The molecular and crystal structure of the salt N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate is reported. A Hirshfeld surface analysis of the salt and its individual components is also presented.
Keywords: crystal structure; N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation; 4-vinylbenzenesulfonate anion; hydrogen bonds; Hirshfeld surface analysis
Abstract
In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.
Chemical context
Hydrogels continue to be the subject of intense study, particularly with regard to biomedical applications and new technologies (Van Vlierberghe et al., 2011 ▸; Sun et al., 2015 ▸; Goswami et al., 2017 ▸; Pushparajan et al., 2018 ▸). Limiting development has been the poor mechanical strength of conventional hydrogel formulations. Numerous strategies, singly and in combination, have been utilized in efforts to improve toughness and stretchability, and the results have been extensively reviewed (Naficy et al., 2011 ▸; Peak et al., 2013 ▸; Zhao, 2014 ▸). Our current approach is to build in capacity for self-healing, and exploits polyampholytes (Zurick & Bernards, 2014 ▸), polymers formed from the covalent cross-linking of mixed cationic and anionic monomers. The title compound is one such set of ion-pair co-monomers, simply prepared from commercially available trimethylammonium cation and sulfonate anion salts.
Structural commentary
The asymmetric unit of the title salt, (I), comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, linked by a C14—H14B⋯O3 hydrogen bond (Table 1 ▸) between a methyl group of the trimethylmethanaminium unit and a sulfonate oxygen, Fig. 1 ▸. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the cation, the C7/C13/N1 and C10/C101/C102 planes of the methanaminium and major vinyl substituents on the benzene ring subtend angles of 86.6 (3) and 10.5 (9)°, respectively, to the ring plane. In contrast, excluding the sulfonate O atoms, the S and ordered vinyl substituents lie close to the benzene ring plane in the anion with an r.m.s. deviation of 0.0753 Å from the S1/C1–C6/C41/C42 plane.
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 is the centroid of the C1–C6 benzene ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C14—H14B⋯O3 | 0.98 | 2.32 | 3.264 (5) | 161 |
| C14—H14A⋯O2i | 0.98 | 2.48 | 3.346 (5) | 147 |
| C15—H15A⋯O1i | 0.98 | 2.63 | 3.544 (4) | 155 |
| C15—H15A⋯O2i | 0.98 | 2.49 | 3.348 (4) | 147 |
| C13—H13B⋯O3ii | 0.99 | 2.56 | 3.466 (5) | 152 |
| C15—H15B⋯O2ii | 0.98 | 2.60 | 3.477 (4) | 149 |
| C16—H16B⋯O1iii | 0.98 | 2.61 | 3.365 (4) | 134 |
| C16—H16C⋯O2i | 0.98 | 2.52 | 3.370 (5) | 146 |
| C41—H41⋯O2iv | 0.95 | 2.58 | 3.481 (4) | 157 |
| C42—H42B⋯O1v | 0.95 | 2.63 | 3.494 (4) | 151 |
| C5—H5⋯Cg1iv | 0.95 | 2.93 | 3.837 (4) | 161 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 1.
The asymmetric unit of the title compound showing the atom numbering with ellipsoids drawn at the 50% probability level. The C—H⋯O hydrogen bond linking the two components is drawn as a dotted black line. For clarity, only the major disorder component of the vinyl substituent on the benzene ring of the cation is shown.
Supramolecular features
Packing in this salt is dominated by an extensive number of C—H⋯O hydrogen bonds, Table 1 ▸. O2 acts as a trifurcated acceptor forming C14—H14A⋯O2i, C15—H15A⋯O2i and C16—H16C⋯O2i hydrogen bonds [symmetry code: (i) x − 1, y, z]. C14 and C15 are bifurcated donors with the C15—H15A⋯O1i and C15—H15A⋯O2i contacts forming
(4) ring motifs. C14—H14B⋯O3 contacts link the cation–anion pairs into chains along the a-axis direction, Fig. 2 ▸. Cation–anion dimers are generated by C13—H13B⋯O3ii and C15—H15B⋯O2ii contacts with adjacent dimers linked into columns along b by C16—H16B⋯O1iii hydrogen bonds [symmetry codes: (ii) 1 − x,
+ y,
− z; (iii) 1 − x, −
+ y,
− z]. Additional C14—H14B⋯O3 hydrogen bonds form double columns along b with the vinyl substituents of the proximate cations and anions pointing in opposite directions, Fig. 3 ▸. Chains of anions form along a through C41—H41⋯O2iv hydrogen bonds augmented by C5—H5⋯Cg1iv contacts, Fig. 4 ▸ [symmetry code: (iv) x −
,
− y, −z]. Finally, weak C42—H42B⋯O1v hydrogen bonds link the anions in a head-to-tail fashion into zigzag chains along c, Fig. 5 ▸ [symmetry code: (v)
− x, 1 − y, z −
]. This extensive series of contact combines to assemble an extended network structure with the cations and anions stacked along the a-axis direction, Fig. 6 ▸.
Figure 2.
Chains of cations and anions of (I) along the a axis. Hydrogen bonds are shown as cyan dotted lines [symmetry code: (i) x − 1, y, z].
Figure 3.
Double chains of cation–anion dimers along b. Hydrogen bonds are shown as cyan dotted lines [symmetry codes: (ii) 1 − x,
+ y,
− z; (iii) 1 − x, −
+ y,
− z].
Figure 4.
Chains of anions along a. Hydrogen bonds and C—H⋯π interactions are shown as cyan and green dotted lines, respectively [symmetry code: (iv) x −
,
− y, −z].
Figure 5.
Zigzag chains of anions along c. Hydrogen bonds are shown as cyan dotted lines [symmetry code: (v)
− x, 1 − y, z −
].
Figure 6.
Overall packing for (I) viewed along the a-axis direction.
Hirshfeld surface analysis
Further details of the intermolecular architecture of this salt were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017 ▸). Hirshfeld surfaces viewed for opposite faces of the complete salt are shown in Fig. 7 ▸. Both disorder components are included in these surface calculations. The red circles on the Hirshfeld surfaces correspond to the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the principal contacts on the Hirshfeld surface of the salt are shown in Fig. 8 ▸. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts. The much less significant C⋯C and H⋯S/S⋯H contributions are not shown in the figure but are detailed in Table 2 ▸.
Figure 7.
Hirshfeld surfaces of (1) viewed for opposite faces of the salt.
Figure 8.
Full two-dimensional fingerprint plots for the salt (a), cation (b) and anion (c) together with (d)–(l) separate principal contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts.
Table 2. Percentage contributions of interatomic contacts to the Hirshfeld surface for (I).
| Contacts | Included surface area | ||
|---|---|---|---|
| Salt | Cation | Anion | |
| H⋯H | 52.5 | 60.3 | 37.9 |
| H⋯C/C⋯H | 26.1 | 20.8 | 27.8 |
| H⋯O/O⋯H | 20.7 | 17.8 | 34.2 |
| C⋯C | 0.5 | 0.9 | 0.0 |
| H⋯S/S⋯H | 0.1 | 0.1 | 0.1 |
It is also instructive to investigate the differences in contacts for the discrete cation and anion components of (I) by recording fingerprint plots of the cation and anion individually. All of the surface contributions for the cation and anion are also shown in Table 2 ▸, with fingerprint plots for principal contacts found in the individual cation and anion also displayed in Fig. 8 ▸. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals interactions increase significantly for the cation, while the anion shows considerable increases in the H⋯O/O⋯H and H⋯C/C⋯H contacts. These differences reflect the fact that, whereas the contacts for the cations are limited to cation–anion interactions, the anions are also involved in distinct anion–anion contacts, vide supra. The C⋯C and H⋯S/S⋯H contributions to all of the surfaces are very weak but are included in Table 2 ▸ for completeness.
Database survey
A search of the Cambridge Structural Database (Version 5.40 November 2018 with one update; Groom et al., 2016 ▸) reveals the fact that the salt reported here is quite unusual. Only two structures involving the N,N,N-trimethyl(4-vinylphenyl)methylammonium cation acting as counter-ions to poly-molybdate (QAJXEH) and poly-tungstate (QAJXAD) anions were found (Vorotnikov et al., 2015 ▸). Structures of salts of the 4-vinylbenzenesulfonate anion are slightly more abundant, with organic methylquinolinium (RUMGAJ; Lee et al., 2015 ▸) and 4-{2-[4-(dimethylamino)phenyl]vinyl}-1-methylpyridinium (SAPDAR; Vijay et al., 2012 ▸) cations and hexaaqua manganese, cobalt and nickel complex cations (SUVBOA, SUVBUG and SUVCAN; Leonard et al., 1999 ▸).
Synthesis and crystallization
The title compound was prepared via an argentometric mixing approach (Li et al., 2010 ▸) from the silver salt of 4-vinylbenzenesulfonic acid, Ag-VBS (Woeste et al., 1993 ▸; Sikkema et al., 2007 ▸) and (vinylbenzyl)trimethylammonium chloride, VBT-Cl (Sigma Aldrich). A suspension of Ag-VBS in water and equimolar amount of VBT-Cl were stirred 30 minutes. After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair co-monomers recrystallized from chloroform as irregular colourless blocks.
ESI MS +ve (m/z): 176.14 [C12H18N]+; -ve: 183.01 [C8H7SO3]−. 1H NMR (400 MHz, DMSO-d 6): 5.95 (dd, J = 18, 1 Hz, 1H, VBT =CH2), 5.38 (dd, J = 11, 1 Hz, 1H, VBT =CH2), 6.80 (dd, J = 18, 11 Hz, 1H, VBT –CH=), 7.61 & 7.50 [2 × (d, J = 8 Hz, 2H, VBT benzene H)], 4.51 (s, 2H, VBT CH2), 4.51 (s, 2H, VBT CH2), 3.02 (s, 9H, VBT CH3). 5.84 (dd, J = 18, 1 Hz, 1H, VBS =CH2), 5.27 (dd, J = 11, 1 Hz, 1H, VBS =CH2), 6.73 (dd, J = 18, 11 Hz, 1H, VBS –CH=), 7.57 & 7.42 [2 × (d, J = 8 Hz, 2H, VBS benzene H)]
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms were refined using a riding model with d(C—H) = 0.95 Å and U iso(H) = 1.2U eq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and U iso(H) = 1.2U eq(C) for methylene and d(C—H) = 0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites (C101=C102 and C103=C104) with a refined occupancy ratio of 0.542 (11):0.458 (11).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C12H18N+·C8H7O3S− |
| M r | 359.47 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 100 |
| a, b, c (Å) | 8.3344 (3), 10.5937 (4), 21.1228 (8) |
| V (Å3) | 1864.98 (12) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 1.69 |
| Crystal size (mm) | 0.20 × 0.18 × 0.08 |
| Data collection | |
| Diffractometer | Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
| T min, T max | 0.911, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 4767, 3103, 2784 |
| R int | 0.029 |
| (sin θ/λ)max (Å−1) | 0.620 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.040, 0.103, 1.04 |
| No. of reflections | 3103 |
| No. of parameters | 248 |
| No. of restraints | 10 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.37, −0.29 |
| Absolute structure | Flack x determined using 870 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | −0.040 (19) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019007758/xi2014Isup3.cml
CCDC reference: 1919325
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C12H18N+·C8H7O3S− | Dx = 1.280 Mg m−3 |
| Mr = 359.47 | Cu Kα radiation, λ = 1.54184 Å |
| Orthorhombic, P212121 | Cell parameters from 2591 reflections |
| a = 8.3344 (3) Å | θ = 4.2–72.3° |
| b = 10.5937 (4) Å | µ = 1.69 mm−1 |
| c = 21.1228 (8) Å | T = 100 K |
| V = 1864.98 (12) Å3 | Irregular block, colourless |
| Z = 4 | 0.20 × 0.18 × 0.08 mm |
| F(000) = 768 |
Data collection
| Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas diffractometer | 3103 independent reflections |
| Radiation source: micro-focus sealed X-ray tube | 2784 reflections with I > 2σ(I) |
| Detector resolution: 5.1725 pixels mm-1 | Rint = 0.029 |
| ω scans | θmax = 72.8°, θmin = 4.2° |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | h = −6→10 |
| Tmin = 0.911, Tmax = 1.000 | k = −12→12 |
| 4767 measured reflections | l = −25→24 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.5842P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.103 | (Δ/σ)max < 0.001 |
| S = 1.04 | Δρmax = 0.37 e Å−3 |
| 3103 reflections | Δρmin = −0.29 e Å−3 |
| 248 parameters | Absolute structure: Flack x determined using 870 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 10 restraints | Absolute structure parameter: −0.040 (19) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| O1 | 0.7129 (3) | 0.3773 (2) | 0.23060 (11) | 0.0340 (6) | |
| O2 | 0.9047 (3) | 0.2234 (2) | 0.19192 (11) | 0.0324 (6) | |
| O3 | 0.6241 (3) | 0.1666 (2) | 0.20070 (11) | 0.0316 (6) | |
| S1 | 0.73918 (10) | 0.26835 (7) | 0.19052 (3) | 0.0240 (2) | |
| C1 | 0.7098 (4) | 0.3210 (3) | 0.11156 (14) | 0.0213 (7) | |
| C2 | 0.8167 (4) | 0.4059 (3) | 0.08477 (16) | 0.0254 (7) | |
| H2 | 0.901987 | 0.439140 | 0.109530 | 0.030* | |
| C3 | 0.8000 (4) | 0.4426 (3) | 0.02186 (16) | 0.0267 (8) | |
| H3 | 0.873464 | 0.501524 | 0.004257 | 0.032* | |
| C4 | 0.6771 (4) | 0.3943 (3) | −0.01563 (16) | 0.0259 (7) | |
| C41 | 0.6602 (5) | 0.4228 (3) | −0.08413 (17) | 0.0304 (8) | |
| H41 | 0.567919 | 0.390300 | −0.104880 | 0.036* | |
| C42 | 0.7607 (5) | 0.4885 (3) | −0.11868 (16) | 0.0351 (8) | |
| H42A | 0.854786 | 0.522910 | −0.100025 | 0.042* | |
| H42B | 0.739494 | 0.501740 | −0.162365 | 0.042* | |
| C5 | 0.5676 (4) | 0.3129 (3) | 0.01217 (17) | 0.0302 (8) | |
| H5 | 0.480488 | 0.281673 | −0.012223 | 0.036* | |
| C6 | 0.5829 (4) | 0.2760 (3) | 0.07539 (16) | 0.0283 (8) | |
| H6 | 0.506511 | 0.220260 | 0.093620 | 0.034* | |
| C7 | 0.3486 (4) | 0.3494 (4) | 0.39999 (17) | 0.0282 (8) | |
| C8 | 0.2924 (5) | 0.4592 (4) | 0.4279 (2) | 0.0391 (10) | |
| H8 | 0.270082 | 0.530860 | 0.402275 | 0.047* | |
| C9 | 0.2687 (6) | 0.4656 (5) | 0.4924 (2) | 0.0577 (14) | |
| H9 | 0.228496 | 0.541594 | 0.510296 | 0.069* | |
| C10 | 0.3017 (5) | 0.3649 (6) | 0.5319 (2) | 0.0600 (15) | |
| C101 | 0.2819 (10) | 0.3361 (8) | 0.6023 (3) | 0.038 (2) | 0.542 (11) |
| H101 | 0.324589 | 0.260969 | 0.620146 | 0.046* | 0.542 (11) |
| C102 | 0.2045 (14) | 0.4175 (8) | 0.6374 (4) | 0.066 (4) | 0.542 (11) |
| H10A | 0.162395 | 0.492277 | 0.618983 | 0.080* | 0.542 (11) |
| H10B | 0.190496 | 0.401869 | 0.681348 | 0.080* | 0.542 (11) |
| C103 | 0.2724 (12) | 0.4160 (9) | 0.5973 (3) | 0.033 (2) | 0.458 (11) |
| H103 | 0.251488 | 0.503001 | 0.604321 | 0.040* | 0.458 (11) |
| C104 | 0.2771 (11) | 0.3345 (9) | 0.6444 (4) | 0.038 (3) | 0.458 (11) |
| H10C | 0.298320 | 0.247947 | 0.636175 | 0.045* | 0.458 (11) |
| H10D | 0.259356 | 0.362379 | 0.686556 | 0.045* | 0.458 (11) |
| C11 | 0.3597 (5) | 0.2564 (6) | 0.5043 (2) | 0.0538 (13) | |
| H11 | 0.384283 | 0.185948 | 0.530359 | 0.065* | |
| C12 | 0.3830 (5) | 0.2473 (4) | 0.43947 (19) | 0.0385 (9) | |
| H12 | 0.422829 | 0.171040 | 0.421795 | 0.046* | |
| C13 | 0.3803 (4) | 0.3451 (4) | 0.32982 (17) | 0.0329 (8) | |
| H13A | 0.468168 | 0.284452 | 0.321549 | 0.039* | |
| H13B | 0.417035 | 0.429445 | 0.315753 | 0.039* | |
| C14 | 0.2826 (5) | 0.3111 (5) | 0.22225 (17) | 0.0528 (13) | |
| H14A | 0.190237 | 0.290203 | 0.195519 | 0.079* | |
| H14B | 0.368715 | 0.249929 | 0.214829 | 0.079* | |
| H14C | 0.320828 | 0.396094 | 0.211787 | 0.079* | |
| C15 | 0.0986 (4) | 0.3955 (3) | 0.30061 (19) | 0.0330 (8) | |
| H15A | 0.010714 | 0.374402 | 0.271685 | 0.050* | |
| H15B | 0.134872 | 0.481981 | 0.292401 | 0.050* | |
| H15C | 0.061038 | 0.388818 | 0.344442 | 0.050* | |
| N1 | 0.2336 (4) | 0.3069 (3) | 0.29050 (13) | 0.0289 (7) | |
| C16 | 0.1808 (5) | 0.1749 (3) | 0.3060 (2) | 0.0444 (10) | |
| H16A | 0.148219 | 0.170607 | 0.350491 | 0.067* | |
| H16B | 0.269731 | 0.116280 | 0.298539 | 0.067* | |
| H16C | 0.089814 | 0.151749 | 0.278940 | 0.067* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0421 (16) | 0.0313 (13) | 0.0287 (12) | 0.0004 (12) | 0.0005 (11) | −0.0081 (10) |
| O2 | 0.0250 (12) | 0.0454 (14) | 0.0269 (12) | 0.0102 (11) | −0.0034 (10) | −0.0010 (13) |
| O3 | 0.0370 (14) | 0.0303 (13) | 0.0275 (13) | −0.0076 (12) | −0.0008 (11) | 0.0046 (11) |
| S1 | 0.0258 (4) | 0.0259 (4) | 0.0203 (3) | 0.0004 (4) | −0.0009 (3) | −0.0022 (3) |
| C1 | 0.0243 (17) | 0.0198 (14) | 0.0198 (14) | 0.0036 (14) | −0.0016 (13) | −0.0010 (12) |
| C2 | 0.0218 (16) | 0.0237 (16) | 0.0307 (17) | −0.0006 (15) | −0.0001 (14) | −0.0042 (14) |
| C3 | 0.0259 (18) | 0.0232 (16) | 0.0311 (17) | −0.0003 (15) | 0.0064 (15) | 0.0011 (14) |
| C4 | 0.0283 (18) | 0.0244 (16) | 0.0249 (17) | 0.0043 (15) | −0.0011 (14) | −0.0019 (14) |
| C41 | 0.035 (2) | 0.0286 (18) | 0.0280 (18) | 0.0035 (17) | −0.0043 (16) | 0.0003 (15) |
| C42 | 0.035 (2) | 0.0423 (19) | 0.0275 (17) | 0.005 (2) | 0.0014 (18) | 0.0049 (15) |
| C5 | 0.0280 (18) | 0.0302 (18) | 0.0324 (19) | −0.0023 (16) | −0.0100 (15) | 0.0016 (15) |
| C6 | 0.0283 (18) | 0.0257 (17) | 0.0308 (18) | −0.0034 (16) | −0.0057 (14) | 0.0030 (16) |
| C7 | 0.0211 (17) | 0.0344 (19) | 0.0292 (18) | −0.0060 (16) | −0.0032 (14) | −0.0010 (16) |
| C8 | 0.034 (2) | 0.038 (2) | 0.046 (2) | 0.0006 (18) | −0.0138 (18) | −0.0090 (18) |
| C9 | 0.034 (2) | 0.088 (4) | 0.051 (3) | 0.008 (3) | −0.013 (2) | −0.036 (3) |
| C10 | 0.031 (2) | 0.116 (5) | 0.034 (2) | −0.018 (3) | −0.0053 (18) | −0.012 (3) |
| C101 | 0.045 (5) | 0.032 (5) | 0.038 (5) | −0.016 (4) | −0.016 (4) | 0.009 (4) |
| C102 | 0.126 (11) | 0.043 (5) | 0.030 (5) | −0.009 (6) | −0.009 (6) | 0.005 (4) |
| C103 | 0.040 (5) | 0.031 (5) | 0.028 (5) | −0.003 (5) | −0.002 (4) | −0.001 (4) |
| C104 | 0.044 (6) | 0.045 (6) | 0.023 (5) | −0.010 (5) | 0.002 (4) | 0.002 (4) |
| C11 | 0.048 (3) | 0.073 (3) | 0.040 (2) | −0.026 (3) | −0.0168 (19) | 0.025 (2) |
| C12 | 0.036 (2) | 0.033 (2) | 0.046 (2) | −0.007 (2) | −0.0098 (17) | 0.0038 (18) |
| C13 | 0.0223 (17) | 0.042 (2) | 0.0347 (19) | −0.0019 (17) | −0.0027 (15) | 0.0019 (17) |
| C14 | 0.039 (2) | 0.094 (4) | 0.0250 (19) | 0.000 (3) | 0.0010 (17) | −0.007 (2) |
| C15 | 0.0293 (18) | 0.0291 (18) | 0.041 (2) | 0.0064 (16) | −0.0063 (17) | −0.0055 (17) |
| N1 | 0.0267 (15) | 0.0331 (15) | 0.0271 (14) | 0.0018 (14) | −0.0027 (13) | −0.0027 (11) |
| C16 | 0.056 (2) | 0.0216 (17) | 0.055 (3) | −0.0022 (18) | −0.019 (2) | −0.0020 (19) |
Geometric parameters (Å, º)
| O1—S1 | 1.448 (2) | C10—C101 | 1.527 (7) |
| O2—S1 | 1.460 (2) | C101—C102 | 1.307 (9) |
| O3—S1 | 1.459 (2) | C101—H101 | 0.9500 |
| S1—C1 | 1.776 (3) | C102—H10A | 0.9500 |
| C1—C2 | 1.387 (4) | C102—H10B | 0.9500 |
| C1—C6 | 1.389 (5) | C103—C104 | 1.317 (9) |
| C2—C3 | 1.392 (5) | C103—H103 | 0.9500 |
| C2—H2 | 0.9500 | C104—H10C | 0.9500 |
| C3—C4 | 1.392 (5) | C104—H10D | 0.9500 |
| C3—H3 | 0.9500 | C11—C12 | 1.387 (6) |
| C4—C5 | 1.386 (5) | C11—H11 | 0.9500 |
| C4—C41 | 1.485 (5) | C12—H12 | 0.9500 |
| C41—C42 | 1.311 (5) | C13—N1 | 1.533 (5) |
| C41—H41 | 0.9500 | C13—H13A | 0.9900 |
| C42—H42A | 0.9500 | C13—H13B | 0.9900 |
| C42—H42B | 0.9500 | C14—N1 | 1.499 (4) |
| C5—C6 | 1.397 (4) | C14—H14A | 0.9800 |
| C5—H5 | 0.9500 | C14—H14B | 0.9800 |
| C6—H6 | 0.9500 | C14—H14C | 0.9800 |
| C7—C8 | 1.386 (5) | C15—N1 | 1.481 (4) |
| C7—C12 | 1.395 (5) | C15—H15A | 0.9800 |
| C7—C13 | 1.506 (5) | C15—H15B | 0.9800 |
| C8—C9 | 1.380 (6) | C15—H15C | 0.9800 |
| C8—H8 | 0.9500 | N1—C16 | 1.501 (4) |
| C9—C10 | 1.382 (8) | C16—H16A | 0.9800 |
| C9—H9 | 0.9500 | C16—H16B | 0.9800 |
| C10—C11 | 1.376 (8) | C16—H16C | 0.9800 |
| C10—C103 | 1.504 (7) | ||
| O1—S1—O3 | 113.77 (15) | C10—C101—H101 | 120.8 |
| O1—S1—O2 | 113.04 (15) | C101—C102—H10A | 120.0 |
| O3—S1—O2 | 112.16 (16) | C101—C102—H10B | 120.0 |
| O1—S1—C1 | 106.15 (14) | H10A—C102—H10B | 120.0 |
| O3—S1—C1 | 106.25 (15) | C104—C103—C10 | 116.9 (8) |
| O2—S1—C1 | 104.59 (15) | C104—C103—H103 | 121.5 |
| C2—C1—C6 | 119.2 (3) | C10—C103—H103 | 121.5 |
| C2—C1—S1 | 119.9 (2) | C103—C104—H10C | 120.0 |
| C6—C1—S1 | 120.9 (3) | C103—C104—H10D | 120.0 |
| C1—C2—C3 | 120.4 (3) | H10C—C104—H10D | 120.0 |
| C1—C2—H2 | 119.8 | C10—C11—C12 | 121.7 (5) |
| C3—C2—H2 | 119.8 | C10—C11—H11 | 119.1 |
| C2—C3—C4 | 120.9 (3) | C12—C11—H11 | 119.1 |
| C2—C3—H3 | 119.5 | C11—C12—C7 | 120.5 (4) |
| C4—C3—H3 | 119.5 | C11—C12—H12 | 119.8 |
| C5—C4—C3 | 118.2 (3) | C7—C12—H12 | 119.8 |
| C5—C4—C41 | 118.5 (3) | C7—C13—N1 | 113.7 (3) |
| C3—C4—C41 | 123.3 (3) | C7—C13—H13A | 108.8 |
| C42—C41—C4 | 126.1 (4) | N1—C13—H13A | 108.8 |
| C42—C41—H41 | 116.9 | C7—C13—H13B | 108.8 |
| C4—C41—H41 | 116.9 | N1—C13—H13B | 108.8 |
| C41—C42—H42A | 120.0 | H13A—C13—H13B | 107.7 |
| C41—C42—H42B | 120.0 | N1—C14—H14A | 109.5 |
| H42A—C42—H42B | 120.0 | N1—C14—H14B | 109.5 |
| C4—C5—C6 | 121.3 (3) | H14A—C14—H14B | 109.5 |
| C4—C5—H5 | 119.4 | N1—C14—H14C | 109.5 |
| C6—C5—H5 | 119.4 | H14A—C14—H14C | 109.5 |
| C1—C6—C5 | 119.9 (3) | H14B—C14—H14C | 109.5 |
| C1—C6—H6 | 120.0 | N1—C15—H15A | 109.5 |
| C5—C6—H6 | 120.0 | N1—C15—H15B | 109.5 |
| C8—C7—C12 | 117.8 (4) | H15A—C15—H15B | 109.5 |
| C8—C7—C13 | 120.1 (4) | N1—C15—H15C | 109.5 |
| C12—C7—C13 | 121.9 (4) | H15A—C15—H15C | 109.5 |
| C9—C8—C7 | 120.6 (4) | H15B—C15—H15C | 109.5 |
| C9—C8—H8 | 119.7 | C15—N1—C16 | 109.7 (3) |
| C7—C8—H8 | 119.7 | C15—N1—C14 | 109.1 (3) |
| C8—C9—C10 | 122.0 (5) | C16—N1—C14 | 108.5 (3) |
| C8—C9—H9 | 119.0 | C15—N1—C13 | 111.1 (3) |
| C10—C9—H9 | 119.0 | C16—N1—C13 | 111.2 (3) |
| C11—C10—C9 | 117.4 (4) | C14—N1—C13 | 107.2 (3) |
| C11—C10—C103 | 138.3 (6) | N1—C16—H16A | 109.5 |
| C9—C10—C103 | 104.1 (6) | N1—C16—H16B | 109.5 |
| C11—C10—C101 | 106.5 (6) | H16A—C16—H16B | 109.5 |
| C9—C10—C101 | 136.0 (6) | N1—C16—H16C | 109.5 |
| C102—C101—C10 | 118.3 (8) | H16A—C16—H16C | 109.5 |
| C102—C101—H101 | 120.8 | H16B—C16—H16C | 109.5 |
| O1—S1—C1—C2 | 67.5 (3) | C7—C8—C9—C10 | 1.0 (7) |
| O3—S1—C1—C2 | −171.1 (2) | C8—C9—C10—C11 | −0.1 (7) |
| O2—S1—C1—C2 | −52.3 (3) | C8—C9—C10—C103 | 175.4 (6) |
| O1—S1—C1—C6 | −114.1 (3) | C8—C9—C10—C101 | −175.7 (6) |
| O3—S1—C1—C6 | 7.3 (3) | C11—C10—C101—C102 | −169.3 (7) |
| O2—S1—C1—C6 | 126.1 (3) | C9—C10—C101—C102 | 6.6 (12) |
| C6—C1—C2—C3 | −1.9 (5) | C11—C10—C103—C104 | −13.7 (13) |
| S1—C1—C2—C3 | 176.5 (3) | C9—C10—C103—C104 | 172.3 (8) |
| C1—C2—C3—C4 | −0.7 (5) | C9—C10—C11—C12 | −0.6 (7) |
| C2—C3—C4—C5 | 2.9 (5) | C103—C10—C11—C12 | −174.0 (7) |
| C2—C3—C4—C41 | −175.4 (3) | C101—C10—C11—C12 | 176.3 (5) |
| C5—C4—C41—C42 | −173.8 (4) | C10—C11—C12—C7 | 0.2 (6) |
| C3—C4—C41—C42 | 4.5 (6) | C8—C7—C12—C11 | 0.7 (5) |
| C3—C4—C5—C6 | −2.5 (5) | C13—C7—C12—C11 | 176.9 (4) |
| C41—C4—C5—C6 | 175.9 (3) | C8—C7—C13—N1 | −88.7 (4) |
| C2—C1—C6—C5 | 2.3 (5) | C12—C7—C13—N1 | 95.2 (4) |
| S1—C1—C6—C5 | −176.2 (3) | C7—C13—N1—C15 | 59.1 (4) |
| C4—C5—C6—C1 | −0.1 (6) | C7—C13—N1—C16 | −63.3 (4) |
| C12—C7—C8—C9 | −1.3 (6) | C7—C13—N1—C14 | 178.2 (3) |
| C13—C7—C8—C9 | −177.6 (4) |
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the C1–C6 benzene ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C14—H14B···O3 | 0.98 | 2.32 | 3.264 (5) | 161 |
| C14—H14A···O2i | 0.98 | 2.48 | 3.346 (5) | 147 |
| C15—H15A···O1i | 0.98 | 2.63 | 3.544 (4) | 155 |
| C15—H15A···O2i | 0.98 | 2.49 | 3.348 (4) | 147 |
| C13—H13B···O3ii | 0.99 | 2.56 | 3.466 (5) | 152 |
| C15—H15B···O2ii | 0.98 | 2.60 | 3.477 (4) | 149 |
| C16—H16B···O1iii | 0.98 | 2.61 | 3.365 (4) | 134 |
| C16—H16C···O2i | 0.98 | 2.52 | 3.370 (5) | 146 |
| C41—H41···O2iv | 0.95 | 2.58 | 3.481 (4) | 157 |
| C42—H42B···O1v | 0.95 | 2.63 | 3.494 (4) | 151 |
| C5—H5···Cg1iv | 0.95 | 2.93 | 3.837 (4) | 161 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, −z; (v) −x+3/2, −y+1, z−1/2.
Funding Statement
This work was funded by NZ Ministry of Business, Innovation and Employment Science Investment Fund grant UOO-X1206. University of Otago grant .
References
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Lee, S.-H., Yoo, B.-W., Yun, H., Jazbinsek, M. & Kwon, O.-P. (2015). J. Mol. Struct. 1100, 359–365.
- Leonard, M. A., Squattrito, P. J. & Dubey, S. N. (1999). Acta Cryst. C55, 35–39.
- Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Naficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. (2011). Aust. J. Chem. 64, 1007–1025.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Peak, C. W., Wilker, J. J. & Schmidt, G. (2013). Colloid Polym. Sci. 291, 2031–2047.
- Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832. [DOI] [PubMed]
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sikkema, F. D., Comellas-Aragonès, M., Fokkink, R. G., Verduin, B. J. M., Cornelissen, J. J. L. M. & Nolte, R. J. M. (2007). Org. Biomol. Chem. 5, 54–57. [DOI] [PubMed]
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Sun, Z., Lv, F., Cao, L., Liu, L., Zhang, Y. & Lu, Z. (2015). Angew. Chem. Int. Ed. 54, 7944–7948. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.
- Van Vlierberghe, S., Dubruel, P. & Schacht, E. (2011). Biomacromolecules, 12, 1387–1408. [DOI] [PubMed]
- Vijay, R. J., Melikechi, N., Thomas, T., Gunaseelan, R., Arockiaraj, M. A. & Sagayaraj, P. (2012). J. Cryst. Growth, 338, 170–176.
- Vorotnikov, Y. A., Mikhailov, M. A., Brylev, K. A., Piryazev, D. A., Kuratieva, N. V., Sokolov, M. N., Mironov, Y. V. & Shestopalov, M. A. (2015). Izv. Akad. Nauk SSSR, Ser. Khim. (Russ. Chem. Bull.), 64, 2591–2596.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Woeste, G., Meyer, W. H. & Wegner, G. (1993). Makromol. Chem. 194, 1237–1248.
- Zhao, X. (2014). Soft Matter, 10, 672–687. [DOI] [PMC free article] [PubMed]
- Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019007758/xi2014Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019007758/xi2014Isup3.cml
CCDC reference: 1919325
Additional supporting information: crystallographic information; 3D view; checkCIF report








