Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 21;75(Pt 7):1030–1034. doi: 10.1107/S2056989019008557

Crystal structure and the DFT and MEP study of 4-benzyl-2-[2-(4-fluoro­phen­yl)-2-oxoeth­yl]-6-phenyl­pyridazin-3(2H)-one

Said Daoui a,*, Md Serajul Haque Faizi b,*, Fouad El Kalai a, Rafik Saddik c, Necmi Dege d, Khalid Karrouchi e, Noureddine Benchat a
PMCID: PMC6659327  PMID: 31392019

The title pyridazin-3(2H)-one derivative, crystallizes with two independent mol­ecules in the asymmetric unit. The two mol­ecules differ essentially in the orientation of the benzyl ring with respect to the central pyridazine ring; this dihedral angle being 3.70 (9) ° in one mol­ecule and 10.47 (8) ° in the other.

Keywords: crystal structure, pyridazin-3(2H)-one, hydrogen bonding, C–H⋯π inter­action

Abstract

The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In mol­ecule A, the 4-fluoro­phenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In mol­ecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R 2 2(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming columns stacking along the a-axis direction. The B mol­ecules are linked to each other in a similar manner and form columns separating the columns of A mol­ecules.

Chemical context  

Pyridazin-3(2H)-ones are pyridazine derivatives, being constructed about a six-membered ring that contains two adjacent nitro­gen atoms, at positions one and two, and with a carbonyl group at position three. The inter­est in these nitro­gen-rich heterocyclic derivatives arises from the fact that they exhibit a number of promising pharmacological and biological activities. These include anti-oxidant (Khokra et al., 2016), anti-bacterial and anti-fungal (Abiha et al. 2018), anti-cancer (Kamble et al. 2017), analgesic and anti-inflammatory (Ibrahim et al. 2017), anti-depressant (Boukharsa et al. 2016) and anti-ulcer activities (Yamada et al., 1981). In addition, a number of pyridazinone derivatives have been reported to have potential as agrochemicals, for example as insecticides (Nauen & Bretschneider, 2002), acaricides (Igarashi & Sakamoto, 1994) and herbicides (Aza­ari et al., 2016). The present work is a part of an ongoing structural study of heterocyclic compounds and their utilization as mol­ecular (Faizi et al., 2016) and fluorescence (Mukherjee et al., 2018; Kumar et al., 2017; 2018) sensors. Given the inter­est in this class of compounds and the paucity of structural data, the crystal structure analysis of the title pyridazin-3(2H)-one derivative has been undertaken, along with a DFT study, in order to gain further insight into the mol­ecular structure.graphic file with name e-75-01030-scheme1.jpg

Structural commentary  

The title compound crystallizes with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1). In each mol­ecule, a central oxopyridazinyl ring is connected to a fluoro­benzyl­acetate group, a phenyl group, and a benzyl residue. The oxopyridazinyl ring (B) is planar in both mol­ecules; r.m.s. deviations are 0.029 Å for mol­ecule A and 0.009 Å for mol­ecule B. In mol­ecule A, the 4-fluoro­phenyl ring (A; C1A–C6A), the benzyl ring (C; C20A–C25A) and the phenyl ring (D; C13A–C18A) are inclined to the central pyridazine ring (B; N1A/N2A/C9A–C12A) by 86.54 (11), 3.70 (9) and 84.87 (13)°, respectively. In mol­ecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. Hence, the conformation of the two mol­ecules differs essentially in the orientation of the benzyl ring (C) with respect to the central pyridazine ring (B); 3.70 (9)° in mol­ecule A compared to 10.47 (8)° in mol­ecule B. The two mol­ecules have an r.m.s. deviation of 0.683 Å for the 30 non-hydrogen atoms (Fig. 2; PLATON; Spek, 2009).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 30% probability level.

Figure 2.

Figure 2

A structural overlap view of mol­ecule A (black) on mol­ecule B (red), drawn using PLATON (Spek, 2009).

Supra­molecular features  

In the crystal, the A mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an Inline graphic(28) ring motif (Table 1 and Fig. 3). The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π inter­action (Table 1), forming columns stacking along the a-axis direction. The B mol­ecules are linked to each other in a similar manner (Table 1), and also form columns separating the columns of A mol­ecules, as illustrated in Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1A/N2A/C9A–C12A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15A—H15A⋯F1A i 0.93 2.49 3.263 (3) 141
C15B—H15B⋯F1B ii 0.93 2.56 3.310 (3) 138
C8A—H8B⋯O1A iii 0.97 2.50 3.466 (3) 179
C8B—H8D⋯O1B iv 0.97 2.49 3.458 (2) 176
C19A—H19ACg1iv 0.97 2.93 3.845 (2) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title compound. The C—H⋯F hydrogen bonds are shown as dashed lines (see Table 1).

Frontier mol­ecular orbitals analysis  

The highest occupied mol­ecular orbitals (HOMOs) and the lowest-lying unoccupied mol­ecular orbitals (LUMOs) are named as frontier mol­ecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry and UV–vis spectra. As a result of the inter­action between the HOMO and LUMO orbitals of a structure, a transition state of the π–π* type is observed according to mol­ecular orbital theory. The frontier orbital gap helps characterize the chemical reactivity and the kinetic stability of the mol­ecule. A mol­ecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed as a soft mol­ecule. The DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). The DFT structure optimization was performed starting from the X-ray geometry and the experimental values of the bond lengths and bond angles match the theoretical values. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole substituted oxopyridazinyl ring. The electron distribution of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels is shown in Fig. 4. The HOMO mol­ecular orbital exhibits both σ and π character, whereas HOMO−1 is domin­ated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is 0.15669 a.u. and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −0.22571 and −0.06902 a.u., respectively.

Figure 4.

Figure 4

Electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels for the title compound.

Mol­ecular electrostatic potential surface analysis  

The mol­ecular electrostatic potential (MEP) is a technique of mapping electrostatic potential onto the iso-electron density surface. The MEP surface provides information about the reactive sites. The colour scheme is as follows: red for electron rich, partial negative charge; blue for electron-deficient, partial positive charge; light blue for a slightly electron deficient region; yellow for a slightly electron-rich region; green for neutral (Politzer & Murray, 2002). In addition to these, in the majority of the MEPs, while the maximum positive region, which is the preferred site for nucleophilic attack, is indicated in blue, the maximum negative region, which is the preferred site for electrophilic attack, is indicated in red. The three-dimensional plot of the MEP of the title compound is shown in Fig. 5. According to the MEP map results, the negative regions of the whole mol­ecule are located on donor oxygen atoms (red regions). The resulting surface simultaneously displays the mol­ecular size and shape and electrostatic potential values. As can be seen from the MEP map contours, regions having negative potential are over the electronegative atoms (viz. atoms O1A and O2A of mol­ecule A and O1B and O2B of mol­ecule B). The positive regions are over hydrogen atoms, indicating that these sites are the most likely to be involved in nucleophilic processes.

Figure 5.

Figure 5

Total electron density mapped over the mol­ecular electrostatic potential surface of the title compound.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016) gave zero hits for the skeleton of the title compound. A search for pyridazin-3(2H)-ones gave 297 hits, while a search for 6-phenyl-pyridazin-3(2H)-ones gave 40 hits, including 6-phenyl-pyridazin-3(2H)-one itself (CSD refcode CUBBOR; Anderson et al., 2009). A search for 4-benzyl-6-phenyl-pyridazin-3(2H)-ones gave only three hits, for example 4-(4-bromo­benz­yl)-6-phenyl­pyridazin-3(2H)-one (VOPMOE; Tsai et al., 2014). A search for pyridazin-3(2H)-ones with an oxoethyl group in position-2 on the pyridazine ring gave eight hits, mostly esters. Four of these structures also have a phenyl substituent in position-6 on the pyridazine ring, as in the title compound. They include, for example 2-(6-oxo-3,4-diphenyl-1,6-di­hydro­pyridazin-1-yl)acetic acid (CIPTOL; Aydın et al., 2007).

Synthesis and crystallization  

A mixture of 4-benzyl-6-phenyl­pyridazin-3(2H)-one (1 g, 3.8 mmol), K2CO3 (1.3 g, 9.5 mmol) and 2-chloro-1-(4-fluoro­phen­yl)ethan-1-one (1.58 g, 5 mmol) in acetone (40 ml), was refluxed overnight. The solution was then filtered by suction and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford the title compound as colourless prismatic crystals (yield 68%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the refinement in the riding-model approximation, with U iso(H) = 1.2U eq(C). The image plate disc in the diffractometer used for the data collection was unfortunately distorted at the outer edges, hence the maximum 2θ value available was limited to 48.8°.

Table 2. Experimental details.

Crystal data
Chemical formula C25H19FN2O2
M r 398.42
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 5.0575 (3), 10.0973 (7), 38.608 (2)
α, β, γ (°) 86.237 (5), 86.675 (5), 88.354 (5)
V3) 1963.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.67 × 0.53 × 0.44
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.953, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 16344, 6363, 4315
R int 0.031
(sin θ/λ)max−1) 0.582
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.108, 0.99
No. of reflections 6363
No. of parameters 542
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019008557/su5499sup1.cif

e-75-01030-sup1.cif (574.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008557/su5499Isup2.hkl

e-75-01030-Isup2.hkl (505.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019008557/su5499Isup3.cml

CCDC reference: 1923216

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported by Hassan II University, Casablanca, Morocco, Mohammed V University, Rabat, Morocco and Langat Singh College, BRABU, Muzaffarpur, India.

supplementary crystallographic information

Crystal data

C25H19FN2O2 Z = 4
Mr = 398.42 F(000) = 832
Triclinic, P1 Dx = 1.348 Mg m3
a = 5.0575 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.0973 (7) Å Cell parameters from 17316 reflections
c = 38.608 (2) Å θ = 1.1–25.0°
α = 86.237 (5)° µ = 0.09 mm1
β = 86.675 (5)° T = 296 K
γ = 88.354 (5)° Prism, colourless
V = 1963.4 (2) Å3 0.67 × 0.53 × 0.44 mm

Data collection

Stoe IPDS 2 diffractometer 6363 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 4315 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.031
Detector resolution: 6.67 pixels mm-1 θmax = 24.4°, θmin = 1.1°
rotation method scans h = −5→5
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −11→11
Tmin = 0.953, Tmax = 0.974 l = −44→44
16344 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
6363 reflections Δρmax = 0.16 e Å3
542 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0116 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1A 0.6289 (5) 0.09624 (17) −0.02980 (4) 0.1608 (8)
O1A 0.1611 (3) 0.54893 (15) 0.06085 (4) 0.0884 (4)
O2A 0.1102 (3) 0.46400 (14) 0.14261 (3) 0.0843 (4)
N1A 0.4405 (3) 0.59106 (15) 0.11746 (4) 0.0671 (4)
N2A 0.5835 (3) 0.70263 (15) 0.11242 (4) 0.0647 (4)
C1A 0.5570 (7) 0.1845 (3) −0.00606 (7) 0.1070 (9)
C2A 0.3566 (7) 0.2716 (3) −0.01297 (6) 0.1131 (9)
H2A 0.267897 0.269609 −0.033355 0.136*
C3A 0.2873 (5) 0.3632 (2) 0.01093 (6) 0.0928 (7)
H3A 0.147897 0.423052 0.006716 0.111*
C4A 0.4204 (4) 0.36847 (19) 0.04125 (5) 0.0682 (5)
C5A 0.6218 (5) 0.2767 (2) 0.04710 (6) 0.0879 (6)
H5A 0.713023 0.277567 0.067316 0.105*
C6A 0.6904 (6) 0.1834 (3) 0.02333 (7) 0.1084 (8)
H6A 0.825601 0.120960 0.027461 0.130*
C7A 0.3491 (4) 0.47327 (19) 0.06528 (5) 0.0674 (5)
C8A 0.5252 (4) 0.48597 (19) 0.09515 (5) 0.0716 (5)
H8A 0.528879 0.402357 0.109027 0.086*
H8B 0.704330 0.502655 0.085854 0.086*
C9A 0.2332 (4) 0.56748 (19) 0.14188 (5) 0.0668 (5)
C10A 0.1890 (4) 0.67082 (19) 0.16591 (4) 0.0643 (5)
C11A 0.3298 (3) 0.78185 (19) 0.16100 (4) 0.0638 (4)
H11A 0.296983 0.849831 0.175921 0.077*
C12A 0.5292 (3) 0.79793 (17) 0.13333 (4) 0.0590 (4)
C13A 0.6973 (3) 0.91648 (17) 0.12757 (4) 0.0592 (4)
C14A 0.9022 (4) 0.9212 (2) 0.10193 (5) 0.0701 (5)
H14A 0.930936 0.850425 0.087826 0.084*
C15A 1.0634 (4) 1.0296 (2) 0.09714 (5) 0.0785 (5)
H15A 1.198796 1.031103 0.079764 0.094*
C16A 1.0263 (4) 1.1351 (2) 0.11770 (5) 0.0771 (5)
H16A 1.135777 1.207810 0.114378 0.093*
C17A 0.8272 (4) 1.1320 (2) 0.14305 (5) 0.0800 (6)
H17A 0.801440 1.202863 0.157184 0.096*
C18A 0.6631 (4) 1.02435 (19) 0.14795 (5) 0.0737 (5)
H18A 0.527209 1.024344 0.165248 0.088*
C19A −0.0153 (4) 0.6428 (2) 0.19543 (5) 0.0776 (5)
H19A −0.189465 0.665208 0.187160 0.093*
H19B −0.010103 0.548385 0.201910 0.093*
C20A 0.0200 (4) 0.7165 (2) 0.22721 (5) 0.0748 (5)
C21A −0.1352 (5) 0.8225 (3) 0.23581 (7) 0.1061 (8)
H21A −0.268536 0.853174 0.221492 0.127*
C22A −0.0946 (9) 0.8864 (3) 0.26656 (11) 0.1434 (13)
H22A −0.200439 0.959078 0.272578 0.172*
C23A 0.1034 (11) 0.8396 (5) 0.28740 (9) 0.1518 (19)
H23A 0.131088 0.880473 0.307731 0.182*
C24A 0.2553 (8) 0.7361 (5) 0.27864 (8) 0.1443 (14)
H24 0.390783 0.705923 0.292665 0.173*
C25A 0.2138 (5) 0.6744 (3) 0.24941 (6) 0.1052 (8)
H25A 0.319992 0.600939 0.244112 0.126*
F1B −0.1157 (4) −0.40818 (14) 0.53084 (4) 0.1266 (5)
O1B 0.3487 (3) 0.07220 (14) 0.43808 (3) 0.0772 (4)
O2B 0.4021 (3) 0.03214 (13) 0.35481 (3) 0.0802 (4)
N1B 0.0734 (3) 0.15026 (13) 0.38207 (3) 0.0584 (4)
N2B −0.0726 (3) 0.26127 (13) 0.38851 (3) 0.0555 (3)
C1B −0.0437 (5) −0.3100 (2) 0.50691 (5) 0.0843 (6)
C2B 0.1540 (5) −0.2291 (2) 0.51344 (5) 0.0873 (6)
H2B 0.242165 −0.240984 0.533934 0.105*
C3B 0.2203 (4) −0.1293 (2) 0.48904 (5) 0.0751 (5)
H3B 0.356166 −0.073010 0.493036 0.090*
C4B 0.0889 (3) −0.11043 (16) 0.45843 (4) 0.0563 (4)
C5B −0.1091 (4) −0.19582 (19) 0.45264 (5) 0.0710 (5)
H5B −0.198472 −0.184832 0.432219 0.085*
C6B −0.1761 (5) −0.2978 (2) 0.47698 (6) 0.0842 (6)
H6B −0.307935 −0.356518 0.473060 0.101*
C7B 0.1617 (3) 0.00317 (17) 0.43376 (4) 0.0573 (4)
C8B −0.0105 (3) 0.03345 (16) 0.40320 (4) 0.0611 (4)
H8C −0.004029 −0.042157 0.388888 0.073*
H8D −0.192703 0.046919 0.411803 0.073*
C9B 0.2882 (3) 0.14027 (18) 0.35847 (4) 0.0601 (4)
C10B 0.3580 (3) 0.26374 (17) 0.33930 (4) 0.0562 (4)
C11B 0.2149 (3) 0.37419 (17) 0.34604 (4) 0.0561 (4)
H11B 0.261247 0.454364 0.334336 0.067*
C12B −0.0065 (3) 0.37147 (16) 0.37073 (4) 0.0514 (4)
C13B −0.1834 (3) 0.48873 (15) 0.37667 (4) 0.0525 (4)
C14B −0.3844 (3) 0.48391 (18) 0.40284 (4) 0.0616 (4)
H14B −0.402871 0.407558 0.417523 0.074*
C15B −0.5563 (4) 0.59007 (18) 0.40738 (5) 0.0690 (5)
H15B −0.689600 0.584914 0.425007 0.083*
C16B −0.5320 (4) 0.70395 (19) 0.38596 (5) 0.0683 (5)
H16B −0.648412 0.775698 0.389098 0.082*
C17B −0.3363 (4) 0.71117 (18) 0.36007 (5) 0.0688 (5)
H17B −0.319755 0.787943 0.345510 0.083*
C18B −0.1626 (4) 0.60469 (17) 0.35541 (4) 0.0643 (5)
H18B −0.029726 0.610886 0.337740 0.077*
C19B 0.5868 (3) 0.2626 (2) 0.31260 (4) 0.0663 (5)
H19C 0.697238 0.184128 0.317408 0.080*
H19D 0.693213 0.339614 0.314856 0.080*
C20B 0.5043 (3) 0.26336 (16) 0.27574 (4) 0.0559 (4)
C21B 0.6112 (5) 0.3470 (2) 0.25011 (5) 0.0966 (7)
H21B 0.740478 0.405093 0.255303 0.116*
C22B 0.5316 (6) 0.3476 (3) 0.21622 (6) 0.1098 (9)
H22B 0.606266 0.407224 0.199291 0.132*
C23B 0.3522 (5) 0.2651 (2) 0.20764 (5) 0.0839 (6)
H23B 0.302079 0.265730 0.184825 0.101*
C24B 0.2429 (6) 0.1804 (3) 0.23227 (6) 0.1173 (9)
H24B 0.115371 0.122164 0.226601 0.141*
C25B 0.3195 (5) 0.1796 (3) 0.26598 (6) 0.1101 (9)
H25B 0.242238 0.119871 0.282659 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1A 0.256 (2) 0.1202 (12) 0.1074 (11) −0.0320 (13) 0.0419 (12) −0.0539 (9)
O1A 0.0780 (9) 0.0997 (11) 0.0865 (9) 0.0114 (9) −0.0045 (7) −0.0049 (8)
O2A 0.0967 (10) 0.0754 (9) 0.0813 (9) −0.0261 (8) −0.0038 (7) −0.0001 (7)
N1A 0.0673 (9) 0.0631 (9) 0.0712 (9) −0.0060 (8) −0.0003 (8) −0.0088 (7)
N2A 0.0624 (9) 0.0636 (9) 0.0682 (9) −0.0079 (8) −0.0010 (7) −0.0053 (7)
C1A 0.161 (3) 0.0827 (17) 0.0773 (15) −0.0335 (18) 0.0291 (16) −0.0238 (13)
C2A 0.164 (3) 0.104 (2) 0.0745 (15) −0.040 (2) −0.0073 (16) −0.0167 (14)
C3A 0.1055 (17) 0.0920 (15) 0.0825 (14) −0.0137 (13) −0.0141 (13) −0.0050 (12)
C4A 0.0727 (12) 0.0679 (12) 0.0635 (11) −0.0170 (10) 0.0053 (9) −0.0026 (9)
C5A 0.1025 (17) 0.0828 (14) 0.0793 (13) 0.0020 (13) −0.0038 (12) −0.0167 (11)
C6A 0.130 (2) 0.0906 (17) 0.1048 (19) 0.0070 (15) 0.0092 (16) −0.0282 (14)
C7A 0.0631 (11) 0.0694 (12) 0.0683 (11) −0.0107 (10) 0.0063 (9) 0.0019 (9)
C8A 0.0708 (12) 0.0643 (11) 0.0806 (12) −0.0020 (10) −0.0027 (10) −0.0144 (9)
C9A 0.0694 (12) 0.0662 (12) 0.0649 (10) −0.0094 (10) −0.0080 (9) 0.0020 (9)
C10A 0.0600 (10) 0.0739 (12) 0.0588 (10) −0.0085 (10) −0.0055 (8) 0.0013 (9)
C11A 0.0615 (11) 0.0700 (12) 0.0601 (10) −0.0042 (9) −0.0003 (8) −0.0082 (8)
C12A 0.0568 (10) 0.0637 (11) 0.0567 (9) 0.0001 (9) −0.0029 (8) −0.0060 (8)
C13A 0.0563 (10) 0.0643 (11) 0.0574 (9) −0.0026 (8) −0.0050 (8) −0.0041 (8)
C14A 0.0710 (12) 0.0773 (12) 0.0627 (10) −0.0117 (10) 0.0048 (9) −0.0126 (9)
C15A 0.0725 (13) 0.0916 (15) 0.0711 (11) −0.0194 (11) 0.0082 (9) −0.0056 (11)
C16A 0.0745 (13) 0.0764 (13) 0.0816 (13) −0.0196 (11) −0.0055 (11) −0.0057 (11)
C17A 0.0854 (14) 0.0706 (13) 0.0855 (13) −0.0117 (11) 0.0015 (11) −0.0189 (10)
C18A 0.0726 (12) 0.0714 (12) 0.0769 (12) −0.0078 (10) 0.0097 (10) −0.0130 (10)
C19A 0.0666 (12) 0.0979 (15) 0.0677 (11) −0.0175 (11) 0.0021 (9) −0.0003 (10)
C20A 0.0664 (12) 0.0952 (15) 0.0616 (11) −0.0213 (11) 0.0083 (9) 0.0020 (10)
C21A 0.0987 (18) 0.1080 (19) 0.1115 (19) −0.0175 (16) 0.0124 (15) −0.0148 (16)
C22A 0.171 (3) 0.115 (2) 0.143 (3) −0.046 (2) 0.055 (3) −0.041 (2)
C23A 0.202 (5) 0.181 (4) 0.077 (2) −0.119 (4) 0.030 (2) −0.023 (2)
C24A 0.154 (3) 0.216 (4) 0.0664 (18) −0.082 (3) −0.0151 (17) 0.010 (2)
C25A 0.0970 (17) 0.147 (2) 0.0718 (14) −0.0226 (16) −0.0119 (12) 0.0078 (14)
F1B 0.1881 (15) 0.0904 (9) 0.0925 (9) −0.0023 (10) 0.0239 (9) 0.0314 (7)
O1B 0.0677 (8) 0.0835 (9) 0.0804 (8) −0.0159 (7) −0.0044 (7) 0.0024 (7)
O2B 0.0885 (9) 0.0646 (8) 0.0843 (9) 0.0185 (7) 0.0103 (7) −0.0045 (6)
N1B 0.0605 (8) 0.0512 (8) 0.0615 (8) 0.0053 (7) 0.0018 (7) 0.0024 (6)
N2B 0.0564 (8) 0.0535 (8) 0.0558 (7) 0.0056 (7) −0.0021 (6) −0.0003 (6)
C1B 0.1186 (18) 0.0606 (12) 0.0675 (12) 0.0130 (13) 0.0217 (12) 0.0125 (10)
C2B 0.1173 (18) 0.0800 (15) 0.0631 (12) 0.0123 (14) −0.0109 (12) 0.0060 (11)
C3B 0.0839 (13) 0.0732 (12) 0.0685 (11) 0.0027 (11) −0.0118 (10) −0.0017 (10)
C4B 0.0579 (10) 0.0538 (10) 0.0558 (9) 0.0083 (8) 0.0043 (8) −0.0035 (8)
C5B 0.0781 (13) 0.0672 (12) 0.0667 (11) −0.0060 (10) −0.0023 (9) 0.0029 (9)
C6B 0.0966 (15) 0.0675 (12) 0.0861 (14) −0.0106 (11) 0.0060 (12) 0.0074 (11)
C7B 0.0521 (10) 0.0572 (10) 0.0616 (9) 0.0049 (9) 0.0050 (8) −0.0062 (8)
C8B 0.0610 (10) 0.0523 (10) 0.0688 (10) 0.0017 (8) −0.0030 (8) 0.0033 (8)
C9B 0.0604 (11) 0.0611 (11) 0.0586 (9) 0.0077 (9) −0.0038 (8) −0.0063 (8)
C10B 0.0531 (9) 0.0658 (11) 0.0500 (8) 0.0006 (8) −0.0049 (7) −0.0051 (8)
C11B 0.0561 (10) 0.0578 (10) 0.0537 (9) −0.0020 (8) −0.0030 (7) 0.0012 (7)
C12B 0.0527 (9) 0.0532 (9) 0.0484 (8) −0.0009 (8) −0.0059 (7) −0.0011 (7)
C13B 0.0546 (9) 0.0530 (9) 0.0505 (8) −0.0001 (8) −0.0078 (7) −0.0035 (7)
C14B 0.0657 (11) 0.0610 (10) 0.0565 (9) 0.0048 (9) 0.0023 (8) 0.0004 (8)
C15B 0.0708 (12) 0.0685 (12) 0.0660 (10) 0.0085 (10) 0.0074 (9) −0.0053 (9)
C16B 0.0672 (12) 0.0640 (11) 0.0738 (11) 0.0137 (9) −0.0071 (9) −0.0103 (9)
C17B 0.0788 (12) 0.0541 (10) 0.0721 (11) 0.0045 (9) −0.0055 (10) 0.0042 (8)
C18B 0.0653 (11) 0.0602 (11) 0.0653 (10) 0.0023 (9) 0.0041 (8) 0.0031 (8)
C19B 0.0555 (10) 0.0838 (13) 0.0593 (10) 0.0040 (9) 0.0005 (8) −0.0065 (9)
C20B 0.0521 (9) 0.0577 (10) 0.0571 (9) 0.0021 (8) 0.0056 (8) −0.0074 (8)
C21B 0.1225 (19) 0.0981 (16) 0.0714 (13) −0.0528 (15) −0.0054 (12) −0.0004 (11)
C22B 0.166 (3) 0.0959 (17) 0.0681 (13) −0.0511 (18) −0.0095 (14) 0.0116 (12)
C23B 0.1031 (16) 0.0903 (15) 0.0592 (11) 0.0007 (13) −0.0068 (11) −0.0107 (11)
C24B 0.129 (2) 0.158 (2) 0.0696 (14) −0.0650 (19) −0.0042 (13) −0.0204 (15)
C25B 0.135 (2) 0.134 (2) 0.0635 (13) −0.0703 (18) 0.0033 (13) −0.0048 (13)

Geometric parameters (Å, º)

F1A—C1A 1.348 (3) F1B—C1B 1.353 (2)
O1A—C7A 1.215 (2) O1B—C7B 1.217 (2)
O2A—C9A 1.229 (2) O2B—C9B 1.232 (2)
N1A—N2A 1.353 (2) N1B—N2B 1.3532 (17)
N1A—C9A 1.384 (2) N1B—C9B 1.383 (2)
N1A—C8A 1.450 (2) N1B—C8B 1.449 (2)
N2A—C12A 1.309 (2) N2B—C12B 1.310 (2)
C1A—C2A 1.349 (4) C1B—C2B 1.354 (3)
C1A—C6A 1.353 (4) C1B—C6B 1.366 (3)
C2A—C3A 1.373 (3) C2B—C3B 1.369 (3)
C2A—H2A 0.9300 C2B—H2B 0.9300
C3A—C4A 1.389 (3) C3B—C4B 1.389 (2)
C3A—H3A 0.9300 C3B—H3B 0.9300
C4A—C5A 1.375 (3) C4B—C5B 1.378 (3)
C4A—C7A 1.476 (3) C4B—C7B 1.483 (2)
C5A—C6A 1.382 (3) C5B—C6B 1.384 (3)
C5A—H5A 0.9300 C5B—H5B 0.9300
C6A—H6A 0.9300 C6B—H6B 0.9300
C7A—C8A 1.512 (3) C7B—C8B 1.517 (2)
C8A—H8A 0.9700 C8B—H8C 0.9700
C8A—H8B 0.9700 C8B—H8D 0.9700
C9A—C10A 1.445 (3) C9B—C10B 1.449 (2)
C10A—C11A 1.342 (2) C10B—C11B 1.344 (2)
C10A—C19A 1.511 (3) C10B—C19B 1.505 (2)
C11A—C12A 1.430 (2) C11B—C12B 1.427 (2)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.486 (2) C12B—C13B 1.485 (2)
C13A—C18A 1.386 (3) C13B—C18B 1.388 (2)
C13A—C14A 1.391 (2) C13B—C14B 1.391 (2)
C14A—C15A 1.379 (3) C14B—C15B 1.374 (2)
C14A—H14A 0.9300 C14B—H14B 0.9300
C15A—C16A 1.372 (3) C15B—C16B 1.376 (3)
C15A—H15A 0.9300 C15B—H15B 0.9300
C16A—C17A 1.363 (3) C16B—C17B 1.365 (3)
C16A—H16A 0.9300 C16B—H16B 0.9300
C17A—C18A 1.383 (3) C17B—C18B 1.383 (2)
C17A—H17A 0.9300 C17B—H17B 0.9300
C18A—H18A 0.9300 C18B—H18B 0.9300
C19A—C20A 1.498 (3) C19B—C20B 1.505 (2)
C19A—H19A 0.9700 C19B—H19C 0.9700
C19A—H19B 0.9700 C19B—H19D 0.9700
C20A—C21A 1.356 (3) C20B—C21B 1.356 (3)
C20A—C25A 1.379 (3) C20B—C25B 1.363 (3)
C21A—C22A 1.416 (5) C21B—C22B 1.391 (3)
C21A—H21A 0.9300 C21B—H21B 0.9300
C22A—C23A 1.375 (5) C22B—C23B 1.320 (3)
C22A—H22A 0.9300 C22B—H22B 0.9300
C23A—C24A 1.329 (6) C23B—C24B 1.342 (3)
C23A—H23A 0.9300 C23B—H23B 0.9300
C24A—C25A 1.354 (4) C24B—C25B 1.378 (3)
C24A—H24 0.9300 C24B—H24B 0.9300
C25A—H25A 0.9300 C25B—H25B 0.9300
N2A—N1A—C9A 126.89 (15) N2B—N1B—C9B 126.71 (14)
N2A—N1A—C8A 114.62 (14) N2B—N1B—C8B 113.92 (13)
C9A—N1A—C8A 118.45 (16) C9B—N1B—C8B 119.37 (13)
C12A—N2A—N1A 117.72 (14) C12B—N2B—N1B 117.52 (13)
F1A—C1A—C2A 118.3 (3) F1B—C1B—C2B 119.3 (2)
F1A—C1A—C6A 118.9 (3) F1B—C1B—C6B 117.6 (2)
C2A—C1A—C6A 122.9 (2) C2B—C1B—C6B 123.07 (19)
C1A—C2A—C3A 118.2 (2) C1B—C2B—C3B 118.2 (2)
C1A—C2A—H2A 120.9 C1B—C2B—H2B 120.9
C3A—C2A—H2A 120.9 C3B—C2B—H2B 120.9
C2A—C3A—C4A 121.5 (2) C2B—C3B—C4B 121.3 (2)
C2A—C3A—H3A 119.2 C2B—C3B—H3B 119.3
C4A—C3A—H3A 119.2 C4B—C3B—H3B 119.3
C5A—C4A—C3A 117.84 (19) C5B—C4B—C3B 118.68 (17)
C5A—C4A—C7A 122.41 (18) C5B—C4B—C7B 122.54 (16)
C3A—C4A—C7A 119.72 (19) C3B—C4B—C7B 118.75 (17)
C4A—C5A—C6A 120.9 (2) C4B—C5B—C6B 120.48 (19)
C4A—C5A—H5A 119.6 C4B—C5B—H5B 119.8
C6A—C5A—H5A 119.6 C6B—C5B—H5B 119.8
C1A—C6A—C5A 118.7 (3) C1B—C6B—C5B 118.3 (2)
C1A—C6A—H6A 120.6 C1B—C6B—H6B 120.9
C5A—C6A—H6A 120.6 C5B—C6B—H6B 120.9
O1A—C7A—C4A 121.70 (18) O1B—C7B—C4B 121.68 (16)
O1A—C7A—C8A 121.01 (17) O1B—C7B—C8B 120.65 (16)
C4A—C7A—C8A 117.26 (17) C4B—C7B—C8B 117.65 (16)
N1A—C8A—C7A 113.57 (16) N1B—C8B—C7B 112.24 (15)
N1A—C8A—H8A 108.9 N1B—C8B—H8C 109.2
C7A—C8A—H8A 108.9 C7B—C8B—H8C 109.2
N1A—C8A—H8B 108.9 N1B—C8B—H8D 109.2
C7A—C8A—H8B 108.9 C7B—C8B—H8D 109.2
H8A—C8A—H8B 107.7 H8C—C8B—H8D 107.9
O2A—C9A—N1A 120.46 (17) O2B—C9B—N1B 120.15 (16)
O2A—C9A—C10A 125.55 (18) O2B—C9B—C10B 125.22 (16)
N1A—C9A—C10A 113.95 (17) N1B—C9B—C10B 114.63 (14)
C11A—C10A—C9A 119.16 (16) C11B—C10B—C9B 118.57 (15)
C11A—C10A—C19A 124.93 (17) C11B—C10B—C19B 122.85 (16)
C9A—C10A—C19A 115.91 (17) C9B—C10B—C19B 118.58 (15)
C10A—C11A—C12A 121.47 (17) C10B—C11B—C12B 121.60 (15)
C10A—C11A—H11A 119.3 C10B—C11B—H11B 119.2
C12A—C11A—H11A 119.3 C12B—C11B—H11B 119.2
N2A—C12A—C11A 120.52 (17) N2B—C12B—C11B 120.95 (14)
N2A—C12A—C13A 115.78 (15) N2B—C12B—C13B 115.81 (14)
C11A—C12A—C13A 123.59 (16) C11B—C12B—C13B 123.17 (14)
C18A—C13A—C14A 117.33 (17) C18B—C13B—C14B 117.53 (15)
C18A—C13A—C12A 121.94 (16) C18B—C13B—C12B 121.44 (14)
C14A—C13A—C12A 120.70 (16) C14B—C13B—C12B 120.96 (14)
C15A—C14A—C13A 120.89 (18) C15B—C14B—C13B 121.11 (16)
C15A—C14A—H14A 119.6 C15B—C14B—H14B 119.4
C13A—C14A—H14A 119.6 C13B—C14B—H14B 119.4
C16A—C15A—C14A 120.77 (18) C14B—C15B—C16B 120.31 (17)
C16A—C15A—H15A 119.6 C14B—C15B—H15B 119.8
C14A—C15A—H15A 119.6 C16B—C15B—H15B 119.8
C17A—C16A—C15A 119.18 (19) C17B—C16B—C15B 119.71 (17)
C17A—C16A—H16A 120.4 C17B—C16B—H16B 120.1
C15A—C16A—H16A 120.4 C15B—C16B—H16B 120.1
C16A—C17A—C18A 120.60 (19) C16B—C17B—C18B 120.22 (17)
C16A—C17A—H17A 119.7 C16B—C17B—H17B 119.9
C18A—C17A—H17A 119.7 C18B—C17B—H17B 119.9
C17A—C18A—C13A 121.23 (18) C17B—C18B—C13B 121.11 (16)
C17A—C18A—H18A 119.4 C17B—C18B—H18B 119.4
C13A—C18A—H18A 119.4 C13B—C18B—H18B 119.4
C20A—C19A—C10A 114.86 (17) C10B—C19B—C20B 113.81 (14)
C20A—C19A—H19A 108.6 C10B—C19B—H19C 108.8
C10A—C19A—H19A 108.6 C20B—C19B—H19C 108.8
C20A—C19A—H19B 108.6 C10B—C19B—H19D 108.8
C10A—C19A—H19B 108.6 C20B—C19B—H19D 108.8
H19A—C19A—H19B 107.5 H19C—C19B—H19D 107.7
C21A—C20A—C25A 117.7 (2) C21B—C20B—C25B 115.85 (18)
C21A—C20A—C19A 122.8 (2) C21B—C20B—C19B 121.93 (17)
C25A—C20A—C19A 119.5 (2) C25B—C20B—C19B 122.22 (17)
C20A—C21A—C22A 120.1 (3) C20B—C21B—C22B 121.4 (2)
C20A—C21A—H21A 120.0 C20B—C21B—H21B 119.3
C22A—C21A—H21A 120.0 C22B—C21B—H21B 119.3
C23A—C22A—C21A 119.1 (4) C23B—C22B—C21B 121.2 (2)
C23A—C22A—H22A 120.4 C23B—C22B—H22B 119.4
C21A—C22A—H22A 120.4 C21B—C22B—H22B 119.4
C24A—C23A—C22A 120.3 (4) C22B—C23B—C24B 119.1 (2)
C24A—C23A—H23A 119.8 C22B—C23B—H23B 120.4
C22A—C23A—H23A 119.8 C24B—C23B—H23B 120.4
C23A—C24A—C25A 120.3 (4) C23B—C24B—C25B 120.1 (2)
C23A—C24A—H24 119.8 C23B—C24B—H24B 120.0
C25A—C24A—H24 119.8 C25B—C24B—H24B 120.0
C24A—C25A—C20A 122.4 (3) C20B—C25B—C24B 122.4 (2)
C24A—C25A—H25A 118.8 C20B—C25B—H25B 118.8
C20A—C25A—H25A 118.8 C24B—C25B—H25B 118.8
C9A—N1A—N2A—C12A 2.5 (2) C9B—N1B—N2B—C12B 0.1 (2)
C8A—N1A—N2A—C12A −175.39 (15) C8B—N1B—N2B—C12B 179.13 (14)
F1A—C1A—C2A—C3A −178.7 (2) F1B—C1B—C2B—C3B −179.03 (18)
C6A—C1A—C2A—C3A 0.4 (4) C6B—C1B—C2B—C3B 1.1 (3)
C1A—C2A—C3A—C4A 0.9 (4) C1B—C2B—C3B—C4B 0.3 (3)
C2A—C3A—C4A—C5A −1.4 (3) C2B—C3B—C4B—C5B −1.0 (3)
C2A—C3A—C4A—C7A 176.6 (2) C2B—C3B—C4B—C7B 177.23 (17)
C3A—C4A—C5A—C6A 0.6 (3) C3B—C4B—C5B—C6B 0.3 (3)
C7A—C4A—C5A—C6A −177.3 (2) C7B—C4B—C5B—C6B −177.79 (16)
F1A—C1A—C6A—C5A 177.9 (2) F1B—C1B—C6B—C5B 178.42 (17)
C2A—C1A—C6A—C5A −1.1 (4) C2B—C1B—C6B—C5B −1.7 (3)
C4A—C5A—C6A—C1A 0.6 (4) C4B—C5B—C6B—C1B 0.9 (3)
C5A—C4A—C7A—O1A −175.73 (19) C5B—C4B—C7B—O1B −174.93 (16)
C3A—C4A—C7A—O1A 6.4 (3) C3B—C4B—C7B—O1B 7.0 (2)
C5A—C4A—C7A—C8A 6.3 (3) C5B—C4B—C7B—C8B 6.8 (2)
C3A—C4A—C7A—C8A −171.63 (18) C3B—C4B—C7B—C8B −171.34 (15)
N2A—N1A—C8A—C7A −102.78 (18) N2B—N1B—C8B—C7B −99.93 (16)
C9A—N1A—C8A—C7A 79.2 (2) C9B—N1B—C8B—C7B 79.18 (19)
O1A—C7A—C8A—N1A 2.1 (3) O1B—C7B—C8B—N1B −1.2 (2)
C4A—C7A—C8A—N1A −179.88 (15) C4B—C7B—C8B—N1B 177.16 (13)
N2A—N1A—C9A—O2A 176.25 (16) N2B—N1B—C9B—O2B −179.01 (16)
C8A—N1A—C9A—O2A −5.9 (3) C8B—N1B—C9B—O2B 2.0 (2)
N2A—N1A—C9A—C10A −6.1 (3) N2B—N1B—C9B—C10B 0.2 (2)
C8A—N1A—C9A—C10A 171.72 (15) C8B—N1B—C9B—C10B −178.76 (14)
O2A—C9A—C10A—C11A −176.77 (17) O2B—C9B—C10B—C11B 179.82 (17)
N1A—C9A—C10A—C11A 5.7 (2) N1B—C9B—C10B—C11B 0.6 (2)
O2A—C9A—C10A—C19A 3.9 (3) O2B—C9B—C10B—C19B 0.1 (3)
N1A—C9A—C10A—C19A −173.59 (16) N1B—C9B—C10B—C19B −179.12 (14)
C9A—C10A—C11A—C12A −2.4 (3) C9B—C10B—C11B—C12B −1.8 (2)
C19A—C10A—C11A—C12A 176.84 (17) C19B—C10B—C11B—C12B 177.96 (15)
N1A—N2A—C12A—C11A 1.6 (2) N1B—N2B—C12B—C11B −1.2 (2)
N1A—N2A—C12A—C13A 177.97 (13) N1B—N2B—C12B—C13B 175.68 (13)
C10A—C11A—C12A—N2A −1.5 (3) C10B—C11B—C12B—N2B 2.2 (2)
C10A—C11A—C12A—C13A −177.60 (15) C10B—C11B—C12B—C13B −174.52 (15)
N2A—C12A—C13A—C18A −179.53 (16) N2B—C12B—C13B—C18B −168.90 (15)
C11A—C12A—C13A—C18A −3.3 (3) C11B—C12B—C13B—C18B 8.0 (2)
N2A—C12A—C13A—C14A −1.6 (2) N2B—C12B—C13B—C14B 8.0 (2)
C11A—C12A—C13A—C14A 174.69 (17) C11B—C12B—C13B—C14B −175.11 (16)
C18A—C13A—C14A—C15A −0.1 (3) C18B—C13B—C14B—C15B 0.1 (3)
C12A—C13A—C14A—C15A −178.21 (17) C12B—C13B—C14B—C15B −176.92 (16)
C13A—C14A—C15A—C16A 0.3 (3) C13B—C14B—C15B—C16B −0.1 (3)
C14A—C15A—C16A—C17A −0.1 (3) C14B—C15B—C16B—C17B 0.1 (3)
C15A—C16A—C17A—C18A −0.4 (3) C15B—C16B—C17B—C18B −0.2 (3)
C16A—C17A—C18A—C13A 0.6 (3) C16B—C17B—C18B—C13B 0.2 (3)
C14A—C13A—C18A—C17A −0.3 (3) C14B—C13B—C18B—C17B −0.2 (3)
C12A—C13A—C18A—C17A 177.72 (17) C12B—C13B—C18B—C17B 176.83 (16)
C11A—C10A—C19A—C20A −24.3 (3) C11B—C10B—C19B—C20B −78.2 (2)
C9A—C10A—C19A—C20A 154.93 (18) C9B—C10B—C19B—C20B 101.59 (18)
C10A—C19A—C20A—C21A 104.7 (2) C10B—C19B—C20B—C21B 132.6 (2)
C10A—C19A—C20A—C25A −76.8 (2) C10B—C19B—C20B—C25B −47.9 (3)
C25A—C20A—C21A—C22A 0.4 (3) C25B—C20B—C21B—C22B 1.1 (4)
C19A—C20A—C21A—C22A 178.9 (2) C19B—C20B—C21B—C22B −179.4 (2)
C20A—C21A—C22A—C23A 0.0 (4) C20B—C21B—C22B—C23B −1.2 (4)
C21A—C22A—C23A—C24A 0.4 (5) C21B—C22B—C23B—C24B 0.8 (4)
C22A—C23A—C24A—C25A −1.1 (5) C22B—C23B—C24B—C25B −0.4 (4)
C23A—C24A—C25A—C20A 1.5 (5) C21B—C20B—C25B—C24B −0.7 (4)
C21A—C20A—C25A—C24A −1.1 (4) C19B—C20B—C25B—C24B 179.8 (2)
C19A—C20A—C25A—C24A −179.7 (2) C23B—C24B—C25B—C20B 0.4 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1A/N2A/C9A–C12A ring.

D—H···A D—H H···A D···A D—H···A
C15A—H15A···F1Ai 0.93 2.49 3.263 (3) 141
C15B—H15B···F1Bii 0.93 2.56 3.310 (3) 138
C8A—H8B···O1Aiii 0.97 2.50 3.466 (3) 179
C8B—H8D···O1Biv 0.97 2.49 3.458 (2) 176
C19A—H19A···Cg1iv 0.97 2.93 3.845 (2) 158

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x−1, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z.

Funding Statement

This work was funded by University Grants Commission grant START-UP GRANT.

References

  1. Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231–241.
  2. Anderson, K. M., Probert, M. R., Whiteley, C. N., Rowland, A. M., Goeta, A. E. & Steed, J. W. (2009). Cryst. Growth Des. 9, 1082–1087.
  3. Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.
  4. Azaari, H., Chahboune, R., El Azzouzi, M. & Sarakha, M. (2016). Rapid Commun. Mass Spectrom. 30, 1145–1152. [DOI] [PubMed]
  5. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  6. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
  7. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093. [DOI] [PubMed]
  12. Igarashi, H. & Sakamoto, S. (1994). J. Pestic. Sci. 19, S243–S251.
  13. Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int, 21, 10–39.
  14. Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739–750.
  15. Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
  16. Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.
  17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  18. Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.
  19. Nauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241–245.
  20. Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142.
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
  25. Tsai, Y.-L., Syu, S.-E., Yang, S.-M., Das, U., Fan, Y.-S., Lee, C.-J. & Lin, W. (2014). Tetrahedron, 70, 5038–5045.
  26. Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019008557/su5499sup1.cif

e-75-01030-sup1.cif (574.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008557/su5499Isup2.hkl

e-75-01030-Isup2.hkl (505.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019008557/su5499Isup3.cml

CCDC reference: 1923216

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES