Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jun 4;75(Pt 7):946–950. doi: 10.1107/S2056989019007758

Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

C John McAdam a, Lyall R Hanton a, Stephen C Moratti a, Jim Simpson a,*, Ravindra N Wickramasinhage a
PMCID: PMC6659345  PMID: 31392001

The mol­ecular and crystal structure of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate is reported. A Hirshfeld surface analysis of the salt and its individual components is also presented.

Keywords: crystal structure; N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation; 4-vinyl­benzene­sulfonate anion; hydrogen bonds; Hirshfeld surface analysis

Abstract

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.

Chemical context  

Hydro­gels continue to be the subject of intense study, particularly with regard to biomedical applications and new technologies (Van Vlierberghe et al., 2011; Sun et al., 2015; Goswami et al., 2017; Pushparajan et al., 2018). Limiting development has been the poor mechanical strength of conventional hydro­gel formulations. Numerous strategies, singly and in combination, have been utilized in efforts to improve toughness and stretchability, and the results have been extensively reviewed (Naficy et al., 2011; Peak et al., 2013; Zhao, 2014). Our current approach is to build in capacity for self-healing, and exploits polyampholytes (Zurick & Bernards, 2014), polymers formed from the covalent cross-linking of mixed cationic and anionic monomers. The title compound is one such set of ion-pair co-monomers, simply prepared from commercially available tri­methyl­ammonium cation and sulfonate anion salts.graphic file with name e-75-00946-scheme1.jpg

Structural commentary  

The asymmetric unit of the title salt, (I), comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, linked by a C14—H14B⋯O3 hydrogen bond (Table 1) between a methyl group of the tri­methyl­methanaminium unit and a sulfonate oxygen, Fig. 1. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the cation, the C7/C13/N1 and C10/C101/C102 planes of the methanaminium and major vinyl substituents on the benzene ring subtend angles of 86.6 (3) and 10.5 (9)°, respectively, to the ring plane. In contrast, excluding the sulfonate O atoms, the S and ordered vinyl substituents lie close to the benzene ring plane in the anion with an r.m.s. deviation of 0.0753 Å from the S1/C1–C6/C41/C42 plane.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3 0.98 2.32 3.264 (5) 161
C14—H14A⋯O2i 0.98 2.48 3.346 (5) 147
C15—H15A⋯O1i 0.98 2.63 3.544 (4) 155
C15—H15A⋯O2i 0.98 2.49 3.348 (4) 147
C13—H13B⋯O3ii 0.99 2.56 3.466 (5) 152
C15—H15B⋯O2ii 0.98 2.60 3.477 (4) 149
C16—H16B⋯O1iii 0.98 2.61 3.365 (4) 134
C16—H16C⋯O2i 0.98 2.52 3.370 (5) 146
C41—H41⋯O2iv 0.95 2.58 3.481 (4) 157
C42—H42B⋯O1v 0.95 2.63 3.494 (4) 151
C5—H5⋯Cg1iv 0.95 2.93 3.837 (4) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 1.

Figure 1

The asymmetric unit of the title compound showing the atom numbering with ellipsoids drawn at the 50% probability level. The C—H⋯O hydrogen bond linking the two components is drawn as a dotted black line. For clarity, only the major disorder component of the vinyl substituent on the benzene ring of the cation is shown.

Supra­molecular features  

Packing in this salt is dominated by an extensive number of C—H⋯O hydrogen bonds, Table 1. O2 acts as a trifurcated acceptor forming C14—H14A⋯O2i, C15—H15A⋯O2i and C16—H16C⋯O2i hydrogen bonds [symmetry code: (i) x − 1, y, z]. C14 and C15 are bifurcated donors with the C15—H15A⋯O1i and C15—H15A⋯O2i contacts forming Inline graphic(4) ring motifs. C14—H14B⋯O3 contacts link the cation–anion pairs into chains along the a-axis direction, Fig. 2. Cation–anion dimers are generated by C13—H13B⋯O3ii and C15—H15B⋯O2ii contacts with adjacent dimers linked into columns along b by C16—H16B⋯O1iii hydrogen bonds [symmetry codes: (ii) 1 − x, Inline graphic + y, Inline graphic − z; (iii) 1 − x, −Inline graphic + y, Inline graphic − z]. Additional C14—H14B⋯O3 hydrogen bonds form double columns along b with the vinyl substituents of the proximate cations and anions pointing in opposite directions, Fig. 3. Chains of anions form along a through C41—H41⋯O2iv hydrogen bonds augmented by C5—H5⋯Cg1iv contacts, Fig. 4 [symmetry code: (iv) x − Inline graphic, Inline graphic − y, −z]. Finally, weak C42—H42B⋯O1v hydrogen bonds link the anions in a head-to-tail fashion into zigzag chains along c, Fig. 5 [symmetry code: (v) Inline graphic − x, 1 − y, z − Inline graphic]. This extensive series of contact combines to assemble an extended network structure with the cations and anions stacked along the a-axis direction, Fig. 6.

Figure 2.

Figure 2

Chains of cations and anions of (I) along the a axis. Hydrogen bonds are shown as cyan dotted lines [symmetry code: (i) x − 1, y, z].

Figure 3.

Figure 3

Double chains of cation–anion dimers along b. Hydrogen bonds are shown as cyan dotted lines [symmetry codes: (ii) 1 − x, Inline graphic + y, Inline graphic − z; (iii) 1 − x, −Inline graphic + y, Inline graphic − z].

Figure 4.

Figure 4

Chains of anions along a. Hydrogen bonds and C—H⋯π inter­actions are shown as cyan and green dotted lines, respectively [symmetry code: (iv) x − Inline graphic, Inline graphic − y, −z].

Figure 5.

Figure 5

Zigzag chains of anions along c. Hydrogen bonds are shown as cyan dotted lines [symmetry code: (v) Inline graphic − x, 1 − y, z − Inline graphic].

Figure 6.

Figure 6

Overall packing for (I) viewed along the a-axis direction.

Hirshfeld surface analysis  

Further details of the inter­molecular architecture of this salt were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017). Hirshfeld surfaces viewed for opposite faces of the complete salt are shown in Fig. 7. Both disorder components are included in these surface calculations. The red circles on the Hirshfeld surfaces correspond to the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the principal contacts on the Hirshfeld surface of the salt are shown in Fig. 8. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts. The much less significant C⋯C and H⋯S/S⋯H contributions are not shown in the figure but are detailed in Table 2.

Figure 7.

Figure 7

Hirshfeld surfaces of (1) viewed for opposite faces of the salt.

Figure 8.

Figure 8

Full two-dimensional fingerprint plots for the salt (a), cation (b) and anion (c) together with (d)–(l) separate principal contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts.

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I).

Contacts Included surface area
  Salt Cation Anion
H⋯H 52.5 60.3 37.9
H⋯C/C⋯H 26.1 20.8 27.8
H⋯O/O⋯H 20.7 17.8 34.2
C⋯C 0.5 0.9 0.0
H⋯S/S⋯H 0.1 0.1 0.1

It is also instructive to investigate the differences in contacts for the discrete cation and anion components of (I) by recording fingerprint plots of the cation and anion individually. All of the surface contributions for the cation and anion are also shown in Table 2, with fingerprint plots for principal contacts found in the individual cation and anion also displayed in Fig. 8. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals inter­actions increase significantly for the cation, while the anion shows considerable increases in the H⋯O/O⋯H and H⋯C/C⋯H contacts. These differences reflect the fact that, whereas the contacts for the cations are limited to cation–anion inter­actions, the anions are also involved in distinct anion–anion contacts, vide supra. The C⋯C and H⋯S/S⋯H contributions to all of the surfaces are very weak but are included in Table 2 for completeness.

Database survey  

A search of the Cambridge Structural Database (Version 5.40 November 2018 with one update; Groom et al., 2016) reveals the fact that the salt reported here is quite unusual. Only two structures involving the N,N,N-trimeth­yl(4-vinyl­phen­yl)methyl­ammonium cation acting as counter-ions to poly-molybdate (QAJXEH) and poly-tungstate (QAJXAD) anions were found (Vorotnikov et al., 2015). Structures of salts of the 4-vinyl­benzene­sulfonate anion are slightly more abundant, with organic methyl­quinolinium (RUMGAJ; Lee et al., 2015) and 4-{2-[4-(di­methyl­amino)­phen­yl]vin­yl}-1-methyl­pyridinium (SAPDAR; Vijay et al., 2012) cations and hexa­aqua manganese, cobalt and nickel complex cations (SUVBOA, SUVBUG and SUVCAN; Leonard et al., 1999).

Synthesis and crystallization  

The title compound was prepared via an argentometric mixing approach (Li et al., 2010) from the silver salt of 4-vinyl­benzene­sulfonic acid, Ag-VBS (Woeste et al., 1993; Sikkema et al., 2007) and (vinyl­benz­yl)tri­methyl­ammonium chloride, VBT-Cl (Sigma Aldrich). A suspension of Ag-VBS in water and equimolar amount of VBT-Cl were stirred 30 minutes. After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair co-monomers recrystallized from chloro­form as irregular colourless blocks.

ESI MS +ve (m/z): 176.14 [C12H18N]+; -ve: 183.01 [C8H7SO3]. 1H NMR (400 MHz, DMSO-d 6): 5.95 (dd, J = 18, 1 Hz, 1H, VBT =CH2), 5.38 (dd, J = 11, 1 Hz, 1H, VBT =CH2), 6.80 (dd, J = 18, 11 Hz, 1H, VBT –CH=), 7.61 & 7.50 [2 × (d, J = 8 Hz, 2H, VBT benzene H)], 4.51 (s, 2H, VBT CH2), 4.51 (s, 2H, VBT CH2), 3.02 (s, 9H, VBT CH3). 5.84 (dd, J = 18, 1 Hz, 1H, VBS =CH2), 5.27 (dd, J = 11, 1 Hz, 1H, VBS =CH2), 6.73 (dd, J = 18, 11 Hz, 1H, VBS –CH=), 7.57 & 7.42 [2 × (d, J = 8 Hz, 2H, VBS benzene H)]

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were refined using a riding model with d(C—H) = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and U iso(H) = 1.2U eq(C) for methyl­ene and d(C—H) = 0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites (C101=C102 and C103=C104) with a refined occupancy ratio of 0.542 (11):0.458 (11).

Table 3. Experimental details.

Crystal data
Chemical formula C12H18N+·C8H7O3S
M r 359.47
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.3344 (3), 10.5937 (4), 21.1228 (8)
V3) 1864.98 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.69
Crystal size (mm) 0.20 × 0.18 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.911, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4767, 3103, 2784
R int 0.029
(sin θ/λ)max−1) 0.620
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.103, 1.04
No. of reflections 3103
No. of parameters 248
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.29
Absolute structure Flack x determined using 870 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.040 (19)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), TITAN (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014sup1.cif

e-75-00946-sup1.cif (184.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014Isup2.hkl

e-75-00946-Isup2.hkl (248KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019007758/xi2014Isup3.cml

CCDC reference: 1919325

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C12H18N+·C8H7O3S Dx = 1.280 Mg m3
Mr = 359.47 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 2591 reflections
a = 8.3344 (3) Å θ = 4.2–72.3°
b = 10.5937 (4) Å µ = 1.69 mm1
c = 21.1228 (8) Å T = 100 K
V = 1864.98 (12) Å3 Irregular block, colourless
Z = 4 0.20 × 0.18 × 0.08 mm
F(000) = 768

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas diffractometer 3103 independent reflections
Radiation source: micro-focus sealed X-ray tube 2784 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1 Rint = 0.029
ω scans θmax = 72.8°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) h = −6→10
Tmin = 0.911, Tmax = 1.000 k = −12→12
4767 measured reflections l = −25→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.5842P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.37 e Å3
3103 reflections Δρmin = −0.29 e Å3
248 parameters Absolute structure: Flack x determined using 870 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
10 restraints Absolute structure parameter: −0.040 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.7129 (3) 0.3773 (2) 0.23060 (11) 0.0340 (6)
O2 0.9047 (3) 0.2234 (2) 0.19192 (11) 0.0324 (6)
O3 0.6241 (3) 0.1666 (2) 0.20070 (11) 0.0316 (6)
S1 0.73918 (10) 0.26835 (7) 0.19052 (3) 0.0240 (2)
C1 0.7098 (4) 0.3210 (3) 0.11156 (14) 0.0213 (7)
C2 0.8167 (4) 0.4059 (3) 0.08477 (16) 0.0254 (7)
H2 0.901987 0.439140 0.109530 0.030*
C3 0.8000 (4) 0.4426 (3) 0.02186 (16) 0.0267 (8)
H3 0.873464 0.501524 0.004257 0.032*
C4 0.6771 (4) 0.3943 (3) −0.01563 (16) 0.0259 (7)
C41 0.6602 (5) 0.4228 (3) −0.08413 (17) 0.0304 (8)
H41 0.567919 0.390300 −0.104880 0.036*
C42 0.7607 (5) 0.4885 (3) −0.11868 (16) 0.0351 (8)
H42A 0.854786 0.522910 −0.100025 0.042*
H42B 0.739494 0.501740 −0.162365 0.042*
C5 0.5676 (4) 0.3129 (3) 0.01217 (17) 0.0302 (8)
H5 0.480488 0.281673 −0.012223 0.036*
C6 0.5829 (4) 0.2760 (3) 0.07539 (16) 0.0283 (8)
H6 0.506511 0.220260 0.093620 0.034*
C7 0.3486 (4) 0.3494 (4) 0.39999 (17) 0.0282 (8)
C8 0.2924 (5) 0.4592 (4) 0.4279 (2) 0.0391 (10)
H8 0.270082 0.530860 0.402275 0.047*
C9 0.2687 (6) 0.4656 (5) 0.4924 (2) 0.0577 (14)
H9 0.228496 0.541594 0.510296 0.069*
C10 0.3017 (5) 0.3649 (6) 0.5319 (2) 0.0600 (15)
C101 0.2819 (10) 0.3361 (8) 0.6023 (3) 0.038 (2) 0.542 (11)
H101 0.324589 0.260969 0.620146 0.046* 0.542 (11)
C102 0.2045 (14) 0.4175 (8) 0.6374 (4) 0.066 (4) 0.542 (11)
H10A 0.162395 0.492277 0.618983 0.080* 0.542 (11)
H10B 0.190496 0.401869 0.681348 0.080* 0.542 (11)
C103 0.2724 (12) 0.4160 (9) 0.5973 (3) 0.033 (2) 0.458 (11)
H103 0.251488 0.503001 0.604321 0.040* 0.458 (11)
C104 0.2771 (11) 0.3345 (9) 0.6444 (4) 0.038 (3) 0.458 (11)
H10C 0.298320 0.247947 0.636175 0.045* 0.458 (11)
H10D 0.259356 0.362379 0.686556 0.045* 0.458 (11)
C11 0.3597 (5) 0.2564 (6) 0.5043 (2) 0.0538 (13)
H11 0.384283 0.185948 0.530359 0.065*
C12 0.3830 (5) 0.2473 (4) 0.43947 (19) 0.0385 (9)
H12 0.422829 0.171040 0.421795 0.046*
C13 0.3803 (4) 0.3451 (4) 0.32982 (17) 0.0329 (8)
H13A 0.468168 0.284452 0.321549 0.039*
H13B 0.417035 0.429445 0.315753 0.039*
C14 0.2826 (5) 0.3111 (5) 0.22225 (17) 0.0528 (13)
H14A 0.190237 0.290203 0.195519 0.079*
H14B 0.368715 0.249929 0.214829 0.079*
H14C 0.320828 0.396094 0.211787 0.079*
C15 0.0986 (4) 0.3955 (3) 0.30061 (19) 0.0330 (8)
H15A 0.010714 0.374402 0.271685 0.050*
H15B 0.134872 0.481981 0.292401 0.050*
H15C 0.061038 0.388818 0.344442 0.050*
N1 0.2336 (4) 0.3069 (3) 0.29050 (13) 0.0289 (7)
C16 0.1808 (5) 0.1749 (3) 0.3060 (2) 0.0444 (10)
H16A 0.148219 0.170607 0.350491 0.067*
H16B 0.269731 0.116280 0.298539 0.067*
H16C 0.089814 0.151749 0.278940 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0421 (16) 0.0313 (13) 0.0287 (12) 0.0004 (12) 0.0005 (11) −0.0081 (10)
O2 0.0250 (12) 0.0454 (14) 0.0269 (12) 0.0102 (11) −0.0034 (10) −0.0010 (13)
O3 0.0370 (14) 0.0303 (13) 0.0275 (13) −0.0076 (12) −0.0008 (11) 0.0046 (11)
S1 0.0258 (4) 0.0259 (4) 0.0203 (3) 0.0004 (4) −0.0009 (3) −0.0022 (3)
C1 0.0243 (17) 0.0198 (14) 0.0198 (14) 0.0036 (14) −0.0016 (13) −0.0010 (12)
C2 0.0218 (16) 0.0237 (16) 0.0307 (17) −0.0006 (15) −0.0001 (14) −0.0042 (14)
C3 0.0259 (18) 0.0232 (16) 0.0311 (17) −0.0003 (15) 0.0064 (15) 0.0011 (14)
C4 0.0283 (18) 0.0244 (16) 0.0249 (17) 0.0043 (15) −0.0011 (14) −0.0019 (14)
C41 0.035 (2) 0.0286 (18) 0.0280 (18) 0.0035 (17) −0.0043 (16) 0.0003 (15)
C42 0.035 (2) 0.0423 (19) 0.0275 (17) 0.005 (2) 0.0014 (18) 0.0049 (15)
C5 0.0280 (18) 0.0302 (18) 0.0324 (19) −0.0023 (16) −0.0100 (15) 0.0016 (15)
C6 0.0283 (18) 0.0257 (17) 0.0308 (18) −0.0034 (16) −0.0057 (14) 0.0030 (16)
C7 0.0211 (17) 0.0344 (19) 0.0292 (18) −0.0060 (16) −0.0032 (14) −0.0010 (16)
C8 0.034 (2) 0.038 (2) 0.046 (2) 0.0006 (18) −0.0138 (18) −0.0090 (18)
C9 0.034 (2) 0.088 (4) 0.051 (3) 0.008 (3) −0.013 (2) −0.036 (3)
C10 0.031 (2) 0.116 (5) 0.034 (2) −0.018 (3) −0.0053 (18) −0.012 (3)
C101 0.045 (5) 0.032 (5) 0.038 (5) −0.016 (4) −0.016 (4) 0.009 (4)
C102 0.126 (11) 0.043 (5) 0.030 (5) −0.009 (6) −0.009 (6) 0.005 (4)
C103 0.040 (5) 0.031 (5) 0.028 (5) −0.003 (5) −0.002 (4) −0.001 (4)
C104 0.044 (6) 0.045 (6) 0.023 (5) −0.010 (5) 0.002 (4) 0.002 (4)
C11 0.048 (3) 0.073 (3) 0.040 (2) −0.026 (3) −0.0168 (19) 0.025 (2)
C12 0.036 (2) 0.033 (2) 0.046 (2) −0.007 (2) −0.0098 (17) 0.0038 (18)
C13 0.0223 (17) 0.042 (2) 0.0347 (19) −0.0019 (17) −0.0027 (15) 0.0019 (17)
C14 0.039 (2) 0.094 (4) 0.0250 (19) 0.000 (3) 0.0010 (17) −0.007 (2)
C15 0.0293 (18) 0.0291 (18) 0.041 (2) 0.0064 (16) −0.0063 (17) −0.0055 (17)
N1 0.0267 (15) 0.0331 (15) 0.0271 (14) 0.0018 (14) −0.0027 (13) −0.0027 (11)
C16 0.056 (2) 0.0216 (17) 0.055 (3) −0.0022 (18) −0.019 (2) −0.0020 (19)

Geometric parameters (Å, º)

O1—S1 1.448 (2) C10—C101 1.527 (7)
O2—S1 1.460 (2) C101—C102 1.307 (9)
O3—S1 1.459 (2) C101—H101 0.9500
S1—C1 1.776 (3) C102—H10A 0.9500
C1—C2 1.387 (4) C102—H10B 0.9500
C1—C6 1.389 (5) C103—C104 1.317 (9)
C2—C3 1.392 (5) C103—H103 0.9500
C2—H2 0.9500 C104—H10C 0.9500
C3—C4 1.392 (5) C104—H10D 0.9500
C3—H3 0.9500 C11—C12 1.387 (6)
C4—C5 1.386 (5) C11—H11 0.9500
C4—C41 1.485 (5) C12—H12 0.9500
C41—C42 1.311 (5) C13—N1 1.533 (5)
C41—H41 0.9500 C13—H13A 0.9900
C42—H42A 0.9500 C13—H13B 0.9900
C42—H42B 0.9500 C14—N1 1.499 (4)
C5—C6 1.397 (4) C14—H14A 0.9800
C5—H5 0.9500 C14—H14B 0.9800
C6—H6 0.9500 C14—H14C 0.9800
C7—C8 1.386 (5) C15—N1 1.481 (4)
C7—C12 1.395 (5) C15—H15A 0.9800
C7—C13 1.506 (5) C15—H15B 0.9800
C8—C9 1.380 (6) C15—H15C 0.9800
C8—H8 0.9500 N1—C16 1.501 (4)
C9—C10 1.382 (8) C16—H16A 0.9800
C9—H9 0.9500 C16—H16B 0.9800
C10—C11 1.376 (8) C16—H16C 0.9800
C10—C103 1.504 (7)
O1—S1—O3 113.77 (15) C10—C101—H101 120.8
O1—S1—O2 113.04 (15) C101—C102—H10A 120.0
O3—S1—O2 112.16 (16) C101—C102—H10B 120.0
O1—S1—C1 106.15 (14) H10A—C102—H10B 120.0
O3—S1—C1 106.25 (15) C104—C103—C10 116.9 (8)
O2—S1—C1 104.59 (15) C104—C103—H103 121.5
C2—C1—C6 119.2 (3) C10—C103—H103 121.5
C2—C1—S1 119.9 (2) C103—C104—H10C 120.0
C6—C1—S1 120.9 (3) C103—C104—H10D 120.0
C1—C2—C3 120.4 (3) H10C—C104—H10D 120.0
C1—C2—H2 119.8 C10—C11—C12 121.7 (5)
C3—C2—H2 119.8 C10—C11—H11 119.1
C2—C3—C4 120.9 (3) C12—C11—H11 119.1
C2—C3—H3 119.5 C11—C12—C7 120.5 (4)
C4—C3—H3 119.5 C11—C12—H12 119.8
C5—C4—C3 118.2 (3) C7—C12—H12 119.8
C5—C4—C41 118.5 (3) C7—C13—N1 113.7 (3)
C3—C4—C41 123.3 (3) C7—C13—H13A 108.8
C42—C41—C4 126.1 (4) N1—C13—H13A 108.8
C42—C41—H41 116.9 C7—C13—H13B 108.8
C4—C41—H41 116.9 N1—C13—H13B 108.8
C41—C42—H42A 120.0 H13A—C13—H13B 107.7
C41—C42—H42B 120.0 N1—C14—H14A 109.5
H42A—C42—H42B 120.0 N1—C14—H14B 109.5
C4—C5—C6 121.3 (3) H14A—C14—H14B 109.5
C4—C5—H5 119.4 N1—C14—H14C 109.5
C6—C5—H5 119.4 H14A—C14—H14C 109.5
C1—C6—C5 119.9 (3) H14B—C14—H14C 109.5
C1—C6—H6 120.0 N1—C15—H15A 109.5
C5—C6—H6 120.0 N1—C15—H15B 109.5
C8—C7—C12 117.8 (4) H15A—C15—H15B 109.5
C8—C7—C13 120.1 (4) N1—C15—H15C 109.5
C12—C7—C13 121.9 (4) H15A—C15—H15C 109.5
C9—C8—C7 120.6 (4) H15B—C15—H15C 109.5
C9—C8—H8 119.7 C15—N1—C16 109.7 (3)
C7—C8—H8 119.7 C15—N1—C14 109.1 (3)
C8—C9—C10 122.0 (5) C16—N1—C14 108.5 (3)
C8—C9—H9 119.0 C15—N1—C13 111.1 (3)
C10—C9—H9 119.0 C16—N1—C13 111.2 (3)
C11—C10—C9 117.4 (4) C14—N1—C13 107.2 (3)
C11—C10—C103 138.3 (6) N1—C16—H16A 109.5
C9—C10—C103 104.1 (6) N1—C16—H16B 109.5
C11—C10—C101 106.5 (6) H16A—C16—H16B 109.5
C9—C10—C101 136.0 (6) N1—C16—H16C 109.5
C102—C101—C10 118.3 (8) H16A—C16—H16C 109.5
C102—C101—H101 120.8 H16B—C16—H16C 109.5
O1—S1—C1—C2 67.5 (3) C7—C8—C9—C10 1.0 (7)
O3—S1—C1—C2 −171.1 (2) C8—C9—C10—C11 −0.1 (7)
O2—S1—C1—C2 −52.3 (3) C8—C9—C10—C103 175.4 (6)
O1—S1—C1—C6 −114.1 (3) C8—C9—C10—C101 −175.7 (6)
O3—S1—C1—C6 7.3 (3) C11—C10—C101—C102 −169.3 (7)
O2—S1—C1—C6 126.1 (3) C9—C10—C101—C102 6.6 (12)
C6—C1—C2—C3 −1.9 (5) C11—C10—C103—C104 −13.7 (13)
S1—C1—C2—C3 176.5 (3) C9—C10—C103—C104 172.3 (8)
C1—C2—C3—C4 −0.7 (5) C9—C10—C11—C12 −0.6 (7)
C2—C3—C4—C5 2.9 (5) C103—C10—C11—C12 −174.0 (7)
C2—C3—C4—C41 −175.4 (3) C101—C10—C11—C12 176.3 (5)
C5—C4—C41—C42 −173.8 (4) C10—C11—C12—C7 0.2 (6)
C3—C4—C41—C42 4.5 (6) C8—C7—C12—C11 0.7 (5)
C3—C4—C5—C6 −2.5 (5) C13—C7—C12—C11 176.9 (4)
C41—C4—C5—C6 175.9 (3) C8—C7—C13—N1 −88.7 (4)
C2—C1—C6—C5 2.3 (5) C12—C7—C13—N1 95.2 (4)
S1—C1—C6—C5 −176.2 (3) C7—C13—N1—C15 59.1 (4)
C4—C5—C6—C1 −0.1 (6) C7—C13—N1—C16 −63.3 (4)
C12—C7—C8—C9 −1.3 (6) C7—C13—N1—C14 178.2 (3)
C13—C7—C8—C9 −177.6 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
C14—H14B···O3 0.98 2.32 3.264 (5) 161
C14—H14A···O2i 0.98 2.48 3.346 (5) 147
C15—H15A···O1i 0.98 2.63 3.544 (4) 155
C15—H15A···O2i 0.98 2.49 3.348 (4) 147
C13—H13B···O3ii 0.99 2.56 3.466 (5) 152
C15—H15B···O2ii 0.98 2.60 3.477 (4) 149
C16—H16B···O1iii 0.98 2.61 3.365 (4) 134
C16—H16C···O2i 0.98 2.52 3.370 (5) 146
C41—H41···O2iv 0.95 2.58 3.481 (4) 157
C42—H42B···O1v 0.95 2.63 3.494 (4) 151
C5—H5···Cg1iv 0.95 2.93 3.837 (4) 161

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, −z; (v) −x+3/2, −y+1, z−1/2.

Funding Statement

This work was funded by NZ Ministry of Business, Innovation and Employment Science Investment Fund grant UOO-X1206. University of Otago grant .

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
  6. Lee, S.-H., Yoo, B.-W., Yun, H., Jazbinsek, M. & Kwon, O.-P. (2015). J. Mol. Struct. 1100, 359–365.
  7. Leonard, M. A., Squattrito, P. J. & Dubey, S. N. (1999). Acta Cryst. C55, 35–39.
  8. Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Naficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. (2011). Aust. J. Chem. 64, 1007–1025.
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Peak, C. W., Wilker, J. J. & Schmidt, G. (2013). Colloid Polym. Sci. 291, 2031–2047.
  13. Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832. [DOI] [PubMed]
  14. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Sikkema, F. D., Comellas-Aragonès, M., Fokkink, R. G., Verduin, B. J. M., Cornelissen, J. J. L. M. & Nolte, R. J. M. (2007). Org. Biomol. Chem. 5, 54–57. [DOI] [PubMed]
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Sun, Z., Lv, F., Cao, L., Liu, L., Zhang, Y. & Lu, Z. (2015). Angew. Chem. Int. Ed. 54, 7944–7948. [DOI] [PubMed]
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
  22. Van Vlierberghe, S., Dubruel, P. & Schacht, E. (2011). Biomacromolecules, 12, 1387–1408. [DOI] [PubMed]
  23. Vijay, R. J., Melikechi, N., Thomas, T., Gunaseelan, R., Arockiaraj, M. A. & Sagayaraj, P. (2012). J. Cryst. Growth, 338, 170–176.
  24. Vorotnikov, Y. A., Mikhailov, M. A., Brylev, K. A., Piryazev, D. A., Kuratieva, N. V., Sokolov, M. N., Mironov, Y. V. & Shestopalov, M. A. (2015). Izv. Akad. Nauk SSSR, Ser. Khim. (Russ. Chem. Bull.), 64, 2591–2596.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Woeste, G., Meyer, W. H. & Wegner, G. (1993). Makromol. Chem. 194, 1237–1248.
  27. Zhao, X. (2014). Soft Matter, 10, 672–687. [DOI] [PMC free article] [PubMed]
  28. Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014sup1.cif

e-75-00946-sup1.cif (184.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014Isup2.hkl

e-75-00946-Isup2.hkl (248KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019007758/xi2014Isup3.cml

CCDC reference: 1919325

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES