The title pyridazin-3(2H)-one derivative, crystallizes with two independent molecules in the asymmetric unit. The two molecules differ essentially in the orientation of the benzyl ring with respect to the central pyridazine ring; this dihedral angle being 3.70 (9) ° in one molecule and 10.47 (8) ° in the other.
Keywords: crystal structure, pyridazin-3(2H)-one, hydrogen bonding, C–H⋯π interaction
Abstract
The title pyridazin-3(2H)-one derivative, C25H19FN2O2, crystallizes with two independent molecules (A and B) in the asymmetric unit. In molecule A, the 4-fluorophenyl ring, the benzyl ring and the phenyl ring are inclined to the central pyridazine ring by 86.54 (11), 3.70 (9) and 84.857 (13)°, respectively. In molecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. In the crystal, the A molecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an R 2 2(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π interaction, forming columns stacking along the a-axis direction. The B molecules are linked to each other in a similar manner and form columns separating the columns of A molecules.
Chemical context
Pyridazin-3(2H)-ones are pyridazine derivatives, being constructed about a six-membered ring that contains two adjacent nitrogen atoms, at positions one and two, and with a carbonyl group at position three. The interest in these nitrogen-rich heterocyclic derivatives arises from the fact that they exhibit a number of promising pharmacological and biological activities. These include anti-oxidant (Khokra et al., 2016 ▸), anti-bacterial and anti-fungal (Abiha et al. 2018 ▸), anti-cancer (Kamble et al. 2017 ▸), analgesic and anti-inflammatory (Ibrahim et al. 2017 ▸), anti-depressant (Boukharsa et al. 2016 ▸) and anti-ulcer activities (Yamada et al., 1981 ▸). In addition, a number of pyridazinone derivatives have been reported to have potential as agrochemicals, for example as insecticides (Nauen & Bretschneider, 2002 ▸), acaricides (Igarashi & Sakamoto, 1994 ▸) and herbicides (Azaari et al., 2016 ▸). The present work is a part of an ongoing structural study of heterocyclic compounds and their utilization as molecular (Faizi et al., 2016 ▸) and fluorescence (Mukherjee et al., 2018 ▸; Kumar et al., 2017 ▸; 2018 ▸) sensors. Given the interest in this class of compounds and the paucity of structural data, the crystal structure analysis of the title pyridazin-3(2H)-one derivative has been undertaken, along with a DFT study, in order to gain further insight into the molecular structure.
Structural commentary
The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1 ▸). In each molecule, a central oxopyridazinyl ring is connected to a fluorobenzylacetate group, a phenyl group, and a benzyl residue. The oxopyridazinyl ring (B) is planar in both molecules; r.m.s. deviations are 0.029 Å for molecule A and 0.009 Å for molecule B. In molecule A, the 4-fluorophenyl ring (A; C1A–C6A), the benzyl ring (C; C20A–C25A) and the phenyl ring (D; C13A–C18A) are inclined to the central pyridazine ring (B; N1A/N2A/C9A–C12A) by 86.54 (11), 3.70 (9) and 84.87 (13)°, respectively. In molecule B, the corresponding dihedral angles are 86.80 (9), 10.47 (8) and 82.01 (10)°, respectively. Hence, the conformation of the two molecules differs essentially in the orientation of the benzyl ring (C) with respect to the central pyridazine ring (B); 3.70 (9)° in molecule A compared to 10.47 (8)° in molecule B. The two molecules have an r.m.s. deviation of 0.683 Å for the 30 non-hydrogen atoms (Fig. 2 ▸; PLATON; Spek, 2009 ▸).
Figure 1.
The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 30% probability level.
Figure 2.
A structural overlap view of molecule A (black) on molecule B (red), drawn using PLATON (Spek, 2009 ▸).
Supramolecular features
In the crystal, the A molecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers with an
(28) ring motif (Table 1 ▸ and Fig. 3 ▸). The dimers are linked by C—H⋯O hydrogen bonds and a C—H⋯π interaction (Table 1 ▸), forming columns stacking along the a-axis direction. The B molecules are linked to each other in a similar manner (Table 1 ▸), and also form columns separating the columns of A molecules, as illustrated in Fig. 3 ▸.
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the N1A/N2A/C9A–C12A ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C15A—H15A⋯F1A i | 0.93 | 2.49 | 3.263 (3) | 141 |
| C15B—H15B⋯F1B ii | 0.93 | 2.56 | 3.310 (3) | 138 |
| C8A—H8B⋯O1A iii | 0.97 | 2.50 | 3.466 (3) | 179 |
| C8B—H8D⋯O1B iv | 0.97 | 2.49 | 3.458 (2) | 176 |
| C19A—H19A⋯Cg1iv | 0.97 | 2.93 | 3.845 (2) | 158 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 3.
A view along the a axis of the crystal packing of the title compound. The C—H⋯F hydrogen bonds are shown as dashed lines (see Table 1 ▸).
Frontier molecular orbitals analysis
The highest occupied molecular orbitals (HOMOs) and the lowest-lying unoccupied molecular orbitals (LUMOs) are named as frontier molecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry and UV–vis spectra. As a result of the interaction between the HOMO and LUMO orbitals of a structure, a transition state of the π–π* type is observed according to molecular orbital theory. The frontier orbital gap helps characterize the chemical reactivity and the kinetic stability of the molecule. A molecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed as a soft molecule. The DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993 ▸) as implemented in GAUSSIAN09 (Frisch et al., 2009 ▸). The DFT structure optimization was performed starting from the X-ray geometry and the experimental values of the bond lengths and bond angles match the theoretical values. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole substituted oxopyridazinyl ring. The electron distribution of the HOMO−1, HOMO, LUMO and LUMO+1 energy levels is shown in Fig. 4 ▸. The HOMO molecular orbital exhibits both σ and π character, whereas HOMO−1 is dominated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is 0.15669 a.u. and the frontier molecular orbital energies, E HOMO and E LUMO are −0.22571 and −0.06902 a.u., respectively.
Figure 4.
Electron distribution of the HOMO−1, HOMO, LUMO and the LUMO+1 energy levels for the title compound.
Molecular electrostatic potential surface analysis
The molecular electrostatic potential (MEP) is a technique of mapping electrostatic potential onto the iso-electron density surface. The MEP surface provides information about the reactive sites. The colour scheme is as follows: red for electron rich, partial negative charge; blue for electron-deficient, partial positive charge; light blue for a slightly electron deficient region; yellow for a slightly electron-rich region; green for neutral (Politzer & Murray, 2002 ▸). In addition to these, in the majority of the MEPs, while the maximum positive region, which is the preferred site for nucleophilic attack, is indicated in blue, the maximum negative region, which is the preferred site for electrophilic attack, is indicated in red. The three-dimensional plot of the MEP of the title compound is shown in Fig. 5 ▸. According to the MEP map results, the negative regions of the whole molecule are located on donor oxygen atoms (red regions). The resulting surface simultaneously displays the molecular size and shape and electrostatic potential values. As can be seen from the MEP map contours, regions having negative potential are over the electronegative atoms (viz. atoms O1A and O2A of molecule A and O1B and O2B of molecule B). The positive regions are over hydrogen atoms, indicating that these sites are the most likely to be involved in nucleophilic processes.
Figure 5.
Total electron density mapped over the molecular electrostatic potential surface of the title compound.
Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016 ▸) gave zero hits for the skeleton of the title compound. A search for pyridazin-3(2H)-ones gave 297 hits, while a search for 6-phenyl-pyridazin-3(2H)-ones gave 40 hits, including 6-phenyl-pyridazin-3(2H)-one itself (CSD refcode CUBBOR; Anderson et al., 2009 ▸). A search for 4-benzyl-6-phenyl-pyridazin-3(2H)-ones gave only three hits, for example 4-(4-bromobenzyl)-6-phenylpyridazin-3(2H)-one (VOPMOE; Tsai et al., 2014 ▸). A search for pyridazin-3(2H)-ones with an oxoethyl group in position-2 on the pyridazine ring gave eight hits, mostly esters. Four of these structures also have a phenyl substituent in position-6 on the pyridazine ring, as in the title compound. They include, for example 2-(6-oxo-3,4-diphenyl-1,6-dihydropyridazin-1-yl)acetic acid (CIPTOL; Aydın et al., 2007 ▸).
Synthesis and crystallization
A mixture of 4-benzyl-6-phenylpyridazin-3(2H)-one (1 g, 3.8 mmol), K2CO3 (1.3 g, 9.5 mmol) and 2-chloro-1-(4-fluorophenyl)ethan-1-one (1.58 g, 5 mmol) in acetone (40 ml), was refluxed overnight. The solution was then filtered by suction and the solvent removed under reduced pressure. The residue was purified by recrystallization from ethanol to afford the title compound as colourless prismatic crystals (yield 68%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the refinement in the riding-model approximation, with U iso(H) = 1.2U eq(C). The image plate disc in the diffractometer used for the data collection was unfortunately distorted at the outer edges, hence the maximum 2θ value available was limited to 48.8°.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C25H19FN2O2 |
| M r | 398.42 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 296 |
| a, b, c (Å) | 5.0575 (3), 10.0973 (7), 38.608 (2) |
| α, β, γ (°) | 86.237 (5), 86.675 (5), 88.354 (5) |
| V (Å3) | 1963.4 (2) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.09 |
| Crystal size (mm) | 0.67 × 0.53 × 0.44 |
| Data collection | |
| Diffractometer | Stoe IPDS 2 |
| Absorption correction | Integration (X-RED32; Stoe & Cie, 2002 ▸) |
| T min, T max | 0.953, 0.974 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 16344, 6363, 4315 |
| R int | 0.031 |
| (sin θ/λ)max (Å−1) | 0.582 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.038, 0.108, 0.99 |
| No. of reflections | 6363 |
| No. of parameters | 542 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.16, −0.15 |
Supplementary Material
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019008557/su5499sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008557/su5499Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019008557/su5499Isup3.cml
CCDC reference: 1923216
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This study was supported by Hassan II University, Casablanca, Morocco, Mohammed V University, Rabat, Morocco and Langat Singh College, BRABU, Muzaffarpur, India.
supplementary crystallographic information
Crystal data
| C25H19FN2O2 | Z = 4 |
| Mr = 398.42 | F(000) = 832 |
| Triclinic, P1 | Dx = 1.348 Mg m−3 |
| a = 5.0575 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 10.0973 (7) Å | Cell parameters from 17316 reflections |
| c = 38.608 (2) Å | θ = 1.1–25.0° |
| α = 86.237 (5)° | µ = 0.09 mm−1 |
| β = 86.675 (5)° | T = 296 K |
| γ = 88.354 (5)° | Prism, colourless |
| V = 1963.4 (2) Å3 | 0.67 × 0.53 × 0.44 mm |
Data collection
| Stoe IPDS 2 diffractometer | 6363 independent reflections |
| Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 4315 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.031 |
| Detector resolution: 6.67 pixels mm-1 | θmax = 24.4°, θmin = 1.1° |
| rotation method scans | h = −5→5 |
| Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −11→11 |
| Tmin = 0.953, Tmax = 0.974 | l = −44→44 |
| 16344 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
| wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.99 | (Δ/σ)max = 0.001 |
| 6363 reflections | Δρmax = 0.16 e Å−3 |
| 542 parameters | Δρmin = −0.14 e Å−3 |
| 0 restraints | Extinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0116 (12) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| F1A | 0.6289 (5) | 0.09624 (17) | −0.02980 (4) | 0.1608 (8) | |
| O1A | 0.1611 (3) | 0.54893 (15) | 0.06085 (4) | 0.0884 (4) | |
| O2A | 0.1102 (3) | 0.46400 (14) | 0.14261 (3) | 0.0843 (4) | |
| N1A | 0.4405 (3) | 0.59106 (15) | 0.11746 (4) | 0.0671 (4) | |
| N2A | 0.5835 (3) | 0.70263 (15) | 0.11242 (4) | 0.0647 (4) | |
| C1A | 0.5570 (7) | 0.1845 (3) | −0.00606 (7) | 0.1070 (9) | |
| C2A | 0.3566 (7) | 0.2716 (3) | −0.01297 (6) | 0.1131 (9) | |
| H2A | 0.267897 | 0.269609 | −0.033355 | 0.136* | |
| C3A | 0.2873 (5) | 0.3632 (2) | 0.01093 (6) | 0.0928 (7) | |
| H3A | 0.147897 | 0.423052 | 0.006716 | 0.111* | |
| C4A | 0.4204 (4) | 0.36847 (19) | 0.04125 (5) | 0.0682 (5) | |
| C5A | 0.6218 (5) | 0.2767 (2) | 0.04710 (6) | 0.0879 (6) | |
| H5A | 0.713023 | 0.277567 | 0.067316 | 0.105* | |
| C6A | 0.6904 (6) | 0.1834 (3) | 0.02333 (7) | 0.1084 (8) | |
| H6A | 0.825601 | 0.120960 | 0.027461 | 0.130* | |
| C7A | 0.3491 (4) | 0.47327 (19) | 0.06528 (5) | 0.0674 (5) | |
| C8A | 0.5252 (4) | 0.48597 (19) | 0.09515 (5) | 0.0716 (5) | |
| H8A | 0.528879 | 0.402357 | 0.109027 | 0.086* | |
| H8B | 0.704330 | 0.502655 | 0.085854 | 0.086* | |
| C9A | 0.2332 (4) | 0.56748 (19) | 0.14188 (5) | 0.0668 (5) | |
| C10A | 0.1890 (4) | 0.67082 (19) | 0.16591 (4) | 0.0643 (5) | |
| C11A | 0.3298 (3) | 0.78185 (19) | 0.16100 (4) | 0.0638 (4) | |
| H11A | 0.296983 | 0.849831 | 0.175921 | 0.077* | |
| C12A | 0.5292 (3) | 0.79793 (17) | 0.13333 (4) | 0.0590 (4) | |
| C13A | 0.6973 (3) | 0.91648 (17) | 0.12757 (4) | 0.0592 (4) | |
| C14A | 0.9022 (4) | 0.9212 (2) | 0.10193 (5) | 0.0701 (5) | |
| H14A | 0.930936 | 0.850425 | 0.087826 | 0.084* | |
| C15A | 1.0634 (4) | 1.0296 (2) | 0.09714 (5) | 0.0785 (5) | |
| H15A | 1.198796 | 1.031103 | 0.079764 | 0.094* | |
| C16A | 1.0263 (4) | 1.1351 (2) | 0.11770 (5) | 0.0771 (5) | |
| H16A | 1.135777 | 1.207810 | 0.114378 | 0.093* | |
| C17A | 0.8272 (4) | 1.1320 (2) | 0.14305 (5) | 0.0800 (6) | |
| H17A | 0.801440 | 1.202863 | 0.157184 | 0.096* | |
| C18A | 0.6631 (4) | 1.02435 (19) | 0.14795 (5) | 0.0737 (5) | |
| H18A | 0.527209 | 1.024344 | 0.165248 | 0.088* | |
| C19A | −0.0153 (4) | 0.6428 (2) | 0.19543 (5) | 0.0776 (5) | |
| H19A | −0.189465 | 0.665208 | 0.187160 | 0.093* | |
| H19B | −0.010103 | 0.548385 | 0.201910 | 0.093* | |
| C20A | 0.0200 (4) | 0.7165 (2) | 0.22721 (5) | 0.0748 (5) | |
| C21A | −0.1352 (5) | 0.8225 (3) | 0.23581 (7) | 0.1061 (8) | |
| H21A | −0.268536 | 0.853174 | 0.221492 | 0.127* | |
| C22A | −0.0946 (9) | 0.8864 (3) | 0.26656 (11) | 0.1434 (13) | |
| H22A | −0.200439 | 0.959078 | 0.272578 | 0.172* | |
| C23A | 0.1034 (11) | 0.8396 (5) | 0.28740 (9) | 0.1518 (19) | |
| H23A | 0.131088 | 0.880473 | 0.307731 | 0.182* | |
| C24A | 0.2553 (8) | 0.7361 (5) | 0.27864 (8) | 0.1443 (14) | |
| H24 | 0.390783 | 0.705923 | 0.292665 | 0.173* | |
| C25A | 0.2138 (5) | 0.6744 (3) | 0.24941 (6) | 0.1052 (8) | |
| H25A | 0.319992 | 0.600939 | 0.244112 | 0.126* | |
| F1B | −0.1157 (4) | −0.40818 (14) | 0.53084 (4) | 0.1266 (5) | |
| O1B | 0.3487 (3) | 0.07220 (14) | 0.43808 (3) | 0.0772 (4) | |
| O2B | 0.4021 (3) | 0.03214 (13) | 0.35481 (3) | 0.0802 (4) | |
| N1B | 0.0734 (3) | 0.15026 (13) | 0.38207 (3) | 0.0584 (4) | |
| N2B | −0.0726 (3) | 0.26127 (13) | 0.38851 (3) | 0.0555 (3) | |
| C1B | −0.0437 (5) | −0.3100 (2) | 0.50691 (5) | 0.0843 (6) | |
| C2B | 0.1540 (5) | −0.2291 (2) | 0.51344 (5) | 0.0873 (6) | |
| H2B | 0.242165 | −0.240984 | 0.533934 | 0.105* | |
| C3B | 0.2203 (4) | −0.1293 (2) | 0.48904 (5) | 0.0751 (5) | |
| H3B | 0.356166 | −0.073010 | 0.493036 | 0.090* | |
| C4B | 0.0889 (3) | −0.11043 (16) | 0.45843 (4) | 0.0563 (4) | |
| C5B | −0.1091 (4) | −0.19582 (19) | 0.45264 (5) | 0.0710 (5) | |
| H5B | −0.198472 | −0.184832 | 0.432219 | 0.085* | |
| C6B | −0.1761 (5) | −0.2978 (2) | 0.47698 (6) | 0.0842 (6) | |
| H6B | −0.307935 | −0.356518 | 0.473060 | 0.101* | |
| C7B | 0.1617 (3) | 0.00317 (17) | 0.43376 (4) | 0.0573 (4) | |
| C8B | −0.0105 (3) | 0.03345 (16) | 0.40320 (4) | 0.0611 (4) | |
| H8C | −0.004029 | −0.042157 | 0.388888 | 0.073* | |
| H8D | −0.192703 | 0.046919 | 0.411803 | 0.073* | |
| C9B | 0.2882 (3) | 0.14027 (18) | 0.35847 (4) | 0.0601 (4) | |
| C10B | 0.3580 (3) | 0.26374 (17) | 0.33930 (4) | 0.0562 (4) | |
| C11B | 0.2149 (3) | 0.37419 (17) | 0.34604 (4) | 0.0561 (4) | |
| H11B | 0.261247 | 0.454364 | 0.334336 | 0.067* | |
| C12B | −0.0065 (3) | 0.37147 (16) | 0.37073 (4) | 0.0514 (4) | |
| C13B | −0.1834 (3) | 0.48873 (15) | 0.37667 (4) | 0.0525 (4) | |
| C14B | −0.3844 (3) | 0.48391 (18) | 0.40284 (4) | 0.0616 (4) | |
| H14B | −0.402871 | 0.407558 | 0.417523 | 0.074* | |
| C15B | −0.5563 (4) | 0.59007 (18) | 0.40738 (5) | 0.0690 (5) | |
| H15B | −0.689600 | 0.584914 | 0.425007 | 0.083* | |
| C16B | −0.5320 (4) | 0.70395 (19) | 0.38596 (5) | 0.0683 (5) | |
| H16B | −0.648412 | 0.775698 | 0.389098 | 0.082* | |
| C17B | −0.3363 (4) | 0.71117 (18) | 0.36007 (5) | 0.0688 (5) | |
| H17B | −0.319755 | 0.787943 | 0.345510 | 0.083* | |
| C18B | −0.1626 (4) | 0.60469 (17) | 0.35541 (4) | 0.0643 (5) | |
| H18B | −0.029726 | 0.610886 | 0.337740 | 0.077* | |
| C19B | 0.5868 (3) | 0.2626 (2) | 0.31260 (4) | 0.0663 (5) | |
| H19C | 0.697238 | 0.184128 | 0.317408 | 0.080* | |
| H19D | 0.693213 | 0.339614 | 0.314856 | 0.080* | |
| C20B | 0.5043 (3) | 0.26336 (16) | 0.27574 (4) | 0.0559 (4) | |
| C21B | 0.6112 (5) | 0.3470 (2) | 0.25011 (5) | 0.0966 (7) | |
| H21B | 0.740478 | 0.405093 | 0.255303 | 0.116* | |
| C22B | 0.5316 (6) | 0.3476 (3) | 0.21622 (6) | 0.1098 (9) | |
| H22B | 0.606266 | 0.407224 | 0.199291 | 0.132* | |
| C23B | 0.3522 (5) | 0.2651 (2) | 0.20764 (5) | 0.0839 (6) | |
| H23B | 0.302079 | 0.265730 | 0.184825 | 0.101* | |
| C24B | 0.2429 (6) | 0.1804 (3) | 0.23227 (6) | 0.1173 (9) | |
| H24B | 0.115371 | 0.122164 | 0.226601 | 0.141* | |
| C25B | 0.3195 (5) | 0.1796 (3) | 0.26598 (6) | 0.1101 (9) | |
| H25B | 0.242238 | 0.119871 | 0.282659 | 0.132* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| F1A | 0.256 (2) | 0.1202 (12) | 0.1074 (11) | −0.0320 (13) | 0.0419 (12) | −0.0539 (9) |
| O1A | 0.0780 (9) | 0.0997 (11) | 0.0865 (9) | 0.0114 (9) | −0.0045 (7) | −0.0049 (8) |
| O2A | 0.0967 (10) | 0.0754 (9) | 0.0813 (9) | −0.0261 (8) | −0.0038 (7) | −0.0001 (7) |
| N1A | 0.0673 (9) | 0.0631 (9) | 0.0712 (9) | −0.0060 (8) | −0.0003 (8) | −0.0088 (7) |
| N2A | 0.0624 (9) | 0.0636 (9) | 0.0682 (9) | −0.0079 (8) | −0.0010 (7) | −0.0053 (7) |
| C1A | 0.161 (3) | 0.0827 (17) | 0.0773 (15) | −0.0335 (18) | 0.0291 (16) | −0.0238 (13) |
| C2A | 0.164 (3) | 0.104 (2) | 0.0745 (15) | −0.040 (2) | −0.0073 (16) | −0.0167 (14) |
| C3A | 0.1055 (17) | 0.0920 (15) | 0.0825 (14) | −0.0137 (13) | −0.0141 (13) | −0.0050 (12) |
| C4A | 0.0727 (12) | 0.0679 (12) | 0.0635 (11) | −0.0170 (10) | 0.0053 (9) | −0.0026 (9) |
| C5A | 0.1025 (17) | 0.0828 (14) | 0.0793 (13) | 0.0020 (13) | −0.0038 (12) | −0.0167 (11) |
| C6A | 0.130 (2) | 0.0906 (17) | 0.1048 (19) | 0.0070 (15) | 0.0092 (16) | −0.0282 (14) |
| C7A | 0.0631 (11) | 0.0694 (12) | 0.0683 (11) | −0.0107 (10) | 0.0063 (9) | 0.0019 (9) |
| C8A | 0.0708 (12) | 0.0643 (11) | 0.0806 (12) | −0.0020 (10) | −0.0027 (10) | −0.0144 (9) |
| C9A | 0.0694 (12) | 0.0662 (12) | 0.0649 (10) | −0.0094 (10) | −0.0080 (9) | 0.0020 (9) |
| C10A | 0.0600 (10) | 0.0739 (12) | 0.0588 (10) | −0.0085 (10) | −0.0055 (8) | 0.0013 (9) |
| C11A | 0.0615 (11) | 0.0700 (12) | 0.0601 (10) | −0.0042 (9) | −0.0003 (8) | −0.0082 (8) |
| C12A | 0.0568 (10) | 0.0637 (11) | 0.0567 (9) | 0.0001 (9) | −0.0029 (8) | −0.0060 (8) |
| C13A | 0.0563 (10) | 0.0643 (11) | 0.0574 (9) | −0.0026 (8) | −0.0050 (8) | −0.0041 (8) |
| C14A | 0.0710 (12) | 0.0773 (12) | 0.0627 (10) | −0.0117 (10) | 0.0048 (9) | −0.0126 (9) |
| C15A | 0.0725 (13) | 0.0916 (15) | 0.0711 (11) | −0.0194 (11) | 0.0082 (9) | −0.0056 (11) |
| C16A | 0.0745 (13) | 0.0764 (13) | 0.0816 (13) | −0.0196 (11) | −0.0055 (11) | −0.0057 (11) |
| C17A | 0.0854 (14) | 0.0706 (13) | 0.0855 (13) | −0.0117 (11) | 0.0015 (11) | −0.0189 (10) |
| C18A | 0.0726 (12) | 0.0714 (12) | 0.0769 (12) | −0.0078 (10) | 0.0097 (10) | −0.0130 (10) |
| C19A | 0.0666 (12) | 0.0979 (15) | 0.0677 (11) | −0.0175 (11) | 0.0021 (9) | −0.0003 (10) |
| C20A | 0.0664 (12) | 0.0952 (15) | 0.0616 (11) | −0.0213 (11) | 0.0083 (9) | 0.0020 (10) |
| C21A | 0.0987 (18) | 0.1080 (19) | 0.1115 (19) | −0.0175 (16) | 0.0124 (15) | −0.0148 (16) |
| C22A | 0.171 (3) | 0.115 (2) | 0.143 (3) | −0.046 (2) | 0.055 (3) | −0.041 (2) |
| C23A | 0.202 (5) | 0.181 (4) | 0.077 (2) | −0.119 (4) | 0.030 (2) | −0.023 (2) |
| C24A | 0.154 (3) | 0.216 (4) | 0.0664 (18) | −0.082 (3) | −0.0151 (17) | 0.010 (2) |
| C25A | 0.0970 (17) | 0.147 (2) | 0.0718 (14) | −0.0226 (16) | −0.0119 (12) | 0.0078 (14) |
| F1B | 0.1881 (15) | 0.0904 (9) | 0.0925 (9) | −0.0023 (10) | 0.0239 (9) | 0.0314 (7) |
| O1B | 0.0677 (8) | 0.0835 (9) | 0.0804 (8) | −0.0159 (7) | −0.0044 (7) | 0.0024 (7) |
| O2B | 0.0885 (9) | 0.0646 (8) | 0.0843 (9) | 0.0185 (7) | 0.0103 (7) | −0.0045 (6) |
| N1B | 0.0605 (8) | 0.0512 (8) | 0.0615 (8) | 0.0053 (7) | 0.0018 (7) | 0.0024 (6) |
| N2B | 0.0564 (8) | 0.0535 (8) | 0.0558 (7) | 0.0056 (7) | −0.0021 (6) | −0.0003 (6) |
| C1B | 0.1186 (18) | 0.0606 (12) | 0.0675 (12) | 0.0130 (13) | 0.0217 (12) | 0.0125 (10) |
| C2B | 0.1173 (18) | 0.0800 (15) | 0.0631 (12) | 0.0123 (14) | −0.0109 (12) | 0.0060 (11) |
| C3B | 0.0839 (13) | 0.0732 (12) | 0.0685 (11) | 0.0027 (11) | −0.0118 (10) | −0.0017 (10) |
| C4B | 0.0579 (10) | 0.0538 (10) | 0.0558 (9) | 0.0083 (8) | 0.0043 (8) | −0.0035 (8) |
| C5B | 0.0781 (13) | 0.0672 (12) | 0.0667 (11) | −0.0060 (10) | −0.0023 (9) | 0.0029 (9) |
| C6B | 0.0966 (15) | 0.0675 (12) | 0.0861 (14) | −0.0106 (11) | 0.0060 (12) | 0.0074 (11) |
| C7B | 0.0521 (10) | 0.0572 (10) | 0.0616 (9) | 0.0049 (9) | 0.0050 (8) | −0.0062 (8) |
| C8B | 0.0610 (10) | 0.0523 (10) | 0.0688 (10) | 0.0017 (8) | −0.0030 (8) | 0.0033 (8) |
| C9B | 0.0604 (11) | 0.0611 (11) | 0.0586 (9) | 0.0077 (9) | −0.0038 (8) | −0.0063 (8) |
| C10B | 0.0531 (9) | 0.0658 (11) | 0.0500 (8) | 0.0006 (8) | −0.0049 (7) | −0.0051 (8) |
| C11B | 0.0561 (10) | 0.0578 (10) | 0.0537 (9) | −0.0020 (8) | −0.0030 (7) | 0.0012 (7) |
| C12B | 0.0527 (9) | 0.0532 (9) | 0.0484 (8) | −0.0009 (8) | −0.0059 (7) | −0.0011 (7) |
| C13B | 0.0546 (9) | 0.0530 (9) | 0.0505 (8) | −0.0001 (8) | −0.0078 (7) | −0.0035 (7) |
| C14B | 0.0657 (11) | 0.0610 (10) | 0.0565 (9) | 0.0048 (9) | 0.0023 (8) | 0.0004 (8) |
| C15B | 0.0708 (12) | 0.0685 (12) | 0.0660 (10) | 0.0085 (10) | 0.0074 (9) | −0.0053 (9) |
| C16B | 0.0672 (12) | 0.0640 (11) | 0.0738 (11) | 0.0137 (9) | −0.0071 (9) | −0.0103 (9) |
| C17B | 0.0788 (12) | 0.0541 (10) | 0.0721 (11) | 0.0045 (9) | −0.0055 (10) | 0.0042 (8) |
| C18B | 0.0653 (11) | 0.0602 (11) | 0.0653 (10) | 0.0023 (9) | 0.0041 (8) | 0.0031 (8) |
| C19B | 0.0555 (10) | 0.0838 (13) | 0.0593 (10) | 0.0040 (9) | 0.0005 (8) | −0.0065 (9) |
| C20B | 0.0521 (9) | 0.0577 (10) | 0.0571 (9) | 0.0021 (8) | 0.0056 (8) | −0.0074 (8) |
| C21B | 0.1225 (19) | 0.0981 (16) | 0.0714 (13) | −0.0528 (15) | −0.0054 (12) | −0.0004 (11) |
| C22B | 0.166 (3) | 0.0959 (17) | 0.0681 (13) | −0.0511 (18) | −0.0095 (14) | 0.0116 (12) |
| C23B | 0.1031 (16) | 0.0903 (15) | 0.0592 (11) | 0.0007 (13) | −0.0068 (11) | −0.0107 (11) |
| C24B | 0.129 (2) | 0.158 (2) | 0.0696 (14) | −0.0650 (19) | −0.0042 (13) | −0.0204 (15) |
| C25B | 0.135 (2) | 0.134 (2) | 0.0635 (13) | −0.0703 (18) | 0.0033 (13) | −0.0048 (13) |
Geometric parameters (Å, º)
| F1A—C1A | 1.348 (3) | F1B—C1B | 1.353 (2) |
| O1A—C7A | 1.215 (2) | O1B—C7B | 1.217 (2) |
| O2A—C9A | 1.229 (2) | O2B—C9B | 1.232 (2) |
| N1A—N2A | 1.353 (2) | N1B—N2B | 1.3532 (17) |
| N1A—C9A | 1.384 (2) | N1B—C9B | 1.383 (2) |
| N1A—C8A | 1.450 (2) | N1B—C8B | 1.449 (2) |
| N2A—C12A | 1.309 (2) | N2B—C12B | 1.310 (2) |
| C1A—C2A | 1.349 (4) | C1B—C2B | 1.354 (3) |
| C1A—C6A | 1.353 (4) | C1B—C6B | 1.366 (3) |
| C2A—C3A | 1.373 (3) | C2B—C3B | 1.369 (3) |
| C2A—H2A | 0.9300 | C2B—H2B | 0.9300 |
| C3A—C4A | 1.389 (3) | C3B—C4B | 1.389 (2) |
| C3A—H3A | 0.9300 | C3B—H3B | 0.9300 |
| C4A—C5A | 1.375 (3) | C4B—C5B | 1.378 (3) |
| C4A—C7A | 1.476 (3) | C4B—C7B | 1.483 (2) |
| C5A—C6A | 1.382 (3) | C5B—C6B | 1.384 (3) |
| C5A—H5A | 0.9300 | C5B—H5B | 0.9300 |
| C6A—H6A | 0.9300 | C6B—H6B | 0.9300 |
| C7A—C8A | 1.512 (3) | C7B—C8B | 1.517 (2) |
| C8A—H8A | 0.9700 | C8B—H8C | 0.9700 |
| C8A—H8B | 0.9700 | C8B—H8D | 0.9700 |
| C9A—C10A | 1.445 (3) | C9B—C10B | 1.449 (2) |
| C10A—C11A | 1.342 (2) | C10B—C11B | 1.344 (2) |
| C10A—C19A | 1.511 (3) | C10B—C19B | 1.505 (2) |
| C11A—C12A | 1.430 (2) | C11B—C12B | 1.427 (2) |
| C11A—H11A | 0.9300 | C11B—H11B | 0.9300 |
| C12A—C13A | 1.486 (2) | C12B—C13B | 1.485 (2) |
| C13A—C18A | 1.386 (3) | C13B—C18B | 1.388 (2) |
| C13A—C14A | 1.391 (2) | C13B—C14B | 1.391 (2) |
| C14A—C15A | 1.379 (3) | C14B—C15B | 1.374 (2) |
| C14A—H14A | 0.9300 | C14B—H14B | 0.9300 |
| C15A—C16A | 1.372 (3) | C15B—C16B | 1.376 (3) |
| C15A—H15A | 0.9300 | C15B—H15B | 0.9300 |
| C16A—C17A | 1.363 (3) | C16B—C17B | 1.365 (3) |
| C16A—H16A | 0.9300 | C16B—H16B | 0.9300 |
| C17A—C18A | 1.383 (3) | C17B—C18B | 1.383 (2) |
| C17A—H17A | 0.9300 | C17B—H17B | 0.9300 |
| C18A—H18A | 0.9300 | C18B—H18B | 0.9300 |
| C19A—C20A | 1.498 (3) | C19B—C20B | 1.505 (2) |
| C19A—H19A | 0.9700 | C19B—H19C | 0.9700 |
| C19A—H19B | 0.9700 | C19B—H19D | 0.9700 |
| C20A—C21A | 1.356 (3) | C20B—C21B | 1.356 (3) |
| C20A—C25A | 1.379 (3) | C20B—C25B | 1.363 (3) |
| C21A—C22A | 1.416 (5) | C21B—C22B | 1.391 (3) |
| C21A—H21A | 0.9300 | C21B—H21B | 0.9300 |
| C22A—C23A | 1.375 (5) | C22B—C23B | 1.320 (3) |
| C22A—H22A | 0.9300 | C22B—H22B | 0.9300 |
| C23A—C24A | 1.329 (6) | C23B—C24B | 1.342 (3) |
| C23A—H23A | 0.9300 | C23B—H23B | 0.9300 |
| C24A—C25A | 1.354 (4) | C24B—C25B | 1.378 (3) |
| C24A—H24 | 0.9300 | C24B—H24B | 0.9300 |
| C25A—H25A | 0.9300 | C25B—H25B | 0.9300 |
| N2A—N1A—C9A | 126.89 (15) | N2B—N1B—C9B | 126.71 (14) |
| N2A—N1A—C8A | 114.62 (14) | N2B—N1B—C8B | 113.92 (13) |
| C9A—N1A—C8A | 118.45 (16) | C9B—N1B—C8B | 119.37 (13) |
| C12A—N2A—N1A | 117.72 (14) | C12B—N2B—N1B | 117.52 (13) |
| F1A—C1A—C2A | 118.3 (3) | F1B—C1B—C2B | 119.3 (2) |
| F1A—C1A—C6A | 118.9 (3) | F1B—C1B—C6B | 117.6 (2) |
| C2A—C1A—C6A | 122.9 (2) | C2B—C1B—C6B | 123.07 (19) |
| C1A—C2A—C3A | 118.2 (2) | C1B—C2B—C3B | 118.2 (2) |
| C1A—C2A—H2A | 120.9 | C1B—C2B—H2B | 120.9 |
| C3A—C2A—H2A | 120.9 | C3B—C2B—H2B | 120.9 |
| C2A—C3A—C4A | 121.5 (2) | C2B—C3B—C4B | 121.3 (2) |
| C2A—C3A—H3A | 119.2 | C2B—C3B—H3B | 119.3 |
| C4A—C3A—H3A | 119.2 | C4B—C3B—H3B | 119.3 |
| C5A—C4A—C3A | 117.84 (19) | C5B—C4B—C3B | 118.68 (17) |
| C5A—C4A—C7A | 122.41 (18) | C5B—C4B—C7B | 122.54 (16) |
| C3A—C4A—C7A | 119.72 (19) | C3B—C4B—C7B | 118.75 (17) |
| C4A—C5A—C6A | 120.9 (2) | C4B—C5B—C6B | 120.48 (19) |
| C4A—C5A—H5A | 119.6 | C4B—C5B—H5B | 119.8 |
| C6A—C5A—H5A | 119.6 | C6B—C5B—H5B | 119.8 |
| C1A—C6A—C5A | 118.7 (3) | C1B—C6B—C5B | 118.3 (2) |
| C1A—C6A—H6A | 120.6 | C1B—C6B—H6B | 120.9 |
| C5A—C6A—H6A | 120.6 | C5B—C6B—H6B | 120.9 |
| O1A—C7A—C4A | 121.70 (18) | O1B—C7B—C4B | 121.68 (16) |
| O1A—C7A—C8A | 121.01 (17) | O1B—C7B—C8B | 120.65 (16) |
| C4A—C7A—C8A | 117.26 (17) | C4B—C7B—C8B | 117.65 (16) |
| N1A—C8A—C7A | 113.57 (16) | N1B—C8B—C7B | 112.24 (15) |
| N1A—C8A—H8A | 108.9 | N1B—C8B—H8C | 109.2 |
| C7A—C8A—H8A | 108.9 | C7B—C8B—H8C | 109.2 |
| N1A—C8A—H8B | 108.9 | N1B—C8B—H8D | 109.2 |
| C7A—C8A—H8B | 108.9 | C7B—C8B—H8D | 109.2 |
| H8A—C8A—H8B | 107.7 | H8C—C8B—H8D | 107.9 |
| O2A—C9A—N1A | 120.46 (17) | O2B—C9B—N1B | 120.15 (16) |
| O2A—C9A—C10A | 125.55 (18) | O2B—C9B—C10B | 125.22 (16) |
| N1A—C9A—C10A | 113.95 (17) | N1B—C9B—C10B | 114.63 (14) |
| C11A—C10A—C9A | 119.16 (16) | C11B—C10B—C9B | 118.57 (15) |
| C11A—C10A—C19A | 124.93 (17) | C11B—C10B—C19B | 122.85 (16) |
| C9A—C10A—C19A | 115.91 (17) | C9B—C10B—C19B | 118.58 (15) |
| C10A—C11A—C12A | 121.47 (17) | C10B—C11B—C12B | 121.60 (15) |
| C10A—C11A—H11A | 119.3 | C10B—C11B—H11B | 119.2 |
| C12A—C11A—H11A | 119.3 | C12B—C11B—H11B | 119.2 |
| N2A—C12A—C11A | 120.52 (17) | N2B—C12B—C11B | 120.95 (14) |
| N2A—C12A—C13A | 115.78 (15) | N2B—C12B—C13B | 115.81 (14) |
| C11A—C12A—C13A | 123.59 (16) | C11B—C12B—C13B | 123.17 (14) |
| C18A—C13A—C14A | 117.33 (17) | C18B—C13B—C14B | 117.53 (15) |
| C18A—C13A—C12A | 121.94 (16) | C18B—C13B—C12B | 121.44 (14) |
| C14A—C13A—C12A | 120.70 (16) | C14B—C13B—C12B | 120.96 (14) |
| C15A—C14A—C13A | 120.89 (18) | C15B—C14B—C13B | 121.11 (16) |
| C15A—C14A—H14A | 119.6 | C15B—C14B—H14B | 119.4 |
| C13A—C14A—H14A | 119.6 | C13B—C14B—H14B | 119.4 |
| C16A—C15A—C14A | 120.77 (18) | C14B—C15B—C16B | 120.31 (17) |
| C16A—C15A—H15A | 119.6 | C14B—C15B—H15B | 119.8 |
| C14A—C15A—H15A | 119.6 | C16B—C15B—H15B | 119.8 |
| C17A—C16A—C15A | 119.18 (19) | C17B—C16B—C15B | 119.71 (17) |
| C17A—C16A—H16A | 120.4 | C17B—C16B—H16B | 120.1 |
| C15A—C16A—H16A | 120.4 | C15B—C16B—H16B | 120.1 |
| C16A—C17A—C18A | 120.60 (19) | C16B—C17B—C18B | 120.22 (17) |
| C16A—C17A—H17A | 119.7 | C16B—C17B—H17B | 119.9 |
| C18A—C17A—H17A | 119.7 | C18B—C17B—H17B | 119.9 |
| C17A—C18A—C13A | 121.23 (18) | C17B—C18B—C13B | 121.11 (16) |
| C17A—C18A—H18A | 119.4 | C17B—C18B—H18B | 119.4 |
| C13A—C18A—H18A | 119.4 | C13B—C18B—H18B | 119.4 |
| C20A—C19A—C10A | 114.86 (17) | C10B—C19B—C20B | 113.81 (14) |
| C20A—C19A—H19A | 108.6 | C10B—C19B—H19C | 108.8 |
| C10A—C19A—H19A | 108.6 | C20B—C19B—H19C | 108.8 |
| C20A—C19A—H19B | 108.6 | C10B—C19B—H19D | 108.8 |
| C10A—C19A—H19B | 108.6 | C20B—C19B—H19D | 108.8 |
| H19A—C19A—H19B | 107.5 | H19C—C19B—H19D | 107.7 |
| C21A—C20A—C25A | 117.7 (2) | C21B—C20B—C25B | 115.85 (18) |
| C21A—C20A—C19A | 122.8 (2) | C21B—C20B—C19B | 121.93 (17) |
| C25A—C20A—C19A | 119.5 (2) | C25B—C20B—C19B | 122.22 (17) |
| C20A—C21A—C22A | 120.1 (3) | C20B—C21B—C22B | 121.4 (2) |
| C20A—C21A—H21A | 120.0 | C20B—C21B—H21B | 119.3 |
| C22A—C21A—H21A | 120.0 | C22B—C21B—H21B | 119.3 |
| C23A—C22A—C21A | 119.1 (4) | C23B—C22B—C21B | 121.2 (2) |
| C23A—C22A—H22A | 120.4 | C23B—C22B—H22B | 119.4 |
| C21A—C22A—H22A | 120.4 | C21B—C22B—H22B | 119.4 |
| C24A—C23A—C22A | 120.3 (4) | C22B—C23B—C24B | 119.1 (2) |
| C24A—C23A—H23A | 119.8 | C22B—C23B—H23B | 120.4 |
| C22A—C23A—H23A | 119.8 | C24B—C23B—H23B | 120.4 |
| C23A—C24A—C25A | 120.3 (4) | C23B—C24B—C25B | 120.1 (2) |
| C23A—C24A—H24 | 119.8 | C23B—C24B—H24B | 120.0 |
| C25A—C24A—H24 | 119.8 | C25B—C24B—H24B | 120.0 |
| C24A—C25A—C20A | 122.4 (3) | C20B—C25B—C24B | 122.4 (2) |
| C24A—C25A—H25A | 118.8 | C20B—C25B—H25B | 118.8 |
| C20A—C25A—H25A | 118.8 | C24B—C25B—H25B | 118.8 |
| C9A—N1A—N2A—C12A | 2.5 (2) | C9B—N1B—N2B—C12B | 0.1 (2) |
| C8A—N1A—N2A—C12A | −175.39 (15) | C8B—N1B—N2B—C12B | 179.13 (14) |
| F1A—C1A—C2A—C3A | −178.7 (2) | F1B—C1B—C2B—C3B | −179.03 (18) |
| C6A—C1A—C2A—C3A | 0.4 (4) | C6B—C1B—C2B—C3B | 1.1 (3) |
| C1A—C2A—C3A—C4A | 0.9 (4) | C1B—C2B—C3B—C4B | 0.3 (3) |
| C2A—C3A—C4A—C5A | −1.4 (3) | C2B—C3B—C4B—C5B | −1.0 (3) |
| C2A—C3A—C4A—C7A | 176.6 (2) | C2B—C3B—C4B—C7B | 177.23 (17) |
| C3A—C4A—C5A—C6A | 0.6 (3) | C3B—C4B—C5B—C6B | 0.3 (3) |
| C7A—C4A—C5A—C6A | −177.3 (2) | C7B—C4B—C5B—C6B | −177.79 (16) |
| F1A—C1A—C6A—C5A | 177.9 (2) | F1B—C1B—C6B—C5B | 178.42 (17) |
| C2A—C1A—C6A—C5A | −1.1 (4) | C2B—C1B—C6B—C5B | −1.7 (3) |
| C4A—C5A—C6A—C1A | 0.6 (4) | C4B—C5B—C6B—C1B | 0.9 (3) |
| C5A—C4A—C7A—O1A | −175.73 (19) | C5B—C4B—C7B—O1B | −174.93 (16) |
| C3A—C4A—C7A—O1A | 6.4 (3) | C3B—C4B—C7B—O1B | 7.0 (2) |
| C5A—C4A—C7A—C8A | 6.3 (3) | C5B—C4B—C7B—C8B | 6.8 (2) |
| C3A—C4A—C7A—C8A | −171.63 (18) | C3B—C4B—C7B—C8B | −171.34 (15) |
| N2A—N1A—C8A—C7A | −102.78 (18) | N2B—N1B—C8B—C7B | −99.93 (16) |
| C9A—N1A—C8A—C7A | 79.2 (2) | C9B—N1B—C8B—C7B | 79.18 (19) |
| O1A—C7A—C8A—N1A | 2.1 (3) | O1B—C7B—C8B—N1B | −1.2 (2) |
| C4A—C7A—C8A—N1A | −179.88 (15) | C4B—C7B—C8B—N1B | 177.16 (13) |
| N2A—N1A—C9A—O2A | 176.25 (16) | N2B—N1B—C9B—O2B | −179.01 (16) |
| C8A—N1A—C9A—O2A | −5.9 (3) | C8B—N1B—C9B—O2B | 2.0 (2) |
| N2A—N1A—C9A—C10A | −6.1 (3) | N2B—N1B—C9B—C10B | 0.2 (2) |
| C8A—N1A—C9A—C10A | 171.72 (15) | C8B—N1B—C9B—C10B | −178.76 (14) |
| O2A—C9A—C10A—C11A | −176.77 (17) | O2B—C9B—C10B—C11B | 179.82 (17) |
| N1A—C9A—C10A—C11A | 5.7 (2) | N1B—C9B—C10B—C11B | 0.6 (2) |
| O2A—C9A—C10A—C19A | 3.9 (3) | O2B—C9B—C10B—C19B | 0.1 (3) |
| N1A—C9A—C10A—C19A | −173.59 (16) | N1B—C9B—C10B—C19B | −179.12 (14) |
| C9A—C10A—C11A—C12A | −2.4 (3) | C9B—C10B—C11B—C12B | −1.8 (2) |
| C19A—C10A—C11A—C12A | 176.84 (17) | C19B—C10B—C11B—C12B | 177.96 (15) |
| N1A—N2A—C12A—C11A | 1.6 (2) | N1B—N2B—C12B—C11B | −1.2 (2) |
| N1A—N2A—C12A—C13A | 177.97 (13) | N1B—N2B—C12B—C13B | 175.68 (13) |
| C10A—C11A—C12A—N2A | −1.5 (3) | C10B—C11B—C12B—N2B | 2.2 (2) |
| C10A—C11A—C12A—C13A | −177.60 (15) | C10B—C11B—C12B—C13B | −174.52 (15) |
| N2A—C12A—C13A—C18A | −179.53 (16) | N2B—C12B—C13B—C18B | −168.90 (15) |
| C11A—C12A—C13A—C18A | −3.3 (3) | C11B—C12B—C13B—C18B | 8.0 (2) |
| N2A—C12A—C13A—C14A | −1.6 (2) | N2B—C12B—C13B—C14B | 8.0 (2) |
| C11A—C12A—C13A—C14A | 174.69 (17) | C11B—C12B—C13B—C14B | −175.11 (16) |
| C18A—C13A—C14A—C15A | −0.1 (3) | C18B—C13B—C14B—C15B | 0.1 (3) |
| C12A—C13A—C14A—C15A | −178.21 (17) | C12B—C13B—C14B—C15B | −176.92 (16) |
| C13A—C14A—C15A—C16A | 0.3 (3) | C13B—C14B—C15B—C16B | −0.1 (3) |
| C14A—C15A—C16A—C17A | −0.1 (3) | C14B—C15B—C16B—C17B | 0.1 (3) |
| C15A—C16A—C17A—C18A | −0.4 (3) | C15B—C16B—C17B—C18B | −0.2 (3) |
| C16A—C17A—C18A—C13A | 0.6 (3) | C16B—C17B—C18B—C13B | 0.2 (3) |
| C14A—C13A—C18A—C17A | −0.3 (3) | C14B—C13B—C18B—C17B | −0.2 (3) |
| C12A—C13A—C18A—C17A | 177.72 (17) | C12B—C13B—C18B—C17B | 176.83 (16) |
| C11A—C10A—C19A—C20A | −24.3 (3) | C11B—C10B—C19B—C20B | −78.2 (2) |
| C9A—C10A—C19A—C20A | 154.93 (18) | C9B—C10B—C19B—C20B | 101.59 (18) |
| C10A—C19A—C20A—C21A | 104.7 (2) | C10B—C19B—C20B—C21B | 132.6 (2) |
| C10A—C19A—C20A—C25A | −76.8 (2) | C10B—C19B—C20B—C25B | −47.9 (3) |
| C25A—C20A—C21A—C22A | 0.4 (3) | C25B—C20B—C21B—C22B | 1.1 (4) |
| C19A—C20A—C21A—C22A | 178.9 (2) | C19B—C20B—C21B—C22B | −179.4 (2) |
| C20A—C21A—C22A—C23A | 0.0 (4) | C20B—C21B—C22B—C23B | −1.2 (4) |
| C21A—C22A—C23A—C24A | 0.4 (5) | C21B—C22B—C23B—C24B | 0.8 (4) |
| C22A—C23A—C24A—C25A | −1.1 (5) | C22B—C23B—C24B—C25B | −0.4 (4) |
| C23A—C24A—C25A—C20A | 1.5 (5) | C21B—C20B—C25B—C24B | −0.7 (4) |
| C21A—C20A—C25A—C24A | −1.1 (4) | C19B—C20B—C25B—C24B | 179.8 (2) |
| C19A—C20A—C25A—C24A | −179.7 (2) | C23B—C24B—C25B—C20B | 0.4 (5) |
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the N1A/N2A/C9A–C12A ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C15A—H15A···F1Ai | 0.93 | 2.49 | 3.263 (3) | 141 |
| C15B—H15B···F1Bii | 0.93 | 2.56 | 3.310 (3) | 138 |
| C8A—H8B···O1Aiii | 0.97 | 2.50 | 3.466 (3) | 179 |
| C8B—H8D···O1Biv | 0.97 | 2.49 | 3.458 (2) | 176 |
| C19A—H19A···Cg1iv | 0.97 | 2.93 | 3.845 (2) | 158 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x−1, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z.
Funding Statement
This work was funded by University Grants Commission grant START-UP GRANT.
References
- Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231–241.
- Anderson, K. M., Probert, M. R., Whiteley, C. N., Rowland, A. M., Goeta, A. E. & Steed, J. W. (2009). Cryst. Growth Des. 9, 1082–1087.
- Aydın, A., Doğruer, D. S., Akkurt, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4522.
- Azaari, H., Chahboune, R., El Azzouzi, M. & Sarakha, M. (2016). Rapid Commun. Mass Spectrom. 30, 1145–1152. [DOI] [PubMed]
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
- Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093. [DOI] [PubMed]
- Igarashi, H. & Sakamoto, S. (1994). J. Pestic. Sci. 19, S243–S251.
- Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int, 21, 10–39.
- Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739–750.
- Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
- Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.
- Nauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241–245.
- Politzer, P. & Murray, J. S. (2002). Theor. Chim. Acta, 108, 134–142.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
- Tsai, Y.-L., Syu, S.-E., Yang, S.-M., Das, U., Fan, Y.-S., Lee, C.-J. & Lin, W. (2014). Tetrahedron, 70, 5038–5045.
- Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019008557/su5499sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019008557/su5499Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019008557/su5499Isup3.cml
CCDC reference: 1923216
Additional supporting information: crystallographic information; 3D view; checkCIF report






