Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 21;75(Pt 7):1005–1010. doi: 10.1107/S2056989019008089

Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]

Franco Palominos a, Carolina Muñoz a, Poldie Oyarzun b, Marianela Saldías a, Andrés Vega a,*
PMCID: PMC6659321  PMID: 31392014

The reaction of the ligand di­pyridyl­phosphine with (Re(CO)3(OC4H8)Br)2 followed by crystallization in chloro­form leads to [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3. Reaction of this complex with piperidine leads to partial decoordination of the 2-pyridyl­phosphine in the product, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br], which displays an intra­molecular hydrogen bond between the piperidine aminic hydrogen atom and the uncoordinated pyridyl group, with DA = 2.992 (9) Å.

Keywords: crystal structure, di­phenyl­pyridyl­phosphine, rhenium(I) tricarbon­yl, Hirshfeld surface analysis, two-dimensional fingerprint plots, thermogravimetric analysis

Abstract

The coordination of the ligands with respect to the central atom in the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κ2 N,P]rhenium(I) chloro­form disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octa­hedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-di­phenyl­pyridyl­phosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H inter­actions contribute 26%, the distance of these inter­actions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in di­chloro­methane leads to the partial decoord­ination of the pyridyl­phosphine ligand, whose pyridyl group is replaced by a piperidine mol­ecule, and the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The mol­ecule has an intra­molecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine with DA = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloro­form mol­ecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridyl­phosphine. The contribution to the scattering from highly disordered solvent mol­ecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for M r, μ etc. do not take this solvent into account.

Chemical context  

Phosphine-type ligands having a second type of atom or coordinating function have been of great inter­est in many areas of chemistry. The existence of a second coordination atom with different properties, coordination capability or trans effect adds possibilities during a catalytic cycle (Guiry & Saunders, 2004). In particular, much attention has been paid to one of the simplest mol­ecules of this kind, di­phenyl­pyridyl­phosphine P(C6H5)2(C5H5N) (PPh2Py). The mol­ecule is a rigid bidentate ligand (Abram et al., 1999; Knebel & Angelici, 1973).

The reaction of the di­phenyl­pyridyl­phosphine ligand with the rhenium dimer (Re(CO)3(OC4H8)Br)2 in chloro­form as solvent leads to the complex P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 (I·2CHCl3). It presents a similar structure to the widely studied [(N,N)Re(CO)3(L)] complexes, which have inter­esting photophysical and photochemical properties (Cannizzo et al., 2008). Complex I has been shown to be a dual emitter (Pizarro et al., 2015). It is also inter­esting to note that the PPh2Py ligand can be partially decoordinated by reaction of the complex with a monodentate ligand, like piperidine (C5H11N), leading to the complex [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II).graphic file with name e-75-01005-scheme1.jpg

Structural commentary  

The mononuclear ReI complex I with a bidentate P,N (chelating) ligand crystallized from a chloro­form solution in the monoclinic space P21/c. Selected geometrical data are summarized in Table 1, and the mol­ecular structure of complex I·2CHCl3 is given in Fig. 1. The coordination environment of the central rhenium atom is defined for phos­phorus and nitro­gen atoms from PPh2Py, a bromide atom in an apical position and three carbonyl carbon atoms in a fac correlation, generating a distorted octa­hedral environment. Additionally, two chloro­form mol­ecules crystallize together with the complex mol­ecule.

Table 1. Selected geometric parameters (Å, °) for I·2CHCl3 .

Re1—C2 1.892 (6) Re1—N1 2.173 (4)
Re1—C1 1.914 (5) Re1—P1 2.4687 (13)
Re1—C3 1.943 (5) Re1—Br1 2.6066 (8)
       
C2—Re1—C1 90.2 (2) C3—Re1—P1 163.62 (15)
C2—Re1—C3 88.3 (2) N1—Re1—P1 65.39 (9)
C1—Re1—C3 93.39 (19) C2—Re1—Br1 176.20 (14)
C2—Re1—N1 93.39 (17) C1—Re1—Br1 92.84 (14)
C1—Re1—N1 167.89 (15) C3—Re1—Br1 89.22 (15)
C3—Re1—N1 98.27 (17) N1—Re1—Br1 84.11 (10)
C2—Re1—P1 93.56 (13) P1—Re1—Br1 88.01 (3)
C1—Re1—P1 102.86 (12)    

Figure 1.

Figure 1

Mol­ecular view of complex I·2CHCl3, showing the numbering scheme. Displacement ellipsoids are shown at the 33% probability level. For clarity, the C-bound H atoms of I have been omitted.

The mononuclear ReI complex II, crystallized from a CH2Cl2/CH3CN (2:1) solution in the triclinic space group P Inline graphic. Selected geometrical data are given in Table 2, and the mol­ecular structure of the complex is illustrated in Fig. 2. The central rhenium atom displays a non-regular octa­hedral coordination geometry, with three facial carbonyl groups, a monodentate PPh2Py ligand, a piperidine C5H11N mol­ecule and a bromide anion. The piperidine ring displays a chair-like conformation. An intra­molecular hydrogen bond is defined between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine, N2—H2N⋯N1, with DA = 2.992 (9) Å (Table 4). There are also two C—H⋯Br intra­molecular contacts present involving atom Br1 and a phenyl H atom (H14) and a methyl­ene H atom (H22B) of the pypridine ring (Table 4).

Table 2. Selected geometric parameters (Å, °) for II .

Re1—C1 1.870 (8) Re1—N2 2.246 (6)
Re1—C2 1.918 (7) Re1—P1 2.4915 (18)
Re1—C3 1.932 (8) Re1—Br1 2.6430 (9)
       
C1—Re1—C2 90.1 (3) C3—Re1—P1 89.0 (2)
C1—Re1—C3 89.4 (3) N2—Re1—P1 93.28 (16)
C2—Re1—C3 88.0 (3) C1—Re1—Br1 175.3 (2)
C1—Re1—N2 92.3 (3) C2—Re1—Br1 92.1 (2)
C2—Re1—N2 89.6 (3) C3—Re1—Br1 94.9 (2)
C3—Re1—N2 177.1 (3) N2—Re1—Br1 83.53 (17)
C1—Re1—P1 91.6 (2) P1—Re1—Br1 86.44 (5)
C2—Re1—P1 176.6 (2)    

Figure 2.

Figure 2

Mol­ecular view of complex II showing the numbering scheme. Displacement ellipsoids are shown at the 33% probability level. For clarity, the C-bound H atoms have been omitted.

Table 4. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1 0.82 2.34 2.992 (9) 138
C14—H14⋯Br1 0.93 2.78 3.586 (8) 146
C22—H22B⋯Br1 0.97 2.83 3.499 (7) 127

Supra­molecular features  

In the crystal of I·2CHCl3, the lattice has two solvating mol­ecules of chloro­form per complex mol­ecule. The cell has a larger volume than for the unsolvated one [2836.7 (15) vs 2119.2 (3) Å3 (Venegas et al., 2011)] whose geometrical parameters are very similar to those of complex I. In the crystal, the chloro­form solvent mol­ecules are involved in weak C—H⋯Br hydrogen bonds and they link the complex mol­ecules to form layers lying parallel to the bc plane (Fig. 3 and Table 3).

Figure 3.

Figure 3

A view along the b axis of the crystal packing of complex I·2CHCl3. The hydrogen bonds are shown as dashed lines (see Table 3).

Table 3. Hydrogen-bond geometry (Å, °) for I·2CHCl3 .

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯Br1i 0.98 2.66 3.490 (5) 143
C4—H4⋯Br1ii 0.93 2.80 3.552 (5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the crystal of II, a region of highly disordered electron density was equated to the present of a disordered aceto­nitrile mol­ecule. The contribution to the scattering was removed with the SQUEEZE routine in PLATON (Spek, 2015). A view of the crystal packing, showing the regions, or voids, occupied by this disordered solvent in given in Fig. 4.

Figure 4.

Figure 4

A view along the b axis of the crystal packing of complex II. The voids occupied by the disordered solvent mol­ecules are shown in yellow–brown (calculated using Mercury; Macrae et al., 2008).

Hirshfeld surface analysis of complex I·2CHCl3  

In order to visualize and qu­antify the inter­molecular inter­actions in the crystal packing of complex I·2CHCl3, in particular those involving the chloro­form solvent mol­ecules, an Hirshfeld surface analysis was performed and two-dimensional fingerprint plots generated. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface mapped over d norm = d e + d i, is given in Fig. 5 a (d e represents the distance from the surface to the nearest nucleus external to the surface, and d i is the distance from the surface to the nearest nucleus inter­nal to the surface). In this d norm view (Fig. 5 a), blue represents the longest distances while the shortest distances are depicted as red spots (Dalal et al., 2015).

Figure 5.

Figure 5

(a) The Hirshfeld surface of complex I·2CHCl3, mapped over d norm in the range −0.2767 to +1.3337 arbitrary units. (b) The two-dimensional fingerprint plot of complex I·2CHCl3.

The two-dimensional fingerprint plot for the whole complex is given in Fig. 5 b. Apart from the H⋯H inter­molecular contacts that contribute ca 15% the other most relevant inter­molecular inter­actions, as determined from the Hirshfeld surface analysis of complex I·2CHCl3, are shown in Fig. 6. The Cl⋯H/H⋯Cl, O⋯H/H⋯O and C⋯H/H⋯C inter­actions contribute 26.0, 15.4 and 9.8%, respectively, to the Hirshfeld surface. Some distances for these inter­actions are Cl1⋯H19 = 2.90 Å, H22⋯O2 = 2.69 Å and H21⋯Br1 = 2.66 Å.

Figure 6.

Figure 6

Two-dimensional fingerprint plots with a d norm view of the Cl⋯H/H⋯Cl (26.0%), O⋯H/H⋯O (15.4%), C⋯H/H⋯C (9.8%) and Br⋯H/H⋯Br (7.6%) contacts in the coordination complex I·2CHCl3.

Thermogravimetric analysis  

Thermogravimetric analyses from 25 to 300°C were performed for both compounds under an N2 flux at a heating rate of 1°C min−1 (see Fig. 7). Thermogravimetric analysis for compound I·2CHCl3 (Fig. 7, red line), shows that it loses 28% of its mass in a narrow range, between 45 and 60°C. This mass loss is completely consistent with the two solvating chloro­form mol­ecules detected by the crystal structure analysis. The boiling point of chloro­form, 61°C, is almost identical to the temperature where the mass loss stops, suggesting that the chloro­form mol­ecules are weakly bonded to the rhenium ones in the solid. From 60 to 300°C the remaining matrix is completely stable.

Figure 7.

Figure 7

Weight loss for I·2CHCl3 (red line) and II (blue line) between room temperature and 300°C.

Compound II loses 12% of its initial mass between 154 and 190°C (Fig. 7, blue line). This loss of mass can be associated with the release of the aceto­nitrile and piperidine mol­ecules (14.7%). The relatively high temperature at which decomposition begins compared to the piperidine boiling point, 105°C, suggest that it is strongly bonded to II. From 190 to 300°C, another 33% of mass loss is registered, which can be associated with the release of the PPh2Py (36.6%, b.p.163°C).

Database survey  

The di­phenyl­pyridyl­phosphine ligand has been extensively studied and used as a monodentate and bidentate ligand with different metals, including RuII (Ooyama & Sato, 2004) where the CO2-reducing properties of the complex were studied. Another RuII complex with PPh2Py (Kumar et al., 2011) has been studied as an inhibitor of DNA-topoisomerases of the filarial parasite S. cervi. ReI–nitro­sil complexes with PPh2Py have been studied structurally and photophysically (Machura & Kruszynski, 2006).

Piperidine is a ligand that has been widely used with various transition metals. It has been used as a ligand with tungsten and molybdenum to study the cistrans effect by using larger ligands and increasing the steric hindrance (Darensbourg et al., 2007).

Synthesis and crystallization  

The reagents, (Re(CO)3(OC4H8)Br)2 and (C6H5)2(C5H5N)P were used as provided from supplier (Aldrich), with no purification before use. Seccosolv™ solvents were used without any further purification. Standard Schlenck techniques under argon atmosphere were used for all manipulations.

Synthesis of I. 500 mg of (Re(CO)3(OC4H8)Br)2 (0.590 mmol) were dissolved in 5 ml of chloro­form. 312 mg of diphenyl-2-pyridyl­phosphine (1.18 mmol) was dissolved in 10 ml of chloro­form. The two solutions were mixed, changing from colourless to a translucent yellow after 10 minutes of reaction. The reaction was left to continue for a further 2 h. Addition of 2 ml of pentane to the mixture and standing by one day lead to yellow diffraction-quality crystals of I·2CHCl3 (601 mg, 82.8% yield).graphic file with name e-75-01005-scheme2.jpg

Synthesis of II. The compound was prepared by direct reaction between I and an excess of piperidine (C5H11N) at 313 K in CH2Cl2. 50.0 mg of [P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br] (0.082 mmol) were dissolved in 10 ml of CH2Cl2 giving rise to a yellow solution. Then, 40 µL of piperidine (0.51 mmol) was slowly added. The reaction was allowed to continue for six days with constant agitation at 313 K. After cooling, the reaction mixture was layered with aceto­nitrile. Small orange–yellow diffraction-quality crystals were obtained after one week.graphic file with name e-75-01005-scheme3.jpg

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. For both compounds, the hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with U iso(H) = 1.2U eq(C). For II, the amine hydrogen atom of the piperidine ring was located in a Fourier-difference map and then subsequently refined with a distant constraint of 0.82 Å. During the last stages of the refinement of II, a region of highly disordered electron density was detected within the crystal structure. As no meaningful model could be achieved, SQUEEZE (Spek, 2015) was used to model the unresolved electron density resulting from the disordered solvent. 25 electrons per cell suggest, in addition to thermogravimetry, a half aceto­nitrile mol­ecule per complex mol­ecule of II. The contribution of this solvent was not included in the crystal data.

Table 5. Experimental details.

  I·2CHCl3 II
Crystal data
Chemical formula [ReBr(C17H14NP)(CO)3]·2CHCl3 [ReBr(C5H11N)(C17H14NP)(CO)3]
M r 852.14 698.55
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 150 150
a, b, c (Å) 14.194 (4), 12.314 (4), 16.249 (5) 9.1384 (17), 9.8348 (18), 15.671 (3)
α, β, γ (°) 90, 92.701 (4), 90 82.956 (2), 82.047 (2), 69.765 (2)
V3) 2836.7 (15) 1304.5 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 6.34 6.28
Crystal size (mm) 0.16 × 0.13 × 0.05 0.07 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012) Numerical (SADABS; Bruker, 2012)
T min, T max 0.386, 0.746 0.560, 0.858
No. of measured, independent and observed [I > 2σ(I)] reflections 19979, 5550, 4526 10214, 5113, 4493
R int 0.048 0.042
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.065, 0.99 0.042, 0.082, 1.11
No. of reflections 5550 5113
No. of parameters 317 303
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.35 1.96, −1.79

Computer programs: SMART and SAINT (Bruker, 2012), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I-2CHCl3, II, Global. DOI: 10.1107/S2056989019008089/nk2249sup1.cif

e-75-01005-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I-2CHCl3. DOI: 10.1107/S2056989019008089/nk2249I-2CHCl3sup2.hkl

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019008089/nk2249IIsup3.hkl

e-75-01005-IIsup3.hkl (406.8KB, hkl)

CCDC references: 1921165, 1921164

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Laboratory Analysis of Solids (LAS-UNAB) for granting access to its instrumental facilities and software.

supplementary crystallographic information

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Crystal data

[ReBr(C17H14NP)(CO)3]·2CHCl3 F(000) = 1624
Mr = 852.14 Dx = 1.995 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.194 (4) Å Cell parameters from 6313 reflections
b = 12.314 (4) Å θ = 2.5–28.5°
c = 16.249 (5) Å µ = 6.34 mm1
β = 92.701 (4)° T = 150 K
V = 2836.7 (15) Å3 Block, yellow
Z = 4 0.16 × 0.13 × 0.05 mm

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Data collection

Bruker SMART CCD area detector diffractometer 4526 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.048
phi and ω scans θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −17→17
Tmin = 0.386, Tmax = 0.746 k = −15→15
19979 measured reflections l = −19→20
5550 independent reflections

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
5550 reflections Δρmax = 0.39 e Å3
317 parameters Δρmin = −0.35 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00027 (8)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Re1 0.29082 (2) 0.42455 (2) 0.08046 (2) 0.06954 (7)
Br1 0.45807 (3) 0.36073 (4) 0.13313 (3) 0.07781 (13)
P1 0.25501 (8) 0.23375 (8) 0.04434 (7) 0.0705 (3)
N1 0.3373 (3) 0.3742 (3) −0.0392 (2) 0.0722 (9)
C1 0.2470 (3) 0.4367 (3) 0.1897 (3) 0.0742 (11)
O1 0.2190 (3) 0.4391 (3) 0.2547 (2) 0.0860 (9)
C2 0.1733 (4) 0.4761 (3) 0.0367 (3) 0.0779 (11)
O2 0.1045 (3) 0.5103 (3) 0.0100 (2) 0.0879 (9)
C3 0.3368 (4) 0.5732 (4) 0.0793 (3) 0.0792 (11)
O3 0.3635 (3) 0.6583 (3) 0.0772 (2) 0.0949 (10)
C4 0.3826 (3) 0.4234 (4) −0.0986 (3) 0.0783 (11)
H4 0.3974 0.4967 −0.0932 0.094*
C5 0.4076 (4) 0.3694 (4) −0.1669 (3) 0.0861 (13)
H5 0.4382 0.4061 −0.2079 0.103*
C6 0.3879 (4) 0.2598 (4) −0.1759 (3) 0.0855 (13)
H6 0.4053 0.2222 −0.2224 0.103*
C7 0.3422 (3) 0.2081 (4) −0.1148 (3) 0.0792 (11)
H7 0.3283 0.1344 −0.1189 0.095*
C8 0.3171 (3) 0.2667 (3) −0.0476 (3) 0.0701 (10)
C9 0.3085 (3) 0.1116 (3) 0.0857 (3) 0.0735 (11)
C10 0.4032 (4) 0.0890 (3) 0.0778 (3) 0.0788 (12)
H10 0.4404 0.1362 0.0486 0.095*
C11 0.4429 (4) −0.0041 (4) 0.1134 (3) 0.0860 (13)
H11 0.5066 −0.0187 0.1080 0.103*
C12 0.3890 (4) −0.0741 (4) 0.1561 (3) 0.0896 (14)
H12 0.4161 −0.1365 0.1793 0.108*
C13 0.2950 (4) −0.0530 (4) 0.1651 (3) 0.0873 (14)
H13 0.2586 −0.1006 0.1946 0.105*
C14 0.2549 (4) 0.0392 (4) 0.1300 (3) 0.0812 (12)
H14 0.1912 0.0532 0.1360 0.097*
C15 0.1366 (3) 0.1951 (3) 0.0108 (3) 0.0723 (10)
C16 0.1182 (4) 0.1207 (4) −0.0506 (3) 0.0830 (12)
H16 0.1680 0.0861 −0.0750 0.100*
C17 0.0272 (4) 0.0967 (4) −0.0765 (3) 0.0912 (14)
H17 0.0156 0.0465 −0.1185 0.109*
C18 −0.0466 (4) 0.1470 (4) −0.0402 (4) 0.0987 (16)
H18 −0.1084 0.1319 −0.0583 0.118*
C19 −0.0293 (4) 0.2190 (4) 0.0223 (4) 0.1030 (17)
H19 −0.0794 0.2512 0.0480 0.124*
C20 0.0622 (4) 0.2446 (4) 0.0478 (4) 0.0910 (14)
H20 0.0736 0.2950 0.0897 0.109*
C21 0.3309 (4) 0.7174 (4) 0.3787 (3) 0.0853 (13)
H21 0.3903 0.7468 0.4026 0.102*
Cl1 0.24667 (11) 0.82254 (11) 0.37214 (10) 0.1001 (4)
Cl2 0.29219 (12) 0.61431 (11) 0.44304 (10) 0.1061 (4)
Cl3 0.35045 (12) 0.66739 (12) 0.28107 (9) 0.1034 (4)
C22 0.0251 (4) 0.0957 (4) 0.3284 (4) 0.0959 (15)
H22 0.0155 0.1018 0.3876 0.115*
Cl4 0.02810 (13) −0.04155 (12) 0.30240 (11) 0.1102 (4)
Cl5 0.13277 (12) 0.15706 (16) 0.30768 (12) 0.1288 (6)
Cl6 −0.06727 (13) 0.16078 (13) 0.27497 (13) 0.1261 (6)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.06848 (12) 0.06853 (9) 0.07162 (11) 0.00019 (7) 0.00347 (7) 0.00016 (7)
Br1 0.0707 (3) 0.0804 (2) 0.0822 (3) −0.00035 (19) 0.0024 (2) 0.0055 (2)
P1 0.0706 (7) 0.0695 (5) 0.0717 (7) 0.0009 (5) 0.0046 (5) −0.0012 (5)
N1 0.069 (2) 0.0740 (18) 0.074 (2) 0.0018 (16) 0.0066 (17) 0.0004 (16)
C1 0.071 (3) 0.071 (2) 0.079 (3) −0.0012 (19) −0.005 (2) 0.000 (2)
O1 0.088 (2) 0.097 (2) 0.074 (2) 0.0047 (17) 0.0056 (17) −0.0020 (16)
C2 0.088 (3) 0.070 (2) 0.077 (3) 0.000 (2) 0.012 (2) −0.003 (2)
O2 0.078 (2) 0.092 (2) 0.092 (2) 0.0048 (17) −0.0031 (18) 0.0046 (17)
C3 0.083 (3) 0.079 (2) 0.074 (3) 0.005 (2) −0.006 (2) −0.005 (2)
O3 0.111 (3) 0.0759 (18) 0.097 (3) −0.0122 (18) 0.000 (2) 0.0000 (16)
C4 0.073 (3) 0.080 (2) 0.083 (3) 0.002 (2) 0.009 (2) 0.008 (2)
C5 0.076 (3) 0.099 (3) 0.083 (3) 0.002 (2) 0.013 (2) 0.010 (2)
C6 0.080 (3) 0.100 (3) 0.077 (3) 0.005 (2) 0.007 (2) −0.002 (2)
C7 0.074 (3) 0.083 (2) 0.081 (3) −0.001 (2) 0.002 (2) −0.006 (2)
C8 0.064 (3) 0.071 (2) 0.074 (3) 0.0006 (17) 0.001 (2) 0.0005 (18)
C9 0.080 (3) 0.071 (2) 0.069 (3) −0.0015 (19) 0.002 (2) −0.0065 (18)
C10 0.080 (3) 0.071 (2) 0.085 (3) 0.001 (2) −0.003 (2) −0.003 (2)
C11 0.083 (3) 0.079 (2) 0.095 (4) 0.011 (2) −0.005 (3) −0.004 (2)
C12 0.101 (4) 0.076 (2) 0.090 (3) 0.006 (3) −0.010 (3) −0.002 (2)
C13 0.104 (4) 0.077 (2) 0.079 (3) −0.003 (2) −0.005 (3) 0.008 (2)
C14 0.081 (3) 0.081 (2) 0.082 (3) 0.003 (2) 0.003 (2) −0.001 (2)
C15 0.072 (3) 0.0675 (19) 0.078 (3) −0.0029 (18) 0.004 (2) 0.0041 (18)
C16 0.080 (3) 0.087 (3) 0.083 (3) −0.010 (2) 0.006 (2) 0.000 (2)
C17 0.087 (4) 0.100 (3) 0.087 (4) −0.015 (3) 0.001 (3) 0.000 (3)
C18 0.078 (4) 0.093 (3) 0.123 (5) −0.014 (3) −0.009 (3) 0.010 (3)
C19 0.073 (4) 0.090 (3) 0.146 (5) −0.003 (3) 0.014 (3) −0.006 (3)
C20 0.079 (3) 0.081 (3) 0.115 (4) −0.003 (2) 0.018 (3) −0.013 (3)
C21 0.085 (3) 0.088 (3) 0.084 (3) −0.008 (2) 0.007 (3) 0.006 (2)
Cl1 0.1005 (10) 0.0898 (7) 0.1106 (10) 0.0026 (6) 0.0119 (8) 0.0115 (7)
Cl2 0.1271 (13) 0.0897 (7) 0.1023 (10) −0.0028 (7) 0.0146 (9) 0.0158 (7)
Cl3 0.1147 (11) 0.1028 (8) 0.0938 (9) −0.0140 (8) 0.0153 (8) −0.0114 (7)
C22 0.087 (4) 0.108 (3) 0.092 (4) −0.008 (3) −0.001 (3) −0.006 (3)
Cl4 0.1192 (12) 0.1039 (8) 0.1067 (11) 0.0020 (8) −0.0035 (9) 0.0022 (8)
Cl5 0.1014 (12) 0.1516 (14) 0.1350 (14) −0.0353 (10) 0.0217 (10) −0.0418 (11)
Cl6 0.1167 (13) 0.1064 (9) 0.1519 (16) −0.0004 (9) −0.0286 (11) 0.0013 (9)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Geometric parameters (Å, º)

Re1—C2 1.892 (6) C11—C12 1.364 (7)
Re1—C1 1.914 (5) C11—H11 0.9300
Re1—C3 1.943 (5) C12—C13 1.373 (8)
Re1—N1 2.173 (4) C12—H12 0.9300
Re1—P1 2.4687 (13) C13—C14 1.382 (6)
Re1—Br1 2.6066 (8) C13—H13 0.9300
P1—C9 1.800 (5) C14—H14 0.9300
P1—C15 1.806 (5) C15—C16 1.370 (6)
P1—C8 1.815 (5) C15—C20 1.382 (6)
N1—C4 1.330 (5) C16—C17 1.371 (7)
N1—C8 1.360 (5) C16—H16 0.9300
C1—O1 1.147 (5) C17—C18 1.374 (8)
C2—O2 1.131 (6) C17—H17 0.9300
C3—O3 1.116 (5) C18—C19 1.362 (8)
C4—C5 1.355 (7) C18—H18 0.9300
C4—H4 0.9300 C19—C20 1.381 (8)
C5—C6 1.384 (7) C19—H19 0.9300
C5—H5 0.9300 C20—H20 0.9300
C6—C7 1.368 (7) C21—Cl3 1.737 (5)
C6—H6 0.9300 C21—Cl2 1.749 (5)
C7—C8 1.370 (6) C21—Cl1 1.762 (5)
C7—H7 0.9300 C21—H21 0.9800
C9—C10 1.385 (6) C22—Cl6 1.735 (6)
C9—C14 1.394 (6) C22—Cl4 1.743 (6)
C10—C11 1.392 (6) C22—Cl5 1.751 (6)
C10—H10 0.9300 C22—H22 0.9800
C2—Re1—C1 90.2 (2) C9—C10—C11 120.2 (5)
C2—Re1—C3 88.3 (2) C9—C10—H10 119.9
C1—Re1—C3 93.39 (19) C11—C10—H10 119.9
C2—Re1—N1 93.39 (17) C12—C11—C10 120.5 (5)
C1—Re1—N1 167.89 (15) C12—C11—H11 119.8
C3—Re1—N1 98.27 (17) C10—C11—H11 119.8
C2—Re1—P1 93.56 (13) C11—C12—C13 120.3 (5)
C1—Re1—P1 102.86 (12) C11—C12—H12 119.9
C3—Re1—P1 163.62 (15) C13—C12—H12 119.9
N1—Re1—P1 65.39 (9) C12—C13—C14 119.8 (5)
C2—Re1—Br1 176.20 (14) C12—C13—H13 120.1
C1—Re1—Br1 92.84 (14) C14—C13—H13 120.1
C3—Re1—Br1 89.22 (15) C13—C14—C9 120.9 (5)
N1—Re1—Br1 84.11 (10) C13—C14—H14 119.5
P1—Re1—Br1 88.01 (3) C9—C14—H14 119.5
C9—P1—C15 105.2 (2) C16—C15—C20 119.2 (5)
C9—P1—C8 106.3 (2) C16—C15—P1 122.6 (4)
C15—P1—C8 106.9 (2) C20—C15—P1 118.2 (4)
C9—P1—Re1 128.88 (16) C15—C16—C17 120.8 (5)
C15—P1—Re1 120.04 (14) C15—C16—H16 119.6
C8—P1—Re1 83.14 (13) C17—C16—H16 119.6
C4—N1—C8 118.5 (4) C16—C17—C18 119.8 (5)
C4—N1—Re1 134.2 (3) C16—C17—H17 120.1
C8—N1—Re1 107.2 (3) C18—C17—H17 120.1
O1—C1—Re1 176.7 (4) C19—C18—C17 119.9 (5)
O2—C2—Re1 177.7 (4) C19—C18—H18 120.1
O3—C3—Re1 178.8 (5) C17—C18—H18 120.1
N1—C4—C5 121.7 (4) C18—C19—C20 120.5 (5)
N1—C4—H4 119.2 C18—C19—H19 119.8
C5—C4—H4 119.2 C20—C19—H19 119.8
C4—C5—C6 120.3 (5) C19—C20—C15 119.7 (5)
C4—C5—H5 119.8 C19—C20—H20 120.1
C6—C5—H5 119.8 C15—C20—H20 120.1
C7—C6—C5 118.6 (5) Cl3—C21—Cl2 110.9 (3)
C7—C6—H6 120.7 Cl3—C21—Cl1 110.0 (3)
C5—C6—H6 120.7 Cl2—C21—Cl1 109.8 (3)
C6—C7—C8 118.9 (4) Cl3—C21—H21 108.7
C6—C7—H7 120.6 Cl2—C21—H21 108.7
C8—C7—H7 120.6 Cl1—C21—H21 108.7
N1—C8—C7 122.0 (4) Cl6—C22—Cl4 110.7 (3)
N1—C8—P1 104.1 (3) Cl6—C22—Cl5 110.5 (3)
C7—C8—P1 133.9 (3) Cl4—C22—Cl5 109.9 (3)
C10—C9—C14 118.4 (4) Cl6—C22—H22 108.6
C10—C9—P1 121.8 (3) Cl4—C22—H22 108.6
C14—C9—P1 119.7 (4) Cl5—C22—H22 108.6
C8—N1—C4—C5 0.8 (7) C14—C9—C10—C11 0.1 (7)
Re1—N1—C4—C5 176.3 (4) P1—C9—C10—C11 177.4 (4)
N1—C4—C5—C6 −1.2 (8) C9—C10—C11—C12 0.2 (8)
C4—C5—C6—C7 0.5 (8) C10—C11—C12—C13 −0.5 (8)
C5—C6—C7—C8 0.4 (7) C11—C12—C13—C14 0.5 (8)
C4—N1—C8—C7 0.2 (7) C12—C13—C14—C9 −0.2 (8)
Re1—N1—C8—C7 −176.4 (4) C10—C9—C14—C13 −0.1 (7)
C4—N1—C8—P1 −179.2 (3) P1—C9—C14—C13 −177.5 (4)
Re1—N1—C8—P1 4.2 (3) C9—P1—C15—C16 −63.3 (4)
C6—C7—C8—N1 −0.8 (7) C8—P1—C15—C16 49.5 (4)
C6—C7—C8—P1 178.3 (4) Re1—P1—C15—C16 141.4 (3)
C9—P1—C8—N1 −132.1 (3) C9—P1—C15—C20 118.0 (4)
C15—P1—C8—N1 115.8 (3) C8—P1—C15—C20 −129.2 (4)
Re1—P1—C8—N1 −3.5 (3) Re1—P1—C15—C20 −37.3 (4)
C9—P1—C8—C7 48.6 (5) C20—C15—C16—C17 1.3 (7)
C15—P1—C8—C7 −63.4 (5) P1—C15—C16—C17 −177.4 (4)
Re1—P1—C8—C7 177.2 (5) C15—C16—C17—C18 −0.5 (8)
C15—P1—C9—C10 145.3 (4) C16—C17—C18—C19 −1.2 (9)
C8—P1—C9—C10 32.1 (4) C17—C18—C19—C20 2.1 (9)
Re1—P1—C9—C10 −62.3 (4) C18—C19—C20—C15 −1.3 (9)
C15—P1—C9—C14 −37.4 (4) C16—C15—C20—C19 −0.3 (8)
C8—P1—C9—C14 −150.6 (4) P1—C15—C20—C19 178.4 (4)
Re1—P1—C9—C14 115.0 (4)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloroform disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 (I-2CHCl3) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C21—H21···Br1i 0.98 2.66 3.490 (5) 143
C4—H4···Br1ii 0.93 2.80 3.552 (5) 139

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z.

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Crystal data

[ReBr(C5H11N)(C17H14NP)(CO)3]·[+solvent] Z = 2
Mr = 698.55 F(000) = 676.0
Triclinic, P1 Dx = 1.778 Mg m3
a = 9.1384 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8348 (18) Å Cell parameters from 4721 reflections
c = 15.671 (3) Å θ = 2.4–22.8°
α = 82.956 (2)° µ = 6.28 mm1
β = 82.047 (2)° T = 150 K
γ = 69.765 (2)° Stick, orange
V = 1304.5 (4) Å3 0.07 × 0.04 × 0.03 mm

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Data collection

Bruker SMART CCD area detector diffractometer 4493 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.042
phi and ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: numerical (SADABS; Bruker, 2012) h = −11→11
Tmin = 0.560, Tmax = 0.858 k = −12→12
10214 measured reflections l = −19→19
5113 independent reflections

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + 9.4699P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
5113 reflections Δρmax = 1.96 e Å3
303 parameters Δρmin = −1.79 e Å3
1 restraint Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00125 (18)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Re1 0.83162 (3) 0.70525 (3) 0.70289 (2) 0.01774 (10)
Br1 0.80946 (9) 0.74617 (8) 0.86842 (5) 0.03004 (19)
P1 0.7341 (2) 0.49823 (19) 0.75160 (12) 0.0202 (4)
O1 0.8277 (7) 0.6670 (7) 0.5117 (4) 0.0422 (15)
O3 1.1681 (6) 0.4948 (6) 0.6944 (4) 0.0390 (14)
C1 0.8293 (9) 0.6804 (8) 0.5867 (5) 0.0311 (18)
C3 1.0438 (9) 0.5701 (8) 0.6993 (5) 0.0262 (17)
O2 0.9776 (6) 0.9453 (6) 0.6454 (4) 0.0403 (14)
C2 0.9177 (8) 0.8584 (8) 0.6688 (5) 0.0272 (17)
N1 0.4375 (7) 0.6604 (7) 0.8008 (5) 0.0404 (18)
C10 0.5477 (8) 0.5329 (8) 0.8209 (5) 0.0258 (16)
C12 0.8652 (8) 0.3427 (7) 0.8099 (4) 0.0212 (15)
C4 0.7011 (8) 0.4161 (7) 0.6619 (5) 0.0226 (15)
C13 0.8598 (9) 0.2025 (8) 0.8069 (5) 0.0294 (17)
H13 0.7924 0.1883 0.7722 0.035*
C5 0.5513 (8) 0.4262 (8) 0.6451 (5) 0.0271 (17)
H5 0.4635 0.4741 0.6812 0.032*
C6 0.8295 (9) 0.3428 (9) 0.6070 (5) 0.0329 (19)
H6 0.9298 0.3356 0.6175 0.039*
C14 0.9678 (8) 0.3586 (8) 0.8629 (5) 0.0288 (17)
H14 0.9738 0.4502 0.8667 0.035*
C15 0.9527 (9) 0.0861 (8) 0.8545 (5) 0.035 (2)
H15 0.9469 −0.0058 0.8516 0.042*
C11 0.5179 (9) 0.4359 (9) 0.8863 (5) 0.037 (2)
H11 0.5958 0.3487 0.9002 0.044*
C7 0.8101 (10) 0.2809 (9) 0.5372 (5) 0.038 (2)
H7 0.8971 0.2322 0.5009 0.045*
C8 0.5355 (10) 0.3635 (9) 0.5731 (5) 0.038 (2)
H8 0.4361 0.3716 0.5607 0.046*
N2 0.5893 (6) 0.8705 (7) 0.7094 (4) 0.0267 (14)
C20 1.0531 (8) 0.1025 (8) 0.9058 (5) 0.0312 (19)
H20 1.1158 0.0226 0.9375 0.037*
C22 0.5748 (8) 1.0155 (7) 0.7304 (5) 0.0265 (17)
H22A 0.6209 1.0630 0.6815 0.032*
H22B 0.6333 1.0066 0.7791 0.032*
C21 1.0610 (9) 0.2390 (9) 0.9101 (5) 0.0330 (19)
H21 1.1293 0.2509 0.9451 0.040*
C16 0.6639 (11) 0.2905 (10) 0.5211 (6) 0.042 (2)
H16 0.6518 0.2470 0.4743 0.050*
C18 0.2572 (9) 0.5974 (9) 0.9089 (5) 0.038 (2)
H18 0.1558 0.6203 0.9366 0.046*
C17 0.2958 (9) 0.6904 (10) 0.8455 (7) 0.052 (3)
H17 0.2198 0.7794 0.8325 0.063*
C23 0.4992 (9) 0.8828 (9) 0.6357 (6) 0.038 (2)
H23A 0.5059 0.7862 0.6237 0.045*
H23B 0.5463 0.9251 0.5848 0.045*
C19 0.3699 (10) 0.4708 (10) 0.9308 (6) 0.046 (2)
H19 0.3477 0.4074 0.9756 0.056*
C24 0.4037 (9) 1.1105 (9) 0.7526 (6) 0.037 (2)
H24A 0.3600 1.0682 0.8047 0.045*
H24B 0.3999 1.2067 0.7637 0.045*
C25 0.3279 (9) 0.9750 (9) 0.6520 (6) 0.043 (2)
H25A 0.2777 0.9872 0.5996 0.052*
H25B 0.2763 0.9245 0.6966 0.052*
C27 0.3068 (9) 1.1232 (9) 0.6799 (6) 0.042 (2)
H3A 0.3377 1.1818 0.6312 0.051*
H3B 0.1971 1.1717 0.6986 0.051*
H2N 0.567 (8) 0.828 (5) 0.755 (2) 0.08 (4)*

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.01153 (15) 0.01837 (15) 0.02204 (17) −0.00440 (10) −0.00090 (10) 0.00044 (10)
Br1 0.0329 (4) 0.0300 (4) 0.0260 (4) −0.0077 (3) −0.0048 (3) −0.0040 (3)
P1 0.0141 (9) 0.0199 (9) 0.0252 (10) −0.0052 (7) −0.0009 (7) 0.0008 (8)
O1 0.042 (4) 0.057 (4) 0.028 (3) −0.018 (3) −0.009 (3) 0.004 (3)
O3 0.013 (3) 0.045 (3) 0.051 (4) −0.001 (3) 0.000 (2) −0.005 (3)
C1 0.023 (4) 0.034 (4) 0.033 (5) −0.009 (3) 0.003 (3) 0.001 (4)
C3 0.031 (4) 0.025 (4) 0.025 (4) −0.012 (4) −0.003 (3) −0.002 (3)
O2 0.031 (3) 0.035 (3) 0.061 (4) −0.022 (3) 0.001 (3) −0.001 (3)
C2 0.023 (4) 0.024 (4) 0.032 (4) −0.005 (3) 0.000 (3) −0.004 (3)
N1 0.018 (3) 0.031 (4) 0.060 (5) −0.002 (3) 0.013 (3) 0.009 (3)
C10 0.018 (4) 0.028 (4) 0.030 (4) −0.008 (3) 0.002 (3) −0.006 (3)
C12 0.017 (3) 0.021 (4) 0.023 (4) −0.005 (3) 0.002 (3) 0.001 (3)
C4 0.019 (4) 0.021 (4) 0.028 (4) −0.006 (3) −0.005 (3) 0.002 (3)
C13 0.027 (4) 0.026 (4) 0.032 (4) −0.006 (3) −0.002 (3) −0.001 (3)
C5 0.023 (4) 0.025 (4) 0.032 (4) −0.008 (3) −0.006 (3) 0.003 (3)
C6 0.032 (4) 0.047 (5) 0.023 (4) −0.016 (4) 0.003 (3) −0.011 (4)
C14 0.026 (4) 0.031 (4) 0.025 (4) −0.005 (3) 0.001 (3) −0.005 (3)
C15 0.030 (4) 0.014 (4) 0.050 (5) 0.001 (3) 0.002 (4) 0.004 (3)
C11 0.026 (4) 0.038 (5) 0.040 (5) −0.007 (4) 0.006 (4) 0.002 (4)
C7 0.042 (5) 0.039 (5) 0.032 (5) −0.012 (4) 0.002 (4) −0.013 (4)
C8 0.037 (5) 0.048 (5) 0.039 (5) −0.025 (4) −0.018 (4) 0.010 (4)
N2 0.011 (3) 0.028 (3) 0.039 (4) −0.008 (3) −0.002 (3) 0.007 (3)
C20 0.021 (4) 0.028 (4) 0.029 (4) 0.006 (3) 0.002 (3) 0.005 (3)
C22 0.024 (4) 0.020 (4) 0.036 (4) −0.007 (3) −0.006 (3) −0.002 (3)
C21 0.027 (4) 0.040 (5) 0.026 (4) −0.002 (4) −0.005 (3) −0.001 (4)
C16 0.058 (6) 0.048 (5) 0.031 (5) −0.029 (5) −0.021 (4) 0.000 (4)
C18 0.024 (4) 0.046 (5) 0.043 (5) −0.014 (4) 0.014 (4) −0.012 (4)
C17 0.021 (4) 0.039 (5) 0.076 (7) 0.005 (4) 0.019 (4) −0.001 (5)
C23 0.022 (4) 0.040 (5) 0.051 (6) −0.004 (4) −0.014 (4) −0.010 (4)
C19 0.033 (5) 0.055 (6) 0.042 (5) −0.014 (4) 0.013 (4) 0.006 (4)
C24 0.022 (4) 0.032 (4) 0.048 (5) 0.003 (3) −0.001 (4) −0.003 (4)
C25 0.032 (5) 0.035 (5) 0.063 (6) −0.007 (4) −0.021 (4) 0.004 (4)
C27 0.023 (4) 0.034 (5) 0.061 (6) 0.000 (4) −0.008 (4) 0.003 (4)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Geometric parameters (Å, º)

Re1—C1 1.870 (8) C7—C16 1.363 (11)
Re1—C2 1.918 (7) C7—H7 0.9300
Re1—C3 1.932 (8) C8—C16 1.361 (12)
Re1—N2 2.246 (6) C8—H8 0.9300
Re1—P1 2.4915 (18) N2—C22 1.460 (9)
Re1—Br1 2.6430 (9) N2—C23 1.479 (10)
P1—C4 1.812 (7) N2—H2N 0.8200 (10)
P1—C12 1.817 (7) C20—C21 1.379 (11)
P1—C10 1.837 (7) C20—H20 0.9300
O1—C1 1.202 (9) C22—C24 1.536 (10)
O3—C3 1.120 (8) C22—H22A 0.9700
O2—C2 1.164 (8) C22—H22B 0.9700
N1—C17 1.338 (9) C21—H21 0.9300
N1—C10 1.343 (9) C16—H16 0.9300
C10—C11 1.377 (10) C18—C19 1.354 (11)
C12—C14 1.394 (10) C18—C17 1.361 (12)
C12—C13 1.404 (10) C18—H18 0.9300
C4—C6 1.387 (10) C17—H17 0.9300
C4—C5 1.398 (9) C23—C25 1.517 (10)
C13—C15 1.371 (10) C23—H23A 0.9700
C13—H13 0.9300 C23—H23B 0.9700
C5—C8 1.396 (11) C19—H19 0.9300
C5—H5 0.9300 C24—C27 1.505 (12)
C6—C7 1.375 (10) C24—H24A 0.9700
C6—H6 0.9300 C24—H24B 0.9700
C14—C21 1.387 (10) C25—C27 1.514 (11)
C14—H14 0.9300 C25—H25A 0.9700
C15—C20 1.362 (11) C25—H25B 0.9700
C15—H15 0.9300 C27—H3A 0.9700
C11—C19 1.382 (10) C27—H3B 0.9700
C11—H11 0.9300
C1—Re1—C2 90.1 (3) C16—C8—H8 119.6
C1—Re1—C3 89.4 (3) C5—C8—H8 119.6
C2—Re1—C3 88.0 (3) C22—N2—C23 109.6 (6)
C1—Re1—N2 92.3 (3) C22—N2—Re1 116.4 (4)
C2—Re1—N2 89.6 (3) C23—N2—Re1 116.1 (5)
C3—Re1—N2 177.1 (3) C22—N2—H2N 106 (4)
C1—Re1—P1 91.6 (2) C23—N2—H2N 118 (5)
C2—Re1—P1 176.6 (2) Re1—N2—H2N 89 (5)
C3—Re1—P1 89.0 (2) C15—C20—C21 119.3 (7)
N2—Re1—P1 93.28 (16) C15—C20—H20 120.4
C1—Re1—Br1 175.3 (2) C21—C20—H20 120.4
C2—Re1—Br1 92.1 (2) N2—C22—C24 112.6 (6)
C3—Re1—Br1 94.9 (2) N2—C22—H22A 109.1
N2—Re1—Br1 83.53 (17) C24—C22—H22A 109.1
P1—Re1—Br1 86.44 (5) N2—C22—H22B 109.1
C4—P1—C12 102.0 (3) C24—C22—H22B 109.1
C4—P1—C10 102.6 (3) H22A—C22—H22B 107.8
C12—P1—C10 102.6 (3) C20—C21—C14 120.6 (8)
C4—P1—Re1 112.4 (2) C20—C21—H21 119.7
C12—P1—Re1 116.4 (2) C14—C21—H21 119.7
C10—P1—Re1 118.7 (2) C8—C16—C7 120.3 (8)
O1—C1—Re1 178.8 (7) C8—C16—H16 119.8
O3—C3—Re1 177.3 (7) C7—C16—H16 119.8
O2—C2—Re1 175.9 (6) C19—C18—C17 118.4 (7)
C17—N1—C10 118.0 (7) C19—C18—H18 120.8
N1—C10—C11 121.6 (7) C17—C18—H18 120.8
N1—C10—P1 114.4 (5) N1—C17—C18 123.4 (8)
C11—C10—P1 124.0 (6) N1—C17—H17 118.3
C14—C12—C13 117.5 (7) C18—C17—H17 118.3
C14—C12—P1 121.7 (5) N2—C23—C25 113.0 (7)
C13—C12—P1 120.7 (5) N2—C23—H23A 109.0
C6—C4—C5 118.9 (7) C25—C23—H23A 109.0
C6—C4—P1 118.6 (5) N2—C23—H23B 109.0
C5—C4—P1 122.5 (6) C25—C23—H23B 109.0
C15—C13—C12 120.9 (7) H23A—C23—H23B 107.8
C15—C13—H13 119.6 C18—C19—C11 119.9 (8)
C12—C13—H13 119.6 C18—C19—H19 120.0
C8—C5—C4 119.0 (7) C11—C19—H19 120.0
C8—C5—H5 120.5 C27—C24—C22 111.0 (7)
C4—C5—H5 120.5 C27—C24—H24A 109.4
C7—C6—C4 120.7 (7) C22—C24—H24A 109.4
C7—C6—H6 119.7 C27—C24—H24B 109.4
C4—C6—H6 119.7 C22—C24—H24B 109.4
C21—C14—C12 120.5 (7) H24A—C24—H24B 108.0
C21—C14—H14 119.7 C27—C25—C23 112.4 (7)
C12—C14—H14 119.7 C27—C25—H25A 109.1
C20—C15—C13 121.2 (8) C23—C25—H25A 109.1
C20—C15—H15 119.4 C27—C25—H25B 109.1
C13—C15—H15 119.4 C23—C25—H25B 109.1
C10—C11—C19 118.6 (8) H25A—C25—H25B 107.8
C10—C11—H11 120.7 C24—C27—C25 111.1 (7)
C19—C11—H11 120.7 C24—C27—H3A 109.4
C16—C7—C6 120.3 (8) C25—C27—H3A 109.4
C16—C7—H7 119.8 C24—C27—H3B 109.4
C6—C7—H7 119.8 C25—C27—H3B 109.4
C16—C8—C5 120.8 (7) H3A—C27—H3B 108.0
C17—N1—C10—C11 −0.9 (13) P1—C4—C6—C7 −178.9 (6)
C17—N1—C10—P1 176.7 (7) C13—C12—C14—C21 0.4 (10)
C4—P1—C10—N1 −86.6 (6) P1—C12—C14—C21 176.7 (5)
C12—P1—C10—N1 167.9 (6) C12—C13—C15—C20 −0.2 (12)
Re1—P1—C10—N1 37.9 (7) N1—C10—C11—C19 1.1 (13)
C4—P1—C10—C11 90.9 (7) P1—C10—C11—C19 −176.3 (7)
C12—P1—C10—C11 −14.6 (8) C4—C6—C7—C16 −0.1 (13)
Re1—P1—C10—C11 −144.5 (6) C4—C5—C8—C16 1.5 (11)
C4—P1—C12—C14 155.1 (6) C13—C15—C20—C21 0.3 (12)
C10—P1—C12—C14 −98.9 (6) C23—N2—C22—C24 58.2 (8)
Re1—P1—C12—C14 32.4 (7) Re1—N2—C22—C24 −167.6 (5)
C4—P1—C12—C13 −28.7 (6) C15—C20—C21—C14 0.0 (11)
C10—P1—C12—C13 77.3 (6) C12—C14—C21—C20 −0.3 (11)
Re1—P1—C12—C13 −151.4 (5) C5—C8—C16—C7 −1.7 (13)
C12—P1—C4—C6 −58.3 (6) C6—C7—C16—C8 1.0 (13)
C10—P1—C4—C6 −164.3 (6) C10—N1—C17—C18 −1.2 (15)
Re1—P1—C4—C6 67.1 (6) C19—C18—C17—N1 3.1 (15)
C12—P1—C4—C5 123.0 (6) C22—N2—C23—C25 −56.3 (8)
C10—P1—C4—C5 17.0 (7) Re1—N2—C23—C25 169.3 (5)
Re1—P1—C4—C5 −111.6 (6) C17—C18—C19—C11 −2.9 (14)
C14—C12—C13—C15 −0.1 (11) C10—C11—C19—C18 0.8 (14)
P1—C12—C13—C15 −176.5 (6) N2—C22—C24—C27 −56.7 (9)
C6—C4—C5—C8 −0.5 (11) N2—C23—C25—C27 53.0 (10)
P1—C4—C5—C8 178.2 (6) C22—C24—C27—C25 51.0 (9)
C5—C4—C6—C7 −0.2 (11) C23—C25—C27—C24 −49.9 (10)

Bromidotricarbonyl[diphenyl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I) (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···N1 0.82 2.34 2.992 (9) 138
C14—H14···Br1 0.93 2.78 3.586 (8) 146
C22—H22B···Br1 0.97 2.83 3.499 (7) 127

Funding Statement

This work was funded by Fondo Nacional de Desarrollo Científico y Tecnológico grants 1160546, 3170100, and ACT1404.

References

  1. Abram, U., Alberto, R., Dilworth, J. R., Zheng, Y. & Ortner, K. (1999). Polyhedron, 18, 2995–3003.
  2. Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cannizzo, A., Blanco-Rodríguez, A. M., El Nahhas, A., Šebera, J., Záliš, S., Vlček, A. Jr & Chergui, M. (2008). J. Am. Chem. Soc. 130, 8967–8974. [DOI] [PubMed]
  4. Dalal, J., Sinha, N., Yadav, H. & Kumar, B. (2015). RSC Adv. 5, 57735–57748.
  5. Darensbourg, D. J., Andreatta, J. R., Stranahan, S. M. & Reibenspies, J. H. (2007). Organometallics, 26, 6832–6838.
  6. Guiry, P. J. & Saunders, C. P. (2004). Adv. Synth. Catal. 346, 497–537.
  7. Knebel, W. J. & Angelici, R. J. (1973). Inorg. Chim. Acta, 7, 713–716.
  8. Kumar, P., Singh, A. K., Pandey, R. & Pandey, D. S. (2011). J. Organomet. Chem. 696, 3454–3464.
  9. Machura, B. & Kruszynski, R. (2006). Polyhedron, 25, 1985–1993.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  12. Ooyama, D. & Sato, M. (2004). Appl. Organomet. Chem. 18, 380–381.
  13. Pizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929–3935. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  20. Venegas, F., Pizarro, N. & Vega, A. (2011). J. Chil. Chem. Soc. 56, 823–826.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I-2CHCl3, II, Global. DOI: 10.1107/S2056989019008089/nk2249sup1.cif

e-75-01005-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I-2CHCl3. DOI: 10.1107/S2056989019008089/nk2249I-2CHCl3sup2.hkl

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019008089/nk2249IIsup3.hkl

e-75-01005-IIsup3.hkl (406.8KB, hkl)

CCDC references: 1921165, 1921164

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES