Skip to main content
Data in Brief logoLink to Data in Brief
. 2019 Mar 6;23:103814. doi: 10.1016/j.dib.2019.103814

Screening dataset of food components that enhance transcriptional activity of PGC1-beta

Shiho Nakai 1,1, Ran Uchitomi 1,1, Rintaro Matsuda 1, Takumi Onishi 1, Yukino Hatazawa 1, Yasutomi Kamei 1,
PMCID: PMC6660609  PMID: 31372459

Abstract

PGC-1β is a transcriptional co-activator of nuclear receptors, which acts to increase energy expenditure. PGC-1β fused to GAL4 DNA-binding domain transfected in HEK293T cells showed a reporter luciferase activity. We screened food-derived and natural compounds using a reporter assay system to measure the transcriptional activity of PGC-1β.

We found that soy-derived isoflavones, genistein and daidzein, and several resveratrols activated PGC-1β, see “Genistein, daidzein, and resveratrols stimulate PGC-1β-mediated gene expression” [1]. The list of 166 compounds and their reporter activity is shown here.

Keywords: Screening, Reporter assay, Transcriptional activity


Specifications table

Subject area Biology
More specific subject area Food science
Type of data Table
How data was acquired Luciferase reporter assay, using Promega, GloMax Navigator System GM2010
Data format Analyzed
Experimental factors Cells, treated with food compounds, were lysed for luciferase assay.
Experimental features We used PGC-1β fused with a GAL4 DNA-binding domain, which allows the measurement of transcriptional activation of PGC-1β in the presence of various compounds in the culture medium.
Data source location Kyoto, Japan
Data accessibility Contained within this article
Related research article [1]R. Uchitomi, S. Nakai, R. Matsuda, T. Onishi, S. Miura, Y. Hatazawa, Y. Kamei. Genistein, daidzein, and resveratrols stimulate PGC-1β-mediated gene expression.Biochemistry and Biophysics Reports17:51-55, 2019[1]
Value of the data
  • The data could be used by researches, for example, in the food sciences, to evaluate food-derived and natural compounds as activators of PGC-1β, a transcriptional regulator that can enhance energy expenditure-related gene.

  • We made a fusion protein of PGC-1β with GAL4 DNA-binding domain, and established a system for screening PGC-1β-transcriptional activators. The system will be a practical example of screening system.

  • As in vivo activation of PGC-1β increases energy expenditure, PGC-1β-transcriptional activators could form the basis for anti-obesity dietary supplements.

1. Data

Food components and their reporter activity values as PGC-1β-transcriptional activators are listed. Chemical Names and Relative luc values are shown. The data from luciferase values in the presence of vehicle alone were set at 100. Data are expressed as mean ± SE (N = 3). P value < 0.05 was considered significant. ***P < 0.001, **P < 0.01, *P < 0.05 compared with the samples from in the presence of vehicle alone. Compounds that significantly increased luc activity were Baicalin, Caffeic Acid, Chrysin, Daidzein, 5, 7-Dimethoxyflavone, (-)-Epicatechin, Genistein, Homogentisic acid, (+/−)-Lavandulol, Lupeol, Luteolin, Quercetin, Resveratrol, trans-Oxyresveratrol, trans-Piceatannol, and trans-Pterostilbene. Compounds that significantly decreased luc activity were Daunorubicin hydrochloride, Magnolol, and trans-Ferulic acid (see Table 1).

Table 1.

List of food-derived and natural compounds and their values of reporter activity as PGC-1β-transcriptional activators. Vehicle alone serves as the reference value (set as 100).

No. Chemical Name Relative Luc activity (%) P value
1 Abietate 113 ± 9 0.312
2 Acacetin 106 ± 28 0.850
3 Aconitine 120 ± 10 0.454
4 Allicin 98 ± 9 0.862
5 Allyl Disulfide < Diallyl Disulfide> 117 ± 15 0.416
6 alpha-Mangostin 98 ± 31 0.960
7 alpha-Santonin 93 ± 25 0.834
8 alpha-Terpineol 99 ± 7 0.899
9 Apigenin 205 ± 64 0.194
10 Arbutin 99 ± 4 0.805
11 (-)-Arctigenin 104 ± 9 0.884
12 Arctiin 95 ± 8 0.619
13 Astragaloside 138 ± 9 0.182
14 Aucubin 111 ± 14 0.495
15 Baicalin 135 ± 9 0.023 *
16 Barbaloin 125 ± 20 0.440
17 Benzoic acid 108 ± 6 0.326
18 Berberine Chloride 76 ± 8 0.057
19 (-)-Bilobalide from Ginkgo biloba leaves 104 ± 33 0.921
20 Borneol 119 ± 21 0.436
21 Bornyl isovalerate 127 ± 14 0.242
22 Caffeic Acid 136 ± 9 0.032 *
23 Capsaicin 168 ± 27 0.118
24 (+/−)-Catechin hydrate 105 ± 14 0.850
25 Chrysin 168 ± 18 0.020 *
26 Chrysophanol 107 ± 14 0.789
27 cis-4-Hydroxycinnamic acid 87 ± 22 0.633
28 Citrinin 98 ± 9 0.933
29 Colchicine 200 ± 34 0.066
30 Corosolic acid 105 ± 7 0.612
31 4-Coumaric Acid 114 ± 11 0.313
32 Cucurbitacin B 144 ± 55 0.494
33 Curcumin 1 (Curcumin) 162 ± 16 0.084
34 Curcumin 2 152 ± 26 0.197
35 Curcumin 3 95 ± 18 0.878
36 Daidzein 204 ± 17 0.007 **
37 Daunorubicin hydrochloride 53 ± 7 0.025 *
38 Dihydrocapsaicin 108 ± 12 0.565
39 Dihydromyricetin 126 ± 17 0.388
40 5,7-Dihydroxy-3-(4-hydroxy-phenyl)-chromen-4-one 136 ± 35 0.418
41 3,3′-Diindolylmethane 84 ± 6 0.287
42 5, 7-Dimethoxyflavone 160 ± 10 0.006 **
43 Diosgenin 118 ± 15 0.435
44 Diosmetin 157 ± 9 0.065
45 Diosmin 125 ± 20 0.433
46 dl-Tetrahydroberberine (dl-Canadine) 113 ± 10 0.499
47 Echinacoside 113 ± 7 0.588
48 (-)-Epicatechin 174 ± 13 0.042 *
49 (-)-Epicatechin gallate 86 ± 21 0.591
50 (-)-Epigallocatechin 123 ± 20 0.392
51 (-)-Epigallocatechin gallate 154 ± 32 0.229
52 Esculetin <Cichorigenin> 115 ± 11 0.312
53 Evodiamine 121 ± 23 0.521
54 Fucoxanthin 101 ± 13 0.966
55 Fustin 102 ± 7 0.865
56 Galangin 101 ± 3 0.937
57 Gallic acid monohydrate 115 ± 15 0.583
58 (-)-Gallocatechin gallate 79 ± 9 0.219
59 Genistein 169 ± 21 0.034 *
60 Geraniol 121 ± 9 0.415
61 Geranyl Acetate 123 ± 8 0.223
62 Ginkgolic acid 15:0 124 ± 13 0.167
63 Ginkgolide A 125 ± 4 0.171
64 Ginkgolide B 172 ± 44 0.212
65 Ginkgolide B 102 ± 13 0.935
66 Ginkgolide C 141 ± 16 0.127
67 Ginkgolide J 128 ± 11 0.204
68 18β-Glycyrrhetinic acid 113 ± 16 0.489
69 Glycyrrhizin (Glycyrrhizic acid) 139 ± 22 0.278
70 Gomisin N 115 ± 6 0.157
71 Gossypetin 120 ± 6 0.084
72 Hesperetin 161 ± 20 0.105
73 Hesperidin 119 ± 5 0.422
74 (2S)-Hesperidin 117 ± 9 0.169
75 Homogentisic acid 153 ± 8 0.031 *
76 Honokiol 109 ± 5 0.238
77 3-(4-Hydroxy-3-methoxy-phenyl)-acrylic acid 128 ± 18 0.358
78 3-Hydroxytyrosol 83 ± 10 0.307
79 Icariin 113 ± 18 0.523
80 Imperatorin 73 ± 7 0.024 *
81 Indole-3-carbino 122 ± 11 0.392
82 Kaempferol 114 ± 21 0.658
83 L-(+)-Ascorbic Acid 108 ± 4 0.333
84 (+/−)-Lavandulol 120 ± 2 0.012 *
85 L-Deoxyalliin < S-Allyl-L-Cysteine> 131 ± 12 0.085
86 Ligustilide 135 ± 19 0.222
87 Limonene 132 ± 23 0.254
88 Lupeol 137 ± 12 0.049 *
89 Luteolin 246 ± 40 0.032 *
90 Luteolin-7-O-Glucoside 121 ± 9 0.130
91 Magnolol 40 ± 5 0.009 **
92 Mangiferin 104 ± 13 0.886
93 Maslinic acid 105 ± 7 0.591
94 Matrine 156 ± 31 0.211
95 Melatonin 63 ± 9 0.063
96 (-)-Menthone 90 ± 4 0.147
97 (+)-Menthol 106 ± 21 0.820
98 (+)-Menthone 135 ± 6 0.084
99 Myricetin 159 ± 21 0.081
100 Naringenin 131 ± 31 0.443
101 Naringin 139 ± 12 0.176
102 (2S)-Naringin 135 ± 17 0.238
103 Naringin Hydrate 116 ± 8 0.385
104 Neochlorogenic Acid 100 ± 5 0.988
105 Neohesperidin 112 ± 13 0.430
106 Nerolidol 108 ± 27 0.795
107 Nordihydroguaiaretic acid 111 ± 27 0.728
108 (+/−)-Octopamine hydrochloride 83 ± 10 0.328
109 Oleanolic acid 118 ± 10 0.484
110 Oroxylin A 134 ± 13 0.123
111 Osthol 99 ± 10 0.902
112 Osthole 104 ± 10 0.861
113 Paclitaxel 98 ± 22 0.948
114 Paeonol 118 ± 16 0.342
115 Parthenolide 102 ± 3 0.922
116 Pelargonidin 122 ± 12 0.298
117 Pelargonidin chloride 130 ± 19 0.253
118 3-Phenylpropyl isothiocyanate 111 ± 14 0.499
119 Physcion 132 ± 16 0.180
120 (1R)-(+)-a-Pinene 88 ± 12 0.567
121 (1S)-(-)-a-Pinene 111 ± 9 0.537
122 (1S)-(-)-β-Pinene 109 ± 5 0.202
123 Plumbagin from Plumbago indica 132 ± 5 0.210
124 Protocatechuic Acid 152 ± 13 0.106
125 Quassin 116 ± 15 0.484
126 Quercetin, Dihydrate 166 ± 15 0.033 *
127 Rebaudioside A 105 ± 4 0.525
128 Resveratrol 273 ± 60 0.048 *
129 Retinoic acid 109 ± 9 0.708
130 Rhein 133 ± 37 0.481
131 Rosmarinic acid 105 ± 17 0.857
132 Rutin 111 ± 10 0.355
133 Rutin trihydrate 104 ± 13 0.871
134 Salicylic Acid Methylester 119 ± 29 0.560
135 Sarsasapogenin 125 ± 20 0.447
136 Schaftoside 93 ± 11 0.558
137 Scopoletin 111 ± 17 0.722
138 Scutellarein 131 ± 15 0.185
139 Sennoside 118 ± 14 0.418
140 Sesamol 117 ± 16 0.432
141 Shikalkin 99 ± 6 0.865
142 Shikonin 118 ± 8 0.149
143 Silibinin 125 ± 11 0.341
144 Sinomenine 136 ± 11 0.116
145 Sophocarpine 129 ± 21 0.310
146 β-Carotene 104 ± 6 0.653
147 β-Sitosterol 122 ± 1 0.478
148 Stevioside 112 ± 18 0.591
149 Swertiamarin 103 ± 5 0.634
150 Tannin < Tannic Acid> 145 ± 12 0.072
151 Tanshinone I 82 ± 9 0.469
152 Tanshinone IIA 130 ± 7 0.240
153 (±)-Taxifolin 136 ± 37 0.440
154 (+/−)-Taxifolin hydrate 110 ± 7 0.680
155 Terpinyl acetate 103 ± 8 0.844
156 trans-Ferulic acid 50 ± 5 0.001 **
157 trans-Oxyresveratrol 155 ± 13 0.019 *
158 trans-Piceatannol 205 ± 5 0.0002 ***
159 trans-Polydatin (trans-Piceid) 109 ± 12 0.538
160 trans-Pterostilbene 148 ± 14 0.031 *
161 (+)-trans Taxifolin 128 ± 2 0.271
162 Trimethylapigenin 154 ± 25 0.106
163 Ursolic acid 100 ± 5 0.994
164 Vanillic Acid 105 ± 5 0.516
165 Xanthophyll <Lutein> 110 ± 5 0.281
166 Yohimbine hydrochloride 110 ± 14 0.723

***P < 0.001, **P < 0.01, *P < 0.05: vs vehicle.

2. Experimental design, materials and methods

2.1. Screening compounds that increase GAL4-PGC-1β activity

HEK293T cells (Riken Cell Bank, Tsukuba, Japan) were maintained in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS). We used amino acids 1–147 of GAL4 that were fused to the full length of PGC-1β cDNA [2]. Namely, full-length PGC-1β cDNA was cloned into the pM vector (Clontech/Takara Bio, Shiga, Japan) to produce a fusion protein with the GAL4 DNA-binding domain. HEK293T cells were co-transfected with a reporter gene containing four copies of a GAL4 binding site ((UAS)4-Luc), and pM- PGC-1β (GAL4- PGC-1β). The luciferase reporter plasmid (25 ng), expression plasmid (pM- PGC-1β: 25 ng), and the phRL-TK vector (2 ng: Promega Co., Madison, WI, USA) as an internal control of transfection efficiency were transfected into HEK293T cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Five hours after transfection, the cells were plated at a density of 1 × 105 cells per well in a 96-well plate in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). Twenty-nine hours after transfection, the cells were treated with various commercially available compounds (Sigma-Aldrich Japan, Tokyo, Japan; final concentration, 10 μM). After twenty hours, cells were lysed and assayed for luciferase activity using the Dual-Glo Luciferase Assay kit (Promega). The activity was calculated as the ratio of firefly luciferase activity to Renilla luciferase activity (internal control) and expressed as an average of triplicate experiments. Namely, the firefly luciferase value was divided by the corresponding Renilla luciferase value. The luciferase values in the presence of vehicle alone were set at 100. The relative values in the presence of indicated compounds are shown.

2.2. Statistical analyses

Statistical analyses were performed using the Student's two-tailed unpaired t-test. P value < 0.05 was considered significant.

Acknowledgements

This study is supported by grants-in-aid for scientific research (KAKENHI) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT, Tokyo). This study is also supported by the Council for Science, Technology, and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), and “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO). This study is also supported by The Public Foundation of Elizabeth Arnold-Fuji, and Japan Dairy Association (J-milk). The funders had no role in study design, data collection and analysis, decision to publish, and preparation of the manuscript.

Footnotes

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103814.

Transparency document

The following is the transparency document related to this article:

Multimedia component 1
mmc1.pdf (489.3KB, pdf)

References

  • 1.Uchitomi R., Nakai S., Matsuda R., Onishi T., Miura S., Hatazawa Y., Kamei Y. Genistein, daidzein, and resveratrols stimulate PGC-1β-mediated gene expression. Biochem. Biophys. Rep. 2019;17:51–55. doi: 10.1016/j.bbrep.2018.11.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kamei Y., Ohizumi H., Fujitani Y., Nemoto T., Tanaka T., Takahashi N., Kawada T., Miyoshi M., Ezaki O., Kakizuka A. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl. Acad. Sci. U.S.A. 2003;100:12378–12383. doi: 10.1073/pnas.2135217100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.pdf (489.3KB, pdf)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES