 1.949 (2) to 1.972 (3) Å (for Cu1—N11 and Cu4—N41, respectively). Thus, each copper atom sits within a trigonal–bipyramidal arrangement, with the oxygen and nitro­gen atoms forming the axial coordination points, and the bridging chloride ligands occupying the equatorial plane. The trigonal–bipyramidal structure is somewhat distorted, as indicated by the fact that the O—Cu—N angles are less than 180°, ranging from 173.12 (10) to 176.91 (10)° (for O1—Cu1—N11 and O1—Cu2—N21, respectively), and the Cl—Cu—Cl angles differ significantly from 120°, ranging from 109.97 (3) to 134.02 (3)° (for Cl2—Cu2—Cl4 and Cl3—Cu1—Cl2, respectively). Furthermore, the O—Cu—Cl angles are all less than 90°, ranging from 83.33 (6) to 86.13 (6)° (for O1—Cu1—Cl2 and O1—Cu—Cl1, respectively), indicating that the equatorial chloride ligands are displaced slightly more towards the axial oxygen atom in the center of the mol­ecule, than towards the nitro­gen-containing ligand in the opposite axial position.

The τ5 geometry index is a general descriptor of five-coordinate mol­ecules and provides a way to determine the extent of distortion of a mol­ecule from trigonal bipyramidal to square pyramidal (Addison et al., 1984). The τ5 geometry index is calculated by using the equation: τ5 = (β − α)/60, where β − α is the difference between the two largest angles (Addison et al., 1984; Palmer & Parkin, 2014). The values for τ5 are calculated to be 0.65 (Cu1), 0.74 (Cu2), 0.84 (Cu3) and 0.73 (Cu4) for the five-coordinate copper centers, giving an average τ5 value of 0.74. The τ5 values obtained indicate that the copper-centered structures are closer to an idealized trigonal–bipyramidal (1.00) than a square-pyramidal geometry (0.00).

Supra­molecular features  

Fig. 2 shows the packing in the unit cell. As well as the O—H⋯O hydrogen bonds shown in Table 1, O11—H11A and O21—H21A probably form links to the disordered solvent mol­ecules removed with SQUEEZE (see Experimental). The most inter­esting observation is the existence of short O⋯N inter­actions between the N13/O12/O13 and N33/O32/O33 nitro groups of adjacent clusters that are oriented perpendicular to each other, as illustrated in Fig. 3 with O12⋯N33 = 2.775 (4) Å. This type of contact has previously been described as an ONO2⋯π(N)NO2 inter­action (Daszkiewicz, 2013); such contacts are typically shorter than 3 Å.

Figure 2.

Figure 2

Unit-cell packing of [Cu4Cl6O(MET)4] viewed down [100].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H41A⋯O31i 0.89 (2) 2.13 (3) 2.738 (8) 125 (2)

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

Detail of the O⋯N inter­action between the nitro groups of adjacent clusters.

Database survey  

The tetra­nuclear copper motif, L 4Cu4Cl6O, where L is a nitro­gen-containing Lewis base ligand, is common. For instance, several structures have been reported in which L contains either an imidazole or substituted imidazole moiety (Clegg et al., 1988; Norman et al., 1989 Erdonmez et al., 1990; Atria et al., 1999; Cortés et al., 2006; Chiarella et al., 2009, 2010; She et al., 2010) or a benzimidazole moiety (Tosik et al., 1991 Zhang et al., 2003; Jian et al., 2004; Li et al., 2011).

The title compound [Cu4Cl6O(MET)4] contains Cu—X distances that are similar to those in [Cu4Cl6O(imidazole)4] (Atria et al., 1999). For example, the Cu—O distances in [Cu4Cl6O(MET)4] are 1.8960 (18)–1.913 (2) Å, compared to 1.903 (4)–1.924 (4) Å for [Cu4Cl6O(imidazole)4]. Likewise, the Cu—Cl distances in [Cu4Cl6O(MET)4] are 2.3579 (10)–2.4435 (9) Å, compared to 2.374 (2)–2.564 (2) Å for [Cu4Cl6O(imidazole)4]. Moreover, the Cu—N distances in [Cu4Cl6O(MET)4] are 1.949 (2)–1.972 (3) Å, compared to 1.934 (6)–1.961 (6) Å.

Synthesis and crystallization  

Anhydrous copper(I) chloride (0.015 g, 0.00015 mol) was mixed with MET (0.05075 g, 0.00030 mol) in methanol (2 ml) in a glass vial, forming a dark olive-colored solution. After allowing the solution to evaporate for eight days, gold-colored plates, suitable for X-ray diffraction, were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters U iso(H) = 1.2U eq(Csp 2) or 1.5U eq(Csp 3). Atoms C34, C35 and O31 and their attached H atoms were modeled as disordered over two sets of sites in a 0.515 (19):0.485 (19) ratio. The structure contains two methanol mol­ecules and one water mol­ecule, but they are disordered and were removed by the SQUEEZE procedure in PLATON (Spek, 2015); the stated crystal data (M r, μ, etc.) only refer to the main mol­ecule.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu4Cl6O(C6H9N3O3)4]
M r 1167.51
Crystal system, space group Monoclinic, C2/c
Temperature (K) 130
a, b, c (Å) 22.125 (3), 13.361 (2), 32.633 (5)
β (°) 94.752 (2)
V3) 9613 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.14
Crystal size (mm) 0.36 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.586, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 78050, 15003, 11100
R int 0.048
(sin θ/λ)max−1) 0.720
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.118, 1.03
No. of reflections 15003
No. of parameters 579
No. of restraints 120
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.55, −1.09

Computer programs: APEX2 and), SAINT (Bruker, 2008), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019008570/hb7801sup1.cif

e-75-01057-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008570/hb7801Isup2.hkl

e-75-01057-Isup2.hkl (1.2MB, hkl)

CCDC reference: 1923275

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RKU thanks Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

supplementary crystallographic information

Crystal data

[Cu4Cl6O(C6H9N3O3)4] F(000) = 4688
Mr = 1167.51 Dx = 1.613 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 22.125 (3) Å Cell parameters from 9836 reflections
b = 13.361 (2) Å θ = 2.2–29.8°
c = 32.633 (5) Å µ = 2.14 mm1
β = 94.752 (2)° T = 130 K
V = 9613 (3) Å3 Plate, gold
Z = 8 0.36 × 0.20 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 11100 reflections with I > 2σ(I)
φ and ω scans Rint = 0.048
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 30.8°, θmin = 1.3°
Tmin = 0.586, Tmax = 0.746 h = −31→31
78050 measured reflections k = −19→19
15003 independent reflections l = −46→46

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0497P)2 + 31.4385P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
15003 reflections Δρmax = 1.55 e Å3
579 parameters Δρmin = −1.09 e Å3
120 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.80290 (2) −0.01300 (3) 0.39169 (2) 0.02214 (8)
Cu2 0.70660 (2) −0.01915 (3) 0.31768 (2) 0.02614 (8)
Cu3 0.66594 (2) 0.02107 (3) 0.40449 (2) 0.03036 (9)
Cu4 0.71326 (2) −0.19124 (3) 0.38380 (2) 0.02342 (8)
Cl1 0.81567 (3) −0.18214 (5) 0.41707 (2) 0.02840 (14)
Cl2 0.81362 (3) −0.00755 (7) 0.31780 (2) 0.03451 (17)
Cl3 0.75591 (3) 0.09683 (6) 0.43943 (2) 0.03046 (16)
Cl4 0.67511 (3) −0.19355 (6) 0.31175 (2) 0.03082 (15)
Cl5 0.63812 (3) −0.13927 (7) 0.42920 (2) 0.03596 (17)
Cl6 0.63258 (5) 0.09252 (9) 0.33861 (3) 0.0547 (3)
N11 0.88549 (10) 0.03600 (18) 0.40341 (7) 0.0233 (5)
N12 0.96498 (10) 0.13435 (19) 0.39975 (9) 0.0302 (5)
N13 1.04472 (14) 0.0232 (3) 0.43287 (15) 0.0646 (12)
N21 0.68926 (12) 0.0204 (2) 0.26024 (8) 0.0307 (5)
N22 0.67466 (12) 0.1147 (2) 0.20463 (8) 0.0312 (6)
N23 0.62700 (16) −0.0128 (3) 0.15652 (10) 0.0497 (9)
N31 0.60566 (11) 0.0980 (2) 0.43173 (8) 0.0316 (6)
N32 0.51725 (10) 0.15805 (18) 0.44639 (7) 0.0243 (5)
N33 0.55277 (14) 0.2806 (3) 0.50054 (11) 0.0513 (9)
N41 0.70835 (10) −0.33784 (19) 0.38980 (7) 0.0254 (5)
N42 0.71449 (13) −0.4914 (2) 0.41434 (9) 0.0355 (6)
N43 0.71274 (19) −0.5839 (3) 0.34682 (11) 0.0591 (10)
O1 0.72212 (8) −0.05076 (15) 0.37460 (6) 0.0222 (4)
O11 0.9926 (2) 0.1888 (4) 0.31860 (12) 0.0965 (15)
H11A 0.991 (3) 0.228 (4) 0.2983 (14) 0.145*
O12 1.05456 (14) −0.0584 (3) 0.44694 (19) 0.125 (2)
O13 1.08424 (12) 0.0857 (3) 0.43043 (14) 0.0822 (12)
O21 0.55815 (16) 0.1846 (3) 0.17440 (17) 0.0943 (14)
H21A 0.5252 (8) 0.206 (4) 0.1839 (17) 0.141*
O22 0.59231 (17) −0.0862 (2) 0.15657 (10) 0.0714 (11)
O23 0.64160 (13) 0.0312 (3) 0.12553 (8) 0.0606 (9)
O32 0.59897 (13) 0.3128 (3) 0.52030 (10) 0.0717 (11)
O33 0.50093 (13) 0.3067 (3) 0.50600 (10) 0.0683 (10)
O41 0.81469 (16) −0.5364 (3) 0.47601 (15) 0.0891 (14)
H41A 0.8525 (9) −0.5590 (19) 0.479 (2) 0.134*
O42 0.70514 (17) −0.5744 (2) 0.30998 (9) 0.0643 (9)
O43 0.7238 (3) −0.6628 (3) 0.36399 (13) 0.139 (2)
C11 0.90440 (12) 0.1254 (2) 0.39148 (9) 0.0261 (6)
C12 0.93477 (13) −0.0145 (2) 0.42001 (11) 0.0333 (7)
H12A 0.9349 −0.0801 0.4312 0.040*
C13 0.98391 (13) 0.0457 (3) 0.41783 (12) 0.0380 (8)
C14 1.00057 (14) 0.2241 (3) 0.39029 (12) 0.0403 (8)
H14A 1.0302 0.2388 0.4139 0.048*
H14B 0.9729 0.2822 0.3864 0.048*
C15 1.03387 (19) 0.2108 (4) 0.35240 (16) 0.0627 (13)
H15A 1.0563 0.2729 0.3469 0.075*
H15B 1.0636 0.1557 0.3567 0.075*
C16 0.86509 (14) 0.2053 (3) 0.37248 (12) 0.0369 (7)
H16A 0.8229 0.1822 0.3698 0.055*
H16B 0.8780 0.2213 0.3452 0.055*
H16C 0.8684 0.2652 0.3899 0.055*
C21 0.69669 (14) 0.1114 (3) 0.24465 (9) 0.0311 (6)
C22 0.66075 (16) −0.0364 (3) 0.22997 (11) 0.0382 (8)
H22A 0.6493 −0.1046 0.2323 0.046*
C23 0.65153 (15) 0.0209 (3) 0.19587 (10) 0.0355 (7)
C24 0.66535 (15) 0.2064 (3) 0.18002 (11) 0.0398 (8)
H24A 0.6692 0.1905 0.1507 0.048*
H24B 0.6972 0.2557 0.1889 0.048*
C25 0.60375 (18) 0.2517 (3) 0.18455 (15) 0.0514 (10)
H25A 0.6014 0.2739 0.2133 0.062*
H25B 0.5983 0.3113 0.1666 0.062*
C26 0.7245 (2) 0.1984 (3) 0.26728 (12) 0.0515 (10)
H26A 0.7510 0.1746 0.2908 0.077*
H26B 0.6925 0.2407 0.2771 0.077*
H26C 0.7483 0.2373 0.2489 0.077*
C31 0.54558 (12) 0.0912 (2) 0.42365 (9) 0.0247 (5)
C32 0.61649 (13) 0.1716 (2) 0.46056 (9) 0.0299 (6)
H32A 0.6552 0.1934 0.4719 0.036*
C33 0.56247 (14) 0.2077 (2) 0.47002 (10) 0.0308 (6)
C34 0.4518 (4) 0.1791 (10) 0.4409 (4) 0.027 (2) 0.515 (19)
H34A 0.4346 0.1503 0.4145 0.033* 0.515 (19)
H34B 0.4451 0.2523 0.4399 0.033* 0.515 (19)
C35 0.4205 (4) 0.1352 (8) 0.4754 (3) 0.034 (2) 0.515 (19)
H35A 0.4351 0.1686 0.5014 0.041* 0.515 (19)
H35B 0.3763 0.1469 0.4706 0.041* 0.515 (19)
O31 0.4317 (4) 0.0314 (7) 0.4788 (3) 0.040 (2) 0.515 (19)
H31A 0.4316 (19) 0.012 (3) 0.5031 (8) 0.060* 0.515 (19)
C34A 0.4496 (4) 0.1552 (12) 0.4507 (5) 0.036 (3) 0.485 (19)
H34D 0.4353 0.2234 0.4568 0.044* 0.485 (19)
H34E 0.4283 0.1335 0.4243 0.044* 0.485 (19)
C35A 0.4336 (5) 0.0858 (14) 0.4841 (4) 0.053 (4) 0.485 (19)
H35D 0.4523 0.1103 0.5108 0.063* 0.485 (19)
H35E 0.3890 0.0857 0.4854 0.063* 0.485 (19)
O31A 0.4535 (6) −0.0129 (10) 0.4775 (2) 0.054 (3) 0.485 (19)
H31D 0.483 (6) −0.012 (11) 0.489 (4) 0.081* 0.485 (19)
C36 0.51388 (13) 0.0216 (3) 0.39382 (11) 0.0357 (7)
H36A 0.5428 −0.0279 0.3850 0.053*
H36B 0.4966 0.0594 0.3699 0.053*
H36C 0.4813 −0.0126 0.4068 0.053*
C41 0.71482 (13) −0.3938 (2) 0.42409 (9) 0.0287 (6)
C42 0.70446 (13) −0.4025 (2) 0.35718 (9) 0.0281 (6)
H42A 0.6992 −0.3840 0.3290 0.034*
C43 0.70926 (16) −0.4966 (2) 0.37164 (10) 0.0352 (7)
C44 0.71595 (19) −0.5751 (3) 0.44430 (12) 0.0480 (9)
H44A 0.7000 −0.5519 0.4701 0.058*
H44B 0.6897 −0.6302 0.4330 0.058*
C45 0.7785 (2) −0.6121 (4) 0.45304 (15) 0.0602 (11)
H45A 0.7781 −0.6746 0.4693 0.072*
H45B 0.7964 −0.6269 0.4269 0.072*
C46 0.71969 (17) −0.3551 (3) 0.46674 (10) 0.0393 (8)
H46A 0.7583 −0.3765 0.4809 0.059*
H46B 0.6861 −0.3813 0.4813 0.059*
H46C 0.7179 −0.2818 0.4662 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01369 (14) 0.02604 (17) 0.02712 (17) −0.00543 (12) 0.00426 (12) −0.00550 (13)
Cu2 0.02511 (17) 0.03088 (19) 0.02237 (16) −0.00373 (14) 0.00162 (13) −0.00551 (14)
Cu3 0.01595 (15) 0.0409 (2) 0.0351 (2) −0.00491 (14) 0.00700 (13) −0.01941 (16)
Cu4 0.01913 (15) 0.02818 (18) 0.02352 (16) −0.00774 (13) 0.00518 (12) −0.00593 (13)
Cl1 0.0216 (3) 0.0303 (4) 0.0323 (3) −0.0077 (3) −0.0032 (3) 0.0011 (3)
Cl2 0.0254 (3) 0.0527 (5) 0.0265 (3) −0.0088 (3) 0.0084 (3) −0.0048 (3)
Cl3 0.0178 (3) 0.0377 (4) 0.0364 (4) −0.0069 (3) 0.0055 (3) −0.0146 (3)
Cl4 0.0320 (3) 0.0325 (4) 0.0270 (3) −0.0100 (3) −0.0035 (3) −0.0038 (3)
Cl5 0.0238 (3) 0.0510 (5) 0.0351 (4) −0.0049 (3) 0.0145 (3) −0.0015 (3)
Cl6 0.0554 (6) 0.0713 (7) 0.0395 (5) 0.0348 (5) 0.0163 (4) 0.0098 (4)
N11 0.0136 (9) 0.0250 (12) 0.0317 (12) −0.0037 (8) 0.0049 (9) −0.0061 (9)
N12 0.0161 (10) 0.0266 (13) 0.0485 (16) −0.0053 (9) 0.0071 (10) −0.0078 (11)
N13 0.0175 (13) 0.049 (2) 0.127 (4) 0.0027 (13) −0.0002 (17) 0.006 (2)
N21 0.0349 (13) 0.0325 (14) 0.0240 (12) −0.0034 (11) −0.0015 (10) −0.0082 (10)
N22 0.0273 (12) 0.0421 (15) 0.0240 (12) −0.0001 (11) 0.0020 (10) −0.0039 (11)
N23 0.0530 (19) 0.051 (2) 0.0406 (17) 0.0300 (16) −0.0228 (15) −0.0193 (15)
N31 0.0183 (11) 0.0410 (15) 0.0358 (14) −0.0054 (10) 0.0040 (10) −0.0198 (12)
N32 0.0215 (11) 0.0276 (12) 0.0237 (11) 0.0048 (9) 0.0007 (9) −0.0023 (9)
N33 0.0396 (16) 0.055 (2) 0.057 (2) 0.0174 (15) −0.0098 (14) −0.0336 (16)
N41 0.0189 (10) 0.0317 (13) 0.0259 (12) −0.0082 (9) 0.0033 (9) −0.0044 (10)
N42 0.0404 (15) 0.0300 (14) 0.0340 (14) −0.0092 (11) −0.0094 (12) −0.0012 (11)
N43 0.090 (3) 0.0332 (17) 0.050 (2) 0.0034 (17) −0.0176 (19) −0.0105 (15)
O1 0.0163 (8) 0.0279 (10) 0.0227 (9) −0.0040 (7) 0.0036 (7) −0.0080 (8)
O11 0.085 (3) 0.148 (4) 0.061 (2) −0.048 (3) 0.031 (2) −0.016 (2)
O12 0.0294 (16) 0.068 (2) 0.273 (7) 0.0062 (16) −0.022 (3) 0.061 (3)
O13 0.0176 (12) 0.066 (2) 0.161 (4) −0.0098 (13) −0.0059 (17) 0.005 (2)
O21 0.0401 (18) 0.073 (3) 0.168 (4) −0.0018 (17) −0.004 (2) −0.021 (3)
O22 0.097 (3) 0.0370 (16) 0.070 (2) 0.0127 (16) −0.0530 (19) −0.0170 (14)
O23 0.0467 (16) 0.104 (3) 0.0293 (13) 0.0229 (16) −0.0096 (11) −0.0139 (15)
O32 0.0461 (16) 0.088 (2) 0.077 (2) 0.0221 (16) −0.0221 (15) −0.0596 (19)
O33 0.0407 (15) 0.080 (2) 0.082 (2) 0.0242 (14) −0.0056 (14) −0.0527 (18)
O41 0.055 (2) 0.070 (2) 0.134 (4) −0.0152 (17) −0.038 (2) 0.037 (2)
O42 0.108 (3) 0.0457 (17) 0.0396 (15) −0.0042 (17) 0.0097 (16) −0.0170 (13)
O43 0.290 (7) 0.045 (2) 0.071 (3) 0.046 (3) −0.061 (4) −0.0152 (19)
C11 0.0193 (12) 0.0275 (14) 0.0320 (14) −0.0053 (10) 0.0064 (10) −0.0070 (11)
C12 0.0186 (13) 0.0289 (15) 0.053 (2) 0.0019 (11) 0.0050 (13) −0.0024 (14)
C13 0.0141 (12) 0.0352 (17) 0.065 (2) −0.0015 (11) 0.0042 (13) −0.0069 (16)
C14 0.0221 (14) 0.0362 (18) 0.063 (2) −0.0153 (13) 0.0074 (14) −0.0067 (16)
C15 0.037 (2) 0.071 (3) 0.084 (3) −0.022 (2) 0.026 (2) −0.004 (2)
C16 0.0244 (14) 0.0344 (17) 0.052 (2) −0.0068 (12) 0.0012 (13) 0.0044 (15)
C21 0.0313 (15) 0.0392 (17) 0.0229 (14) −0.0076 (13) 0.0035 (11) −0.0058 (12)
C22 0.0420 (18) 0.0303 (16) 0.0394 (18) 0.0068 (14) −0.0137 (14) −0.0113 (14)
C23 0.0357 (16) 0.0406 (18) 0.0284 (15) 0.0114 (14) −0.0086 (12) −0.0134 (13)
C24 0.0319 (16) 0.051 (2) 0.0359 (17) −0.0074 (15) −0.0003 (13) 0.0097 (15)
C25 0.042 (2) 0.043 (2) 0.069 (3) 0.0006 (17) 0.0065 (19) 0.0059 (19)
C26 0.069 (3) 0.048 (2) 0.0355 (19) −0.025 (2) −0.0065 (18) −0.0030 (16)
C31 0.0176 (12) 0.0325 (15) 0.0245 (13) −0.0023 (10) 0.0040 (10) −0.0050 (11)
C32 0.0244 (13) 0.0346 (16) 0.0305 (15) −0.0031 (12) 0.0001 (11) −0.0095 (12)
C33 0.0273 (14) 0.0327 (16) 0.0310 (15) 0.0078 (12) −0.0053 (11) −0.0106 (12)
C34 0.017 (3) 0.035 (5) 0.030 (5) 0.010 (3) 0.003 (3) 0.000 (3)
C35 0.027 (3) 0.043 (5) 0.035 (4) 0.001 (3) 0.013 (3) 0.003 (3)
O31 0.033 (3) 0.037 (4) 0.052 (4) 0.004 (3) 0.013 (3) 0.011 (3)
C34A 0.022 (4) 0.045 (7) 0.040 (7) 0.019 (4) −0.010 (4) −0.005 (5)
C35A 0.023 (4) 0.091 (11) 0.045 (5) −0.001 (7) 0.010 (4) 0.014 (8)
O31A 0.055 (6) 0.065 (7) 0.041 (4) −0.023 (5) −0.007 (3) 0.020 (4)
C36 0.0197 (13) 0.0441 (19) 0.0427 (18) −0.0038 (12) −0.0005 (12) −0.0198 (15)
C41 0.0229 (13) 0.0331 (16) 0.0294 (14) −0.0129 (11) −0.0008 (11) −0.0043 (12)
C42 0.0250 (13) 0.0332 (16) 0.0265 (14) −0.0074 (11) 0.0038 (11) −0.0078 (12)
C43 0.0394 (17) 0.0300 (16) 0.0348 (16) −0.0058 (13) −0.0052 (13) −0.0074 (13)
C44 0.059 (2) 0.039 (2) 0.044 (2) −0.0141 (17) −0.0106 (18) 0.0024 (16)
C45 0.060 (3) 0.058 (3) 0.060 (3) −0.004 (2) −0.009 (2) 0.011 (2)
C46 0.049 (2) 0.0420 (19) 0.0265 (15) −0.0144 (16) 0.0005 (14) −0.0057 (14)

Geometric parameters (Å, º)

Cu1—O1 1.8960 (18) N31—C31 1.337 (3)
Cu1—N11 1.949 (2) N31—C32 1.368 (4)
Cu1—Cl1 2.4152 (9) N32—C31 1.348 (4)
Cu1—Cl3 2.4351 (8) N32—C33 1.381 (4)
Cu1—Cl2 2.4435 (9) N32—C34 1.472 (9)
Cu2—O1 1.908 (2) N32—C34A 1.516 (10)
Cu2—N21 1.955 (3) N33—O33 1.226 (4)
Cu2—Cl6 2.3579 (10) N33—O32 1.240 (4)
Cu2—Cl2 2.3726 (9) N33—C33 1.423 (4)
Cu2—Cl4 2.4351 (9) N41—C41 1.343 (4)
Cu3—O1 1.9022 (19) N41—C42 1.368 (4)
Cu3—N31 1.955 (2) N42—C41 1.342 (4)
Cu3—Cl5 2.3877 (10) N42—C43 1.390 (4)
Cu3—Cl6 2.4113 (11) N42—C44 1.484 (5)
Cu3—Cl3 2.4312 (8) N43—O42 1.207 (4)
Cu4—O1 1.913 (2) N43—O43 1.209 (5)
Cu4—N41 1.972 (3) N43—C43 1.426 (5)
Cu4—Cl5 2.4186 (8) O11—C15 1.404 (6)
Cu4—Cl4 2.4314 (9) O21—C25 1.370 (5)
Cu4—Cl1 2.4332 (8) O41—C45 1.458 (6)
N11—C11 1.335 (4) C11—C16 1.480 (4)
N11—C12 1.356 (4) C12—C13 1.359 (4)
N12—C11 1.350 (4) C14—C15 1.501 (6)
N12—C13 1.373 (4) C21—C26 1.482 (5)
N12—C14 1.481 (4) C22—C23 1.352 (5)
N13—O12 1.195 (5) C24—C25 1.510 (5)
N13—O13 1.217 (4) C31—C36 1.480 (4)
N13—C13 1.426 (4) C32—C33 1.348 (4)
N21—C21 1.334 (4) C34—C35 1.490 (10)
N21—C22 1.359 (4) C35—O31 1.411 (9)
N22—C21 1.356 (4) C34A—C35A 1.495 (13)
N22—C23 1.376 (4) C35A—O31A 1.413 (13)
N22—C24 1.469 (4) C41—C46 1.480 (4)
N23—O23 1.236 (5) C42—C43 1.343 (5)
N23—O22 1.246 (5) C44—C45 1.474 (6)
N23—C23 1.425 (4)
O1—Cu1—N11 173.12 (10) C31—N31—C32 107.4 (2)
O1—Cu1—Cl1 86.13 (6) C31—N31—Cu3 125.4 (2)
N11—Cu1—Cl1 99.55 (7) C32—N31—Cu3 127.1 (2)
O1—Cu1—Cl3 84.63 (6) C31—N32—C33 106.1 (2)
N11—Cu1—Cl3 96.61 (7) C31—N32—C34 123.8 (6)
Cl1—Cu1—Cl3 112.86 (3) C33—N32—C34 129.5 (6)
O1—Cu1—Cl2 83.33 (6) C31—N32—C34A 122.8 (7)
N11—Cu1—Cl2 91.01 (7) C33—N32—C34A 129.4 (7)
Cl1—Cu1—Cl2 110.37 (3) O33—N33—O32 124.6 (3)
Cl3—Cu1—Cl2 134.02 (3) O33—N33—C33 119.6 (3)
O1—Cu2—N21 176.91 (10) O32—N33—C33 115.9 (3)
O1—Cu2—Cl6 86.06 (6) C41—N41—C42 107.0 (3)
N21—Cu2—Cl6 91.20 (8) C41—N41—Cu4 129.2 (2)
O1—Cu2—Cl2 85.06 (6) C42—N41—Cu4 123.4 (2)
N21—Cu2—Cl2 95.77 (8) C41—N42—C43 106.5 (3)
Cl6—Cu2—Cl2 132.47 (4) C41—N42—C44 125.2 (3)
O1—Cu2—Cl4 83.85 (6) C43—N42—C44 128.2 (3)
N21—Cu2—Cl4 98.64 (8) O42—N43—O43 124.0 (4)
Cl6—Cu2—Cl4 115.31 (4) O42—N43—C43 118.0 (3)
Cl2—Cu2—Cl4 109.97 (3) O43—N43—C43 117.9 (4)
O1—Cu3—N31 176.21 (10) Cu1—O1—Cu3 110.80 (9)
O1—Cu3—Cl5 85.31 (6) Cu1—O1—Cu2 108.46 (9)
N31—Cu3—Cl5 96.51 (9) Cu3—O1—Cu2 108.36 (10)
O1—Cu3—Cl6 84.68 (6) Cu1—O1—Cu4 108.74 (10)
N31—Cu3—Cl6 91.57 (9) Cu3—O1—Cu4 109.55 (9)
Cl5—Cu3—Cl6 126.01 (4) Cu2—O1—Cu4 110.93 (9)
O1—Cu3—Cl3 84.61 (6) N11—C11—N12 110.5 (3)
N31—Cu3—Cl3 97.52 (7) N11—C11—C16 125.5 (3)
Cl5—Cu3—Cl3 116.05 (3) N12—C11—C16 124.0 (3)
Cl6—Cu3—Cl3 115.56 (4) N11—C12—C13 107.8 (3)
O1—Cu4—N41 175.50 (9) C12—C13—N12 108.4 (3)
O1—Cu4—Cl5 84.21 (6) C12—C13—N13 126.4 (3)
N41—Cu4—Cl5 100.26 (7) N12—C13—N13 125.2 (3)
O1—Cu4—Cl4 83.84 (6) N12—C14—C15 112.4 (3)
N41—Cu4—Cl4 93.78 (7) O11—C15—C14 109.9 (3)
Cl5—Cu4—Cl4 113.26 (3) N21—C21—N22 110.5 (3)
O1—Cu4—Cl1 85.25 (6) N21—C21—C26 125.7 (3)
N41—Cu4—Cl1 93.57 (7) N22—C21—C26 123.7 (3)
Cl5—Cu4—Cl1 111.98 (3) C23—C22—N21 108.1 (3)
Cl4—Cu4—Cl1 131.90 (3) C22—C23—N22 108.5 (3)
Cu1—Cl1—Cu4 79.38 (2) C22—C23—N23 125.7 (3)
Cu2—Cl2—Cu1 79.70 (2) N22—C23—N23 125.6 (3)
Cu3—Cl3—Cu1 79.95 (3) N22—C24—C25 111.6 (3)
Cu4—Cl4—Cu2 80.61 (2) O21—C25—C24 111.5 (4)
Cu3—Cl5—Cu4 80.86 (3) N31—C31—N32 110.3 (2)
Cu2—Cl6—Cu3 80.74 (3) N31—C31—C36 125.6 (3)
C11—N11—C12 107.5 (2) N32—C31—C36 124.2 (2)
C11—N11—Cu1 123.7 (2) C33—C32—N31 107.8 (3)
C12—N11—Cu1 128.4 (2) C32—C33—N32 108.4 (3)
C11—N12—C13 105.8 (2) C32—C33—N33 126.4 (3)
C11—N12—C14 124.5 (3) N32—C33—N33 125.1 (3)
C13—N12—C14 129.7 (3) N32—C34—C35 110.2 (7)
O12—N13—O13 122.9 (3) O31—C35—C34 110.9 (8)
O12—N13—C13 117.5 (3) C35A—C34A—N32 112.3 (8)
O13—N13—C13 119.7 (4) O31A—C35A—C34A 111.8 (9)
C21—N21—C22 107.3 (3) N42—C41—N41 110.2 (3)
C21—N21—Cu2 126.3 (2) N42—C41—C46 124.1 (3)
C22—N21—Cu2 126.1 (2) N41—C41—C46 125.7 (3)
C21—N22—C23 105.6 (3) C43—C42—N41 108.6 (3)
C21—N22—C24 125.2 (3) C42—C43—N42 107.6 (3)
C23—N22—C24 127.8 (3) C42—C43—N43 124.9 (3)
O23—N23—O22 125.4 (3) N42—C43—N43 127.3 (3)
O23—N23—C23 118.8 (4) C45—C44—N42 110.4 (3)
O22—N23—C23 115.9 (4) O41—C45—C44 109.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O41—H41A···O31i 0.89 (2) 2.13 (3) 2.738 (8) 125 (2)

Symmetry code: (i) x+1/2, y−1/2, z.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Athar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1320–1330. [DOI] [PubMed]
  3. Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681–5685.
  4. Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333–1341.
  5. Bertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746–4747.
  6. Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Garza, M. G., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704–2712.
  7. Brescia, T. K., Mulosmani, K., Gulati, S., Athanasopoulos, D. & Upmacis, R. K. (2018). Acta Cryst. E74, 309–312. [DOI] [PMC free article] [PubMed]
  8. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Chiarella, G. M., Melgarejo, D. Y. & Fackler Jr, J. P. (2009). Acta Cryst. C65, m228–m230. [DOI] [PubMed]
  10. Chiarella, G. M., Melgarejo, D. Y., Prosvirin, A. V., Dunbar, K. R. & Fackler, J. P. (2010). J. Clust Sci. 21, 551–565.
  11. Clegg, W., Nicholson, J. R., Collison, D. & Garner, C. D. (1988). Acta Cryst. C44, 453–461.
  12. Cortés, P., Atria, A. M., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m311–m314. [DOI] [PubMed]
  13. Daszkiewicz, M. (2013). CrystEngComm, 15, 10427–10430.
  14. Erdonmez, A., van Diemen, J. H., de Graaff, R. A. G. & Reedijk, J. (1990). Acta Cryst. C46, 402–404.
  15. Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339–348. [DOI] [PubMed]
  16. Jian, F. F., Zhao, P. S., Wang, H. X. & Lu, L. D. (2004). Bull. Kor. Chem. Soc. 25, 673–675.
  17. Li, H., Jiang, H. & Sun, H. (2011). Acta Cryst. E67, m1372. [DOI] [PMC free article] [PubMed]
  18. Norman, R. E., Rose, N. J. & Stenkamp, R. E. (1989). Acta Cryst. C45, 1707–1713.
  19. Palmer, J. H. & Parkin, G. (2014). Dalton Trans. 43, 13874–13882. [DOI] [PMC free article] [PubMed]
  20. Palmer, J. H. & Upmacis, R. K. (2015). Acta Cryst. E71, 284–287. [DOI] [PMC free article] [PubMed]
  21. Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177–182.
  22. Quinlivan, P. J. & Upmacis, R. K. (2016). Acta Cryst. E72, 1633–1636. [DOI] [PMC free article] [PubMed]
  23. Quinlivan, P. J., Wu, J.-S. & Upmacis, R. K. (2015). Acta Cryst. E71, 810–812. [DOI] [PMC free article] [PubMed]
  24. Ratajczak-Sitarz, M., Katrusiak, A., Wojakowska, H., Januszczyk, M., Krzyminiewski, R. & Pietrzak, J. (1998). Inorg. Chim. Acta, 269, 326–331.
  25. Samuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533–1541. [DOI] [PMC free article] [PubMed]
  26. She, G., Liu, S. Y., Wu, X. M., Guo, J. H., Wang, X. G. & Liu, Q. X. (2010). Chin. J. Inorg. Chem. 26, 515–520.
  27. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  29. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  30. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  31. Tosik, A., Bukowska-Strzyzewska, M. & Mrozinski, J. (1991). J. Coord. Chem. 24, 113–125.
  32. WHO (2015). Who. Tech. Rep. Ser. 994, 1-546.
  33. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  34. Zhang, Y.-Q., Xu, D.-J. & Su, J.-R. (2003). Acta Cryst. E59, m919–m920.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019008570/hb7801sup1.cif

e-75-01057-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008570/hb7801Isup2.hkl

e-75-01057-Isup2.hkl (1.2MB, hkl)

CCDC reference: 1923275

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES