Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2019 Aug 4.
Published in final edited form as: Am J Med Genet B Neuropsychiatr Genet. 2015 Oct 13;171B(2):181–202. doi: 10.1002/ajmg.b.32391

Currently Recognized Genes for Schizophrenia: High-Resolution Chromosome Ideogram Representation

Merlin G Butler 1,2,*, Austen B McGuire 1, Humaira Masoud 1, Ann M Manzardo 1
PMCID: PMC6679920  NIHMSID: NIHMS1043124  PMID: 26462458

Abstract

A large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives.

Keywords: schizophrenia spectrum, genetic biomarkers, gene distribution and location, autism spectrum disorder

INTRODUCTION

Schizophrenia is a chronic debilitating psychiatric disorder that affects approximately 1% of the general population; occurring equally across gender and ethnicity [National Institute of Mental Health Web site, http://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml]. The disorder is characterized by delusions, hallucinations, disorganized speech and behavior, and other symptoms that hinder daily functioning [American Psychiatric Association, 2013]. These symptoms and other factors associated with schizophrenia have serious negative effects on individuals and society as a whole including high risk of suicide, unemployment, and substance abuse [Andreasen and Black, 2006; Andrew et al., 2012]. Despite the relatively low frequency of illness, the economic burden for both the direct and indirect costs of schizophrenia is estimated to be in the tens of billions of dollars [Chong et al., 2014]. Schizophrenia is recognized as one of the most burdening dis-abilities globally by the World Health Organization [WHO, 2008]. Given the seriousness and devastating effects of this disorder, both for the diagnosed individual and society, it is important for researchers to understand factors that contribute to schizophrenia including genetics, the focus of this review.

Several decades of research support the role of genetics in the development, diagnosis, and treatment of schizophrenia [Riley and Kendler, 2006; Kavanagh et al., 2015]. An approximate 10-fold increased frequency of schizophrenia is reported among relatives with affected family members compared with relatives of normal controls (i.e., 4.8% to 0.5%, respectively) [Kendler and Diehl, 1993]. Twin studies in schizophrenia have reported concordance rates as high as 85% for monozygotic twins, and 25% for dizygotic twins [Franzek and Beckmann, 1998]. Additionally, schizophrenia prevalence in a study of over two million Swedish families showed a significantly increased frequency and risk of schizophrenia in adopted children from biological parents with schizophrenia when compared to those children adopted away from parents without schizophrenia [Lichtenstein et al., 2009]. Combined twin and family studies and meta-analysis approaches have estimated that the heritability of schizophrenia is as high as 80% [Cardno and Gottesman, 2000].

The importance of genes in the etiology of schizophrenia is reinforced by advances in genetic technology and consortium studies with combined patient databases and genetic analytical approaches (e.g., linkage, genome wide association studies [GWAS], chromosomal variants, functional assessments, next generation sequencing and high-resolution microarrays utilizing single nucleotide polymorphism, and copy number probes). No clear relationship has been found to explain observed genetic risks and specific DNA variants or pathways with biological processes or protein alterations, but over-lapping data from regions of the human genome does support linkage (e.g., DTNBP1, NRG1, TAAR6) or identification of candidate genes (e.g., COMT, AKT1, RGS4) in schizophrenia [Riley and Kendler, 2006]. The emergence of a number of replicated genetic linkage studies have identified targeted chromosomal regions of interest and candidate gene locations. For example, there is growing evidence for linkage replication across several chromosomal regions including 1q, 5q, 6p, 6q, 8p, 10p, 13q, 15q, and 22q [Riley and Kendler, 2006]. Recently, the Schizophrenia Working Group of the Psychiatric Genomics Consortium [2014] identified 108 potential schizophrenia-associated genetic loci. Focused attention on molecular genetics and these chromosome regions have identified several potential candidate genes for schizophrenia.

Schizophrenia spectrum and other related disorders, which include schizoaffective, schizophreniform, delusional, and schizotypal personality disorders, are also increased in family members of those with schizophrenia and can be components of single-gene defects, such as COMT and PRODH mutations or copy number variants as a component of syndromic cytogenetic disorders including the 22q11.2 deletion, but most individuals with schizophrenia are non-syndromic [Riley and Kendler, 2006]. The high-heritability estimates for schizophrenia further emphasize the need to explore genetic causation for diagnosis and to inform and guide gene-based treatment options depending on specific genetic disturbances or lesions. A large number of validated genes are now recognized as playing a pivotal role in schizophrenia [Riley and Kendler, 2006; Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Kavanagh et al., 2015]. Hence, a current list is needed of recognized clinically relevant, susceptible, or known genes as genetic biomarkers for schizophrenia. These genetic biomarkers can then be assessed to identify the role in schizophrenia and for new diagnostic approaches in the clinical evaluation of those presenting with schizophrenia as well as supplying more accurate and informative genetic counseling for family members.

The goal of our study was to utilize high-resolution chromosome ideograms (850 band level) and plot the location of genes identified by searching the literature, genetic databases, and consortium and authoritative federally sponsored websites for genes playing a documented role in schizophrenia. In tabular form, the individual gene symbols will be listed in alphabetical order along with their expanded names or description and chromosome location. The reader will then be able to quickly identify the gene of interest and access conveniently the visual image of the location and distribution of specific genes on individual high-resolution chromosome ideograms. To further assess the underlying genetic architecture of schizophrenia, we used the GeneAnalytics (http://geneanalytics.genecards.org/) and VarElect (http://varelect.genecards.org/) data analysis computer tools to map the identified genes to tissues and cells, diseases, phenotypes, molecular pathways, and biological processes with the greatest overlap and probable relevance to schizophrenia.

METHODS

For our study, we used computer-based authoritative internet websites, schizophrenia genomics consortiums databases and peer-reviewed medical literature reports to search for genes associated with schizophrenia. We initially examined the literature and databases utilizing pertinent key words (i.e., human genes, gene variants, genetics, mutations, schizophrenia) searching for sources with involvement of genetics in the etiology of schizophrenia. Source materials included genetic linkage and functional associations from peer-reviewed research articles and authoritative computer website genomic databases on this topic in humans. Disequilibrium data, single nucleotide polymorphisms, or copy number variation supporting a relationship between the individual gene and schizophrenia were reviewed. We found data from whole-genome sequencing of families with relatives having schizophrenia and large collaborative research consortiums on schizophrenia and psychosis gene expression or transcriptome profiles, genetic linkage, copy number variation, and genome wide association studies (GWAS). Hundreds of published research articles were reviewed from PubMed (https://www.ncbi.nlm.nih.gov/pubmed) and a list of genes were compiled having more than one source contributing to schizophrenia. Our report compiled a current list of recognized genes with proposed associations with schizophrenia causation, pathology, or course with possible impact on treatment response (e.g., drug metabolism). The number of clinically relevant genes impacting schizophrenia is expected to expand as additional causal genes and gene/phenotype associations will be reported in the future using expanding genetic tools such as next generation sequencing, copy number variant analysis and data from large collaborative research consortiums [International Schizophrenia Consortium, 2009; Stefansson et al., 2009; Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011; Ripke et al., 2013; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014].

Our approach also focused on integrated online gene disease catalogs particularly Mendelian Inheritance in Man (OMIM) (www.OMIM.org) and other respected and searchable sources, such as the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/), PubMed (https://www.ncbi.nlm.nih.gov/pubmed), GeneCards (https://www.genecards.org), and Phenopedia (http://www.hugenavigator.net/HuGENavigator/startPagePhenoPedia.do). The literature sources that were searched consisted of both primary research articles and meta-analyses with reviews summarizing genetic evidence from several sources. If possible, specific sources for genes associated with schizophrenia embedded in meta-analyses and reviews were extracted and used in development of the master gene summary table. Genes located within potential loci regions were not included, unless a specific gene was located or documented in another source.

For each gene fitting our criteria, the gene symbol, expanded name, chromosome band location, and a reference source for each gene was compiled in a master summary table (Table I). The master table was organized alphabetically by gene symbol. The most current gene information, such as location and symbol, was obtained from OMIM and GeneCards with each gene plotted on high-resolution chromosome ideograms (850 band level) (Fig. 1).

TABLE I.

Currently Recognized Genes for Schizophrenia and Their Chromosome Locations

Gene symbol Gene name Location References
ABATa 4-Aminobutyrate aminotransferase 16p13.2 Tabarés-Seisdedos et al. [2011]
ABCA13 ATP (adenosine triphosphate)-binding cassette, subfamily A, member 13 7p12.3 Knight et al. [2009]
ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 7q21.12 Tabarés-Seisdedos et al. [2011]
ACADVL Acyl-CoA dehydrogenase, very long chain 17p13.1 Sanders et al. [2013]
ACE Angiotensin I converting enzyme 17q23.3 Tabarés-Seisdedos et al. [2011]
ACHE Acetylcholinesterase 7q221 Tabarés-Seisdedos et al. [2011]
ACSL6 Acyl-CoA synthetase long-chain family member 6 5q31.1 Tabarés-Seisdedos et al. [2011]
ACSM1 Acyl-CoA synthetase medium-chain family member 1 16p12.3 Athanasiu et al. [2010]
ADCY1 Adenylate cyclase 1 7p12.3 Wright et al. [2013]
ADCY9 Adenylate cyclase 9 16p13,3 Wright et al. [2013]
ADCYAP1 Adenylate cyclase activating polypeptide 1 18p11.32 Tabarés-Seisdedos et al. [2011]
ADIPOQ Adiponectin, C1Q, and collagen domain containing 3q27.3 Tabarés-Seisdedos et al. [2011]
ADORA2Aa Adenosine A2a receptor 22q11.23 Tabarés-Seisdedos et al. [2011]
ADRA1A Adrenoceptor alpha 1A 8p21.2 Tabarés-Seisdedos et al. [2011]
ADRA2A Adrenoceptor alpha 2A 10q25.2 Tabarés-Seisdedos et al. [2011]
ADRA2C Adrenoceptor alpha 2C 4p16.3 Tabarés-Seisdedos et al. [2011]
ADRB3 Adrenoceptor beta 3 8p11.23 Tabarés-Seisdedos et al. [2011]
ADRBK2 Adrenergic, beta, receptor kinase 2 22q12.1 Tabarés-Seisdedos et al. [2011]
ADSS Adenylosuccinate synthase 1q44 Tabarés-Seisdedos et al. [2011]
AHCYL2 Adenosylhomocysteinase-like 2 7q32.1 Wright et al. [2013]
AHI1a Abelson helper integration site 1 6q23.3 Ingason et al. [2010]
AKT1a V-Akt murine thymoma viral oncogene homolog 1 14q32.33 Shi et al. [2008]
AKT3 V-Akt murine thymoma viral oncogene homolog 3 1q44 Ripke et al. [2013]
ALDH3B1 Aldehyde dehydrogenase 3 family, member B1 11q13.2 Tabarés-Seisdedos et al. [2011]
ALDH5A1a Aldehyde dehydrogenase 5 family, member A1 6p22.31 Tabarés-Seisdedos et al. [2011]
ANK3a Ankyrin 3 10q21.2 Athanasiu et al. [2010]
ANKK1 Ankyrin repeat and kinase domain containing 1 11q23.2 Tabarés-Seisdedos et al. [2011]
APBA2a Amyloid beta (A4) precursor protein-binding, family A, member 2 15q13.1 Tabarés-Seisdedos et al. [2011]
APOD Apolipoprotein D 3q29 Tabarés-Seisdedos et al. [2011]
APOE Apolipoprotein E 19q13.32 Allen et al. [2008]
APOL1 Apolipoprotein L-I 22q12.3 Mimmack et al. [2002]
APOL2 Apolipoprotein L-II 22q12.3 Mimmack et al. [2002]
APOL4 Apolipoprotein L-IV 22q12.3 Mimmack et al. [2002]
ARa Androgen receptor Xq12 Tabarés-Seisdedos et al. [2011]
ARHGAP18 Rho GTPase activating protein 18 6p22.33 Potkin et al. [2009]
ARHGAP44 Rho GTPase activating protein 44 17p12 Wright et al. [2013]
ARNTL Aryl hydrocarbon receptor nuclear translocator-like 11p15.2 Tabarés-Seisdedos et al. [2011]
ARRB2 Arrestin, beta 2 17p13.2 Tabarés-Seisdedos et al. [2011]
ARVCF Armadillo repeat gene deleted in velocardiofacial syndrome 22q11.21 Tabarés-Seisdedos et al. [2011]
AS3MT Arsenic (+3 oxidation state) methyltransferase 10q24.32 Aberg et al. [2006]
ASCL1 Achaete-scute family bHLH transcription factor 1 12q23.2 Tabarés-Seisdedos et al. [2011]
ASTN2a Astrotactin 2 9q33.1 Wang et al. [1996]
ATF2 Activating transcription factor 2 2q31.1 Tabarés-Seisdedos et al. [2011]
ATF4 Activating transcription factor 4 22q131 Tabarés-Seisdedos et al. [2011]
ATF5 Activating transcription factor 5 19q13.33 Tabarés-Seisdedos et al. [2011]
ATP5A1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 18q21.1 Lauriat et al. [2006]
ATXN1 Ataxin 1 6p22.33 Wang et al. [1996]
ATXN8OS Ataxin 8 opposite strand 13q21.33 Tabarés-Seisdedos et al. [2011]
AUTS2a Autism susceptibility candidate 2 7q11.22 Tabarés-Seisdedos et al. [2011]
AXIN1 Axis inhibitor 1 16p13.3 Wright et al. [2013]
B3GNT2 Beta-1,3-n-acetylglucosaminyltransferase 2 2p15 Sanders et al. [2013]
BARD1 BRCA1 (breast cancer 1 gene) associated RING domain 1 2q35 van Schijndel et al. [2009]
BAI3 Brain-specific angiogenesis inhibitor 3 6q12 Wright et al. [2013]
BCL2L13 BCL2 (B-cell CLL/lymphoma 2)-like 13 (apoptosis facilitator) 22q11.21 Wright et al. [2013]
BCL2L2 BCL2-like 2 14q11.2 Sanders et al. [2013]
BCL9 B-cell CLL (chronic lymphocytic leukemia)/lymphoma 9 1q21.2 Xu and He [2010]
BDNFa Brain-derived neurotrophic factor 11p14.1 Wockner et al. [2014]
BIK BCL2-interacting killer 22q13.31 Sanders et al. [2013]
BRD1 Bromodomain containing 1 22q13.33 Kushima et al. [2010]
BTN2A2 Butyrophilin, subfamily 2, member A2 6p22.2 Shi et al. [2009]
BTN3A1 Butyrophilin, subfamily 3, member A1 6p22.2 Shi et al. [2009]
BTN3A2 Butyrophilin, subfamily 3, member A2 6p22.2 Shi et al. [2009]
C12orf65 Chromosome 12 open reading frame 65 12q24.31 Ripke et al. [2013]
C2orf82 Chromosome 2 open reading frame 82 2q37.1 Ripke et al. [2013]
CACNA1Ba Calcium channel, voltage-dependent, N-type, alpha 1B subunit 9q34.3 Tabarés-Seisdedos et al. [2011]
CACNA1Ca Calcium channel, voltage-dependent, L-type, alpha 1C subunit 12p13.33 Neale and Sklar [2015]
CACNA1Ha Calcium channel, voltage-dependent, T-type, alpha 1H subunit 16p13.3 Wright et al. [2013]
CACNB2a Calcium channel, voltage-dependent, beta 2 subunit 10p12.33 Neale and Sklar [2015]
CACNG2 Calcium channel, voltage-dependent, gamma subunit 2 22q12.3 Tabarés-Seisdedos et al. [2011]
CAMK2B Calcium/calmodulin-dependent protein kinase II beta 7p13 Novak et al. [2000]
CARTPT CART (cocaine and amphetamine regulated transcript) prepropeptide 5q13.2 Tabarés-Seisdedos et al. [2011]
CBSa Cystathionine-beta-synthase 21q22.3 Tabarés-Seisdedos et al. [2011]
CCDC68 Coiled-coil domain containing 68 18q21.2 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
CCK Cholecystokinin 3p22.1 Tabarés-Seisdedos et al. [2011]
CCKAR Cholecystokinin A receptor 4p15.2 Ocklenburg et al. [2013]
CCL2 Chemokine (C-C motif) ligand 2 17q12 Tabarés-Seisdedos et al. [2011]
CD28 Antigen CD28 2q33.2 Frydecka et al. [2015]
CDC42 Cell division cycle 42 1p36.12 Wright et al. [2013]
CDC42SE2 CDC42 (cell division cycle 42) small effector 2 5q31.1 Tabarés-Seisdedos et al. [2011]
CDK6 Cyclin-dependent kinase 6 7q21.2 Wright et al. [2013]
CEACAM21 Carcinoembryonic antigen-related cell adhesion molecule 21 19q13.2 Alkelai et al. [2012]
CERK Ceramide kinase 22q13.31 Wright et al. [2013]
CHAT Choline acetyltransferase 10q11.23 Tabarés-Seisdedos et al. [2011]
CHD1a Chromodomain helicase DNA (deoxyribonucleic acid) binding protein 1 5q21.1 Wright et al. [2013]
CHGA Chromogranin A 14q32.12 Sun et al. [2008]
CHGB Chromogranin B 20p12.3 Tabarés-Seisdedos et al. [2011]
CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) 1q32.1 Ohi et al. [2010]
CHL1 Cell adhesion molecule L1-like 3p26.3 Tabarés-Seisdedos et al. [2011]
CHRM1 Cholinergic receptor, muscarinic 1 11q12.3 Tabarés-Seisdedos et al. [2011]
CHRM2 Cholinergic receptor, muscarinic 2 7q33 Tabarés-Seisdedos et al. [2011]
CHRM5 Cholinergic receptor, muscarinic 5 15q14 Tabarés-Seisdedos et al. [2011]
CHRNA3 Cholinergic receptor, nicotinic, alpha 3 (neuronal) 15q25.1 Tabarés-Seisdedos et al. [2011]
CHRNA4 Cholinergic receptor, nicotinic, alpha 4 (neuronal) 20q13.33 Tabarés-Seisdedos et al. [2011]
CHRNA5 Cholinergic receptor, nicotinic, alpha 5 (neuronal) 15q25.1 Jackson et al. [2013]
CHRNA7a Cholinergic receptor, nicotinic, alpha 7 (neuronal) 15q13.3 Harrison and Weinberger [2005]
CHRNB2 cholinergic receptor, nicotinic, beta 2 (neuronal) 1q21.3 Tabarés-Seisdedos et al. [2011]
CLDN5 Claudin 5 22q11.21 Tabarés-Seisdedos et al. [2011]
CLINT1 Clathrin interactor 1 5q33.3 Tabarés-Seisdedos et al. [2011]
CLOCK Clock circadian regulator 4q12 Zhang et al. [2011]
CMYA5 Cardiomyopathy-associated protein 5 5q14.1 Chen et al. [2011b]
CNNM2 Cyclin M2 10q24.32 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
CNP Cyclic nucleotide phosphodiesterase 17q21.2 Tabarés-Seisdedos et al. [2011]
CNR1a Cannabinoid receptor 1 6q15 Tabarés-Seisdedos et al. [2011]
CNTF Ciliary neurotrophic factor 11q12.1 Tabarés-Seisdedos et al. [2011]
CNTNAP2a Contactin-associated protein-like 2 7q35 Wang et al. [1996]
CNTNAP5a Contactin-associated protein-like 5 2q14.3 Tabarés-Seisdedos et al. [2011]
COMT Catechol-O-methyltransferase 22q11.21 Allen et al. [2008]
COMTD1 Catechol-O-methyltransferase domain containing 1 10q22.1 Wockner et al. [2014]
CPLX2 Complexin 2 5q35.2 Tabarés-Seisdedos et al. [2011]
CRKL V-crk avian sarcoma virus CT10 oncogene homolog-like 22q11.21 Wright et al. [2013]
CSF2RA Colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage) Xp22.33 Loe-Mie et al. [2010]
CSF2RB Granulocyte-macrophage colony-stimulating factor receptor, beta 22q12.3 Tabarés-Seisdedos et al. [2011]
CSMD1a CUB (complement C1r/C1s, Uegf, Bmp1) and Sushi multiple domains 1 8p23.2 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
CTLA4 Cytotoxic T-lymphocyte-associated protein 4 2q33.2 Frydecka et al. [2015]
CTNNA3a Catenin, alpha 3 10q21.3 Xu and He [2010]
CYBB Cytochrome b-245, beta polypeptide Xp11 4 Sanders et al. [2013]
CYP17A1 Cytochrome P450, family 17, subfamily A, polypeptide 1 10q24.32 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
CYP1A2 Cytochrome P450, family 1, subfamily A, polypeptide 2 15q24.1 Tabarés-Seisdedos et al. [2011]
CYP2C19 Cytochrome P450, family 2, subfamily C, polypeptide 19 10q23.33 Tabarés-Seisdedos et al. [2011]
CYP2D6 Cytochrome P450, family 2, subfamily D, polypeptide 6 22q13.2 Allen et al. [2008]
CYP3A4 Cytochrome P450, family 3, subfamily A, polypeptide 4 7q22.1 Tabarés-Seisdedos et al. [2011]
CYP3A5 cytochrome P450, family 3, subfamily A, polypeptide 5 7q22.1 Tabarés-Seisdedos et al. [2011]
DAO D-amino-acid oxidase 12q24.11 Harrison and Weinberger [2005]
DAOA D-amino acid oxidase activator 13q33.2 Shi et al. [2008]
DAOAAS DAOA (D-amino acid oxidase activator) antisense RNA (ribonucleic acid) 1 13q33.2 Chumakov et al. [2002]
DBH Dopamine beta-hydroxylase 9q34.2 Tabarés-Seisdedos et al. [2011]
DBNDD2 Dysbindin domain containing 2 20q13.12 Sanders et al. [2013]
DBP D site of albumin promoter binding protein 19q13.33 Sanders et al. [2013]
DCDC2 Doublecortin domain containing 2 6p22.31 Tabarés-Seisdedos et al. [2011]
DDCa Dopa decarboxylase 7p12.1 Tabarés-Seisdedos et al. [2011]
DGCR2 DiGeorge syndrome critical region gene 2 22q11.21 Tabarés-Seisdedos et al. [2011]
DGCR8 Digeorge syndrome critical region gene 8 22q11.21 Chun et al. [2014]
DICER1 Dicer, Drosophila, homolog of, 1 14q32.13 Sanders et al. [2013]
DISC1a Disrupted in schizophrenia 1 1q42.2 Harrison and Weinberger [2005]
DISC2 Disrupted in schizophrenia 2 1q42.2 Millar et al. [2004]
DKK2 Dickkopf, Xenopus, homolog of, 2 4q25 van Schijndel et al. [2009]
DLG1 Discs, large homolog 1 (Drosophila) 3q29 Uezato et al. [2012]
DLG2 Discs, large homolog 2 (Drosophila) 11q14 1 Tabarés-Seisdedos et al. [2011]
DLG4a Discs, large homolog 4 (Drosophila) 17p11.2 Tabarés-Seisdedos et al. [2011]
DNMT1 DNA (cytosine-5)-methyltransferase 1 19p13.2 Guidotti et al. [2000]
DOC2A Double C2-like domains, alpha 16p11.2 Tabarés-Seisdedos et al. [2011]
DOCK4a Dedicator of cytokinesis 4 7q31.1 Alkelai et al. [2012]
DPP10a Dipeptidyl-peptidase X 2q14.1 Tabarés-Seisdedos et al. [2011]
DPYD Dihydropyrimidine dehydrogenase 1p21.3 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
DPYSL2 Dihydropyrimidinase-like 2 8p21.2 Tabarés-Seisdedos et al. [2011]
DR1 Down-regulator of transcription 1, TBP (TATA box-binding protein)-binding 1p221 Wright et al. [2013]
DRD1a Dopamine receptor D1 5q35,2 Allen et al. [2008]
DRD2a Dopamine receptor D2 11q23.2 Shi et al. [2008]
DRD3a Dopamine receptor D3 3q13.31 Williams et al. [1998]
DRD4 Dopamine receptor D4 11p15.5 Wockner et al. [2014]
DRD5 Dopamine receptor D5 4p16.1 Tabarés-Seisdedos et al. [2011]
DRP2 Dystrophin-related protein 2 Xq22.1 Tabarés-Seisdedos et al. [2011]
DTNBP1 Dystrobrevin-binding protein1 6p22.33 Shi et al. [2008]
EGF Epidermal growth factor 4q25 Tabarés-Seisdedos et al. [2011]
EGR2a Early growth response 2 10q21.3 Tabarés-Seisdedos et al. [2011]
EGR3 Early growth response 3 8p21.3 Tabarés-Seisdedos et al. [2011]
ELK1 ELK1, member of ETS oncogene family Xp11.23 Sanders et al. [2013]
EML5 Echinoderm microtubule-associated protein like 5 14q31.3 Chen et al. [2011a]
EN2a Engrailed 2 7q36.3 Wright et al. [2013]
ERBB3 V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 12q13.2 Tabarés-Seisdedos et al. [2011]
ERBB4a V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 2q34 Sun et al. [2008]
ESR1a Estrogen receptor 1 6q25.1 Tabarés-Seisdedos et al. [2011]
FAAH Fatty acid amide hydrolase 1p33 Tabarés-Seisdedos et al. [2011]
FABP3a Fatty acid binding protein 3 1p35.2 Tabarés-Seisdedos et al. [2011]
FABP5a Fatty acid binding protein 5 8q21.13 Tabarés-Seisdedos et al. [2011]
FABP7a Fatty acid binding protein 7 6q22.31 Tabarés-Seisdedos et al. [2011]
FAM7A Family with sequence similarity 7A 15q13.2 Riley et al. [2002]
FAM69A Family with sequence similarity 69, member A 1p22.1 Sanders et al. [2013]
FAM84A Family with sequence similarity 84, member A 2p24.3 Wright et al. [2013]
FAM135Ba Family with sequence similarity 135, member B 8q24.23 Wright et al. [2013]
FEZ1 Fasciculation and elongation protein zeta 1 11q24.2 Tabarés-Seisdedos et al. [2011]
FGF1 Fibroblast growth factor 1 5q31.3 Tabarés-Seisdedos et al. [2011]
FGR Feline Gardner-Rasheed sarcoma viral oncogene homolog 6q21 Tabarés-Seisdedos et al. [2011]
FMNL2 Formin-like 2 2q23.3 Wright et al. [2013]
FNBP1L Formin binding protein 1-like 1p22.1 Wright et al. [2013]
FOXP2a Forkhead box P2 7q31.1 Tabarés-Seisdedos et al. [2011]
FTCDNL1 Formiminotransferase cyclodeaminase n-terminal like 2q33.1 Ripke et al. [2013]
FXYD2 FXYD domain containing ion transport regulator 2 11q23.3 Sun et al. [2008]
FXYD6 FXYD domain containing ion transport regulator 6 11q23.3 Choudhury et al. [2007]
FYN FYN oncogene related to SRC (v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog) 6q21 Tabarés-Seisdedos et al. [2011]
FZD3 Frizzled class receptor 3 8p21.1 Tabarés-Seisdedos et al. [2011]
GABBR1 GABA (gamma-aminobutyric acid) B receptor, 1 6p22.1 Tabarés-Seisdedos et al. [2011]
GABRA1a GABA A receptor, alpha 1 5q34 Petryshen et al. [2005]
GABRA2 GABA A receptor, alpha 2 4p12 Tabarés-Seisdedos et al. [2011]
GABRA4a GABA A receptor, alpha 4 4p12 Tabarés-Seisdedos et al. [2011]
GABRA6 GABA A receptor, alpha 6 5q34 Petryshen et al. [2005]
GABRB2 GABA A receptor, beta 2 5q34 Allen et al. [2008]
GABRB3a GABA A receptor, beta 3 15q12 Tabarés-Seisdedos et al. [2011]
GABRG1 GABA A receptor, gamma-1 4p12 Tabarés-Seisdedos et al. [2011]
GABRG2 GABA A receptor, gamma-2 5q34 Tabarés-Seisdedos et al. [2011]
GABRG3 GABA A receptor, gamma-3 15q12 Tabarés-Seisdedos et al. [2011]
GABRR1 GABA A receptor, rho 1 6q15 Wang et al. [1996]
GABRR2 GABA A receptor, rho 2 6q15 Wang et al. [1996]
GABRP GABA A receptor, pi 5q35.1 Petryshen et al. [2005]
GAD1a Glutamate decarboxylase 1 2q31.1 Tabarés-Seisdedos et al. [2011]
GAD2 Glutamate decarboxylase 2 10p12.1 Tabarés-Seisdedos et al. [2011]
GBP2 Guanylate binding protein 2, interferon-inducible 1p22.2 Sanders et al. [2013]
GBP4 Guanylate binding protein 4 1p22.2 Sanders et al. [2013]
GCLC Glutamate-cysteine ligase, catalytic subunit 6p12,1 Gysin et al. [2007]
GCLM Glutamate-cysteine ligase, subunit 1p22.1 Tosic et al. [2006]
GDNF Glial cell derived neurotrophic factor 5p13.2 Tabarés-Seisdedos et al. [2011]
GFRA2 GDNF family receptor alpha 2 8p21.3 Tabarés-Seisdedos et al. [2011]
GLIS2 GLIS (GLI-similar) family zinc finger 2 16p13.3 Wright et al. [2013]
GLO1a Glyoxalase I 6p21.2 Sanders et al. [2013]
GLS Glutaminase 2q32.2 Tabarés-Seisdedos et al. [2011]
GLUD1 Glutamate dehydrogenase 1 10q23.2 Tabarés-Seisdedos et al. [2011]
GLUL Glutamate-ammonia ligase 1q25.3 Tabarés-Seisdedos et al. [2011]
GNB1La Guanine nucleotide binding protein, beta 1-like 22q11.21 Tabarés-Seisdedos et al. [2011]
GNB3 Guanine nucleotide binding protein, beta-3 12p13.31 Tabarés-Seisdedos et al. [2011]
GPHNa Gephyrin 14q23.3 Lionel et al. [2013]
GPR50 G protein-coupled receptor 50 Xq28 Thomson et al. [2005]
GPR85 G protein-coupled receptor 85 7q31.1 Matsumoto et al. [2008]
GPX1a Glutathione peroxidase 1 3p21.31 Tabarés-Seisdedos et al. [2011]
GRAMD4 GRAM domain containing 4 22q13.31 Wright et al. [2013]
GRIA1 Glutamate receptor, ionotropic, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) 1 5q33.2 Tabarés-Seisdedos et al. [2011]
GRIA2 Glutamate receptor, ionotropic, AMPA 2 4q32.1 Tabarés-Seisdedos et al. [2011]
GRIA3 Glutamate receptor, ionotropic, AMPA 3 Xq25 Tabarés-Seisdedos et al. [2011]
GRIA4 Glutamate receptor, ionotropic, AMPA 4 11q22.3 Tabarés-Seisdedos et al. [2011]
GRID1a Glutamate receptor, ionotropic, delta 1 10q23.2 Tabarés-Seisdedos et al. [2011]
GRIK3 Glutamate receptor, ionotropic, kainate 3 1p34.3 Dai et al. [2014]
GRIK4 Glutamate receptor, ionotropic, kainate 4 11q23.3 Tabarés-Seisdedos et al. [2011]
GRIK5 Glutamate receptor, ionotropic, kainate 5 19q13.2 Tabarés-Seisdedos et al. [2011]
GRIN1a Glutamate receptor, ionotropic, N-methyl D-aspartate 1 9q34.3 Begni et al. [2003]
GRIN2Aa Glutamate receptor, ionotropic, N-methyl D-aspartate 2A 16p13.2 Tabarés-Seisdedos et al. [2011]
GRIN2Ba Glutamate receptor, ionotropic, N-methyl D-aspartate 2B 12p13.1 Allen et al. [2008]
GRIN2C Glutamate receptor, ionotropic, N-methyl D-aspartate 2C 17q25.1 Tabarés-Seisdedos et al. [2011]
GRIN2D Glutamate receptor, ionotropic, N-methyl D-aspartate 2D 19q13.33 Tabarés-Seisdedos et al. [2011]
GRIN3A Glutamate receptor, ionotropic, N-methyl-D-aspartate 3A 9q31.1 Takata et al. [2013]
GRIN3B Glutamate receptor, ionotropic, N-methyl-D-aspartate 3B 19p13.3 Tabarés-Seisdedos et al. [2011]
GRIP1a Glutamate receptor interacting protein 1 12q14.3 Tabarés-Seisdedos et al. [2011]
GRM2 Glutamate receptor, metabotropic 2 3p21.2 Tabarés-Seisdedos et al. [2011]
GRM3 Glutamate receptor, metabotropic 3 7q21.11 Harrison and Weinberger [2005]
GRM4a Glutamate receptor, metabotropic 4 6p21.31 Tabarés-Seisdedos et al. [2011]
GRM5a Glutamate receptor, metabotropic 5 11q14.3 Wright et al. [2013]
GRM7 Glutamate receptor, metabotropic 7 3p26.1 Tabarés-Seisdedos et al. [2011]
GRM8a Glutamate receptor, metabotropic 8 7q31.33 Tabarés-Seisdedos et al. [2011]
GSK3A Glycogen synthase kinase 3 alpha 19q13.2 Tabarés-Seisdedos et al. [2011]
GSK3Ba Glycogen synthase kinase 3 beta 3q13.33 Luo et al. [2014]
GSTM1a Glutathione S-transferase mu 1 1p13.3 Tabarés-Seisdedos et al. [2011]
GSTP1 Glutathione S-transferase pi 1 11q13.2 Tabarés-Seisdedos et al. [2011]
GSTT1 Glutathione S-transferase theta 1 22q11.23 Tabarés-Seisdedos et al. [2011]
GSTT2 Glutathione S-transferase theta 2 22q11.23 Tabarés-Seisdedos et al. [2011]
HCRTR1 Hypocretin receptor 1 1p35.2 Tabarés-Seisdedos et al. [2011]
HERC2a HECT domain and RCC1-like domain 2 15q13.1 Sanders et al. [2013]
HINT1 Histidine triad nucleotide-binding protein 1 5q23.3 Tabarés-Seisdedos et al. [2011]
HIST1H2AG Histone cluster 1, H2AG 6p22.1 Shi et al. [2009]
HIST1H2BC Histone cluster 1, H2BC 6p22.2 Sanders et al. [2013]
HIST1H2BD Histone cluster 1, H2BD 6p22.2 Sanders et al. [2013]
HIST1H2BG Histone cluster 1, H2BG 6p22.2 Sanders et al. [2013]
HIST1H2BH Histone cluster 1, H2BH 6p22.2 Sanders et al. [2013]
HIST1H2BI Histone cluster 1, H2BI 6p22.2 Stefansson et al. [2009]
HIST1H2BJ Histone gene cluster 1, H2B histone family, member J 6p22.1 Loe-Mie et al. [2010]
HIST1H2BK Histone cluster 1, H2BK 6p22.1 Sanders et al. [2013]
HLA-Aa Major histocompatibility complex, class I, A 6p22.1 Tabarés-Seisdedos et al. [2011]
HLA-B Major histocompatibility complex, class I, B 6p21.33 Tabarés-Seisdedos et al. [2011]
HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1 6p21.32 Jia et al. [2012]
HLA-DQB1 Major histocompatibility complex, class II, DQ beta 1 6p21.32 Tabarés-Seisdedos et al. [2011]
HLA-DRB1a Major histocompatibility complex, class II, DR beta 1 6p21.32 Tabarés-Seisdedos et al. [2011]
HLA-DRB3 Major histocompatibility complex, class II, DR beta 3 6p21.3 de Jong et al. [2012]
HLA-DRB9 Major histocompatibility complex, class II, DR beta 9 (pseudogene) 6p21.32 Ripke et al. [2013]
HNMT Histamine N-methyltransferase 2q22.1 Sanders et al. [2013]
HOMER1a Homer, Drosophila, homolog of, 1 5q14.1 Tabarés-Seisdedos et al. [2011]
HOMER2 Homer, Drosophila, homolog of, 2 15q25.2 Tabarés-Seisdedos et al. [2011]
HP Haptoglobin 16q22.2 Allen et al. [2008]
HRH1 Histamine receptor H1 3p25.3 Tabarés-Seisdedos et al. [2011]
HRH2 Histamine receptor H2 5q35.2 Tabarés-Seisdedos et al. [2011]
HRH3 Histamine receptor H3 20q13.33 Tabarés-Seisdedos et al. [2011]
HSPA1A Heat shock 70 kDa protein 1A 6p21.33 Tabarés-Seisdedos et al. [2011]
HSPA1B Heat shock 70 kDa protein 1B 6p21.33 Tabarés-Seisdedos et al. [2011]
HSPA1L Heat shock 70 kDa protein-like 1 6p21.33 Tabarés-Seisdedos et al. [2011]
HSPA6 Heat-shock 70 kDa protein 6 1q23.3 Brzustowicz et al. [2002]]
HSPA7 Heat-shock 70 kDa protein7 1q23.3 Brzustowicz et al. [2002]
HTR1A 5-Hydroxytryptamine receptor 1A 5q12.3 Tabarés-Seisdedos et al. [2011]
HTR1Ba 5-Hydroxytryptamine receptor 1B 6q14.1 Tabarés-Seisdedos et al. [2011]
HTR1D 5-Hydroxytryptamine receptor 1D 1p36.12 Tabarés-Seisdedos et al. [2011]
HTR2Aa 5-Hydroxytryptamine receptor 2A 13q14.2 Williams et al. [1997]
HTR2C 5-Hydroxytryptamine receptor 2C Xq23 Wright et al. [2013]
HTR3Aa 5-Hydroxytryptamine receptor 3A 11q23.2 Tabarés-Seisdedos et al. [2011]
HTR3B 5-Hydroxytryptamine receptor 3B 11q23.2 Tabarés-Seisdedos et al. [2011]
HTR3Ca 5-Hydroxytryptamine receptor 3C 3q27.1 Tabarés-Seisdedos et al. [2011]
HTR3D 5-Hydroxytryptamine receptor 3D 3q27.1 Tabarés-Seisdedos et al. [2011]
HTR3E 5-Hydroxytryptamine receptor 3E 3q27.1 Tabarés-Seisdedos et al. [2011]
HTR4 5-Hydroxytryptamine receptor 4 5q32 Tabarés-Seisdedos et al. [2011]
HTR5A 5-Hydroxytryptamine receptor 5A 7q36.2 Tabarés-Seisdedos et al. [2011]
HTR6 5-Hydroxytryptamine receptor 6 1p36.13 Tabarés-Seisdedos et al., 2011]
HTR7a 5-Hydroxytryptamine receptor 7 10q23.31 Tabarés-Seisdedos et al. [2011]
ICAM1 Intercellular adhesion molecule 1 19p13.2 Tabarés-Seisdedos et al. [2011]
IFITM3 Interferon-induced transmembrane protein 3 11p15.5 Sanders et al. [2013]
IL10 Interleukin 10 1q32.1 Tabarés-Seisdedos et al. [2011]
IL12B Interleukin 12B 5q33.3 Tabarés-Seisdedos et al. [2011]
IL1A Interleukin 1, alpha 2q13 Tabarés-Seisdedos et al. [2011]
IL1B Interleukin 1, beta 2q13 Xu and He [2010]
IL1RN Interleukin 1 receptor antagonist 2q14.2 Tabarés-Seisdedos et al. [2011]
IL3 Interleukin 3 5q31.1 Tabarés-Seisdedos et al. [2011]
IL3RA Interleukin 3 receptor, alpha Xp22.33 Tabarés-Seisdedos et al. [2011]
IL4 Interleukin 4 5q31.1 Tabarés-Seisdedos et al. [2011]
IL6 Interleukin 6 7p15.3 Tabarés-Seisdedos et al. [2011]
IMMP2La Inner mitochondrial membrane peptidase, subunit 2, S. cerevisiae, homolog of 7q31.1 Tabarés-Seisdedos et al. [2011]
IMPA2 Myo-inositol monophosphatase 2 18p11.21 Tabarés-Seisdedos et al. [2011]
INSIG2 Insulin-induced gene 2 2q14.2 Tabarés-Seisdedos et al. [2011]
IPO5 Importin 5 13q32.2 Tabarés-Seisdedos et al. [2011]
ITIH3 Inter-alpha-trypsin inhibitor heavy chain 3 3p21.1 Ripke et al. [2013]
JAG2 Jagged 2 14q32.33 Tabarés-Seisdedos et al. [2011]
JARID2a Jumonji, AT-rich interactive domain 2 6p22.33 Tabarés-Seisdedos et al. [2011]
KCNH2 Potassium voltage-gated channel, subfamily H, member 2 7q36.1 Hashimoto et al. [2013]
KCNH7 Potassium voltage-gated channel, subfamily H (eag-related), member 7 2q24.2 Zhang et al. [2012]
KCNN3 Potassium channel, calcium-activated, intermediate/small conductance, subfamily N, member 3 1q21.3 Chandy et al. [1998]
KIAA0513 KIAA0513 designated gene 16q24.1 Lauriat et al. [2006]
KIAA1644 KIAA1644 designated gene 22q13 Wright et al. [2013]
L1RE1 LINE1 (long interspersed nuclear element) retrotransposable element 1 22q11.1-q11.2 Bundo et al. [2014]
LAMA5 Laminin, alpha 5 20q13.33 van Schijndel et al. [2009]
LEPa Leptin 7q32.1 Tabarés-Seisdedos et al. [2011]
LEPR Leptin receptor 1p31.3 Tabarés-Seisdedos et al. [2011]
LPL Lipoprotein lipase 8p21.3 Tabarés-Seisdedos et al. [2011]
LRRC4a Leucine rich repeat containing 4 7q32.1 Wright et al. [2013]
LSM1 LSM1 protein 8p11.23 Shi et al. [2011]
LTA Lymphotoxin alpha 6p21.33 Tabarés-Seisdedos et al. [2011]
M1AP Meiosis 1 associated protein 2p13.1 Ripke et al. [2013]
MAD1L1 Mitotic arrest-deficient 1, yeast, homolog-like 1 7p22.3 Ripke et al. [2013]
MAG Myelin-associated glycoprotein 19q13.12 Bahn [2002]
MAGI1 Membrane-associated guanylate kinase, WW, and PDZ domain containing 1 3p14.1 Sun et al. [2008]
MAGI2 Membrane-associated guanylate kinase, WW, and PDZ domain containing 2 7q21.11 Sun et al. [2008]
MAGI3 Membrane-associated guanylate kinase, WW, and PDZ domain containing 3 1p13.2 Sun et al. [2008]
MAOAa Monoamine oxidase A Xp11.3 Tabarés-Seisdedos et al. [2011]
MAOBa Monoamine oxidase B Xp11.3 Rice et al. [1984]
MAP2K4 Mitogen-activated protein kinase kinase 4 17p12 Wright et al. [2013]
MAPK14 Mitogen-activated protein kinase 14 6p21.31 Tabarés-Seisdedos et al. [2011]
MAPK3a Mitogen-activated protein kinase 3 16p11.2 Wright et al. [2013]
MAPT Microtubule-associated protein tau 17q21.31 Tabarés-Seisdedos et al. [2011]
MAU2 MAU2 (maternally affected uncoordination 2) sister chromatid cohesion factor 19p13.11 Ripke et al. [2013]
MCHR1 Melanin-concentrating hormone receptor 1 22q13.2 Tabarés-Seisdedos et al. [2011]
MDGA1 MAM (meprin, A5 protein, and protein tyrosine phosphatase Mu) domain containing glycosylphosphatidylinositol anchor 1 6p21.2 Ocklenburg et al. [2013]
MECP2a Methyl CpG binding protein 2 Xq28 Tabarés-Seisdedos et al. [2011]
MED1 Mediator complex subunit 1 17q12 Wright et al. [2013]
MED12a Mediator complex subunit 12 Xq13.1 Tabarés-Seisdedos et al. [2011]
MED15 Mediator complex subunit 15 22q11.21 Tabarés-Seisdedos et al. [2011]
MEGF10 Multiple epidermal growth factor-like domains 10 5q23.2 Tabarés-Seisdedos et al. [2011]
MGRN1 Mahogunin ring finger 1 16p13.3 Wright et al. [2013]
MGST1 Microsomal glutathione S-transferase 1 12p12.3 Wockner et al. [2014]
MICB Major histocompatibility complex class I chain-related gene B 6p21.33 Tabarés-Seisdedos et al. [2011]
MIR137 MicroRNA 137 1p21.3 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
MIR30E MicroRNA 30e 1p34.2 Tabarés-Seisdedos et al. [2011]
MKL1 Megakaryoblastic leukemia 1 22q13.2 Luo et al. [2014]
MLC1 Megalencephalic leukoencephalopathy with subcortical cysts 1 22q13.33 Tabarés-Seisdedos et al. [2011]
MMP16 Matrix metallopeptidase 16 8q21.3 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
MMP9 Matrix metallopeptidase 9 20q13.12 Tabarés-Seisdedos et al. [2011]
MOXD1 Monooxygenase, DBH-like 1 6q23.2 Sanders et al. [2013]
MPO Myeloperoxidase 17q22 Tabarés-Seisdedos et al. [2011]
MTHFRa Methylenetetrahydrofolate reductase 1p36.22 Zintzaras [2006]
MYH9 Myosin, heavy chain 9, non-muscle 22q12.3 Tabarés-Seisdedos et al. [2011]
MYO16a Myosin XVI 13q33.3 Rodriguez-Murillo et al. [2014]
NALCN Sodium leak channel, non-selective 13q33.1 Wang et al. [1996]
NCAM1 Neural cell adhesion molecule 1 11q23.2 Tabarés-Seisdedos et al. [2011]
NDE1 NudE neurodevelopment protein 1 16p13.11 Tabarés-Seisdedos et al. [2011]
NDEL1 NudE neurodevelopment protein 1-like 1 17p13.1 Tabarés-Seisdedos et al. [2011]
NETO1 Neuropilin and tolloid-like 1 18q22.3 Banno et al. [2011]
NEUROD2 Neuronal differentiation 2 17q12 Wright et al. [2013]
NEUROG1 Neurogenin 1 5q31.1 Tabarés-Seisdedos et al. [2011]
NLGN1a Neuroligin 1 3q26.31 Tabarés-Seisdedos et al. [2011]
NLRP1 NLR (NOD-like microbial receptor) family, pyrin domain containing 1 17p13.2 Sanders et al. [2013]
NOD2 Nucleotide-binding oligomerization domain containing 2 16q12.1 van Schijndel et al. [2009]
NOS1 Nitric oxide synthase 1 12q24.22 Weber et al. [2014]
NOS1APa Nitric oxide synthase 1 adaptor protein 1q23.3 Weber et al. [2014]
NOS3 Nitric oxide synthase 3 7q36,1 Tabarés-Seisdedos et al. [2011]
NOTCH2 Notch, Drosophila, homolog of, 2 1p11.2 Tabarés-Seisdedos et al. [2011]
NOTCH3a Notch, Drosophila, homolog of, 3 19p13.12 Tabarés-Seisdedos et al. [2011]
NOTCH4 Notch, Drosophila, homolog of, 4 6p21.32 Ikeda et al. [2011]
NPAS3 Neuronal PAS domain protein 3 14q13.1 Macintyre et al. [2010]
NPPC Natriuretic peptide precursor C 2q37.1 Roussos and Haroutunian [2014]
NPY Neuropeptide Y 7p15.3 Tabarés-Seisdedos et al. [2011]
NQO1 NAD(P)H dehydrogenase, quinone 1 16q22.1 Tabarés-Seisdedos et al. [2011]
NR4A1a Nuclear receptor subfamily 4, group A, member 1 12q13.13 Tabarés-Seisdedos et al. [2011]
NR4A2 Nuclear receptor subfamily 4, group A, member 2 2q24.1 Tabarés-Seisdedos et al. [2011]
NRG1a Neuregulin 1 8p12 Wockner et al. [2014]
NRG2 Neuregulin 2 5q31.2 Wright et al. [2013]
NRG3 Neuregulin 3 10q23.1 Kao et al. [2010]
NRGN Neurogranin 11q24.2 Wockner et al. [2014]
NRXN1a Neurexin 1 2p16.3 Kirov et al. [2008]
NRXN3a Neurexin 3 14q24.3 Tabarés-Seisdedos et al. [2011]
NSF N-ethylmaleimide-sensitive factor 17q21.31 Mirnics et al. [2000]
NT5C2 5-prime-nucleotidase, cytosolic II 10q24.33 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
NTF3 Neurotrophin 3 12p13.31 Tabarés-Seisdedos et al. [2011]
NTNG1a Netrin G1 1p13.3 Tabarés-Seisdedos et al. [2011]
NTRK1a Neurotrophic tyrosine kinase, receptor, type 1 1q23.1 van Schijndel et al. [2009]
NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 9q21.33 Tabarés-Seisdedos et al. [2011]
NTRK3a Neurotrophic tyrosine kinase, receptor, type 3 15q25.3 Tabarés-Seisdedos et al. [2011]
NUDT9P1 Nudix (nucleoside diphosphate linked moiety X)-type motif 9 pseudogene 1 10q23.32 Tabarés-Seisdedos et al. [2011]
NUMBL Numb, Drosophila, homolog-like 19q13.2 Sun et al. [2008]
OLIG2 Oligodendrocytes lineage transcription factor 2 21q22.11 Georgieva et al. [2006]
OXT Oxytocin 20p13 Tabarés-Seisdedos et al. [2011]
OXTRa Oxytocin receptor 3p25.3 Tabarés-Seisdedos et al. [2011]
PAFAH1B1a Platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 17p13.3 Tabarés-Seisdedos et al. [2011]
PAHa Phenylalanine hydroxylase 12q23.2 Tabarés-Seisdedos et al. [2011]
PAWR PRKC (protein kinase 3), apoptosis, WT1 (Wilms tumor 1), regulator 12q21.2 Tabarés-Seisdedos et al. [2011]
PBRM1a Polybromo 1 3p21.1 Kondo et al. [2013]
PCGEM1 Prostate-specific gene PCGEM1 2q32.3 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
PCM1 Pericentriolar material 1 8p22 Moens et al. [2010]
PCNT Pericentrin 21q22.3 Tabarés-Seisdedos et al. [2011]
PDE4Ba Phosphodiesterase 4B, cAMP-specific 1p31.3 Millar et al. [2005]
PDLIM5 PDZ (pSD95, Dlg1, and zo-1) and LIM Lin11, Isl-1, and Mec-3) domain 5 4q22.3 Tabarés-Seisdedos et al. [2011]
PDYN Prodynorphin 20p13 Tabarés-Seisdedos et al. [2011]
PEMT Phosphatidylethanolamine N-methyltransferase 17p11.2 Tabarés-Seisdedos et al. [2011]
PER3 Period circadian clock 3 1p36.23 Tabarés-Seisdedos et al. [2011]
PGBD1 PiggyBac transposable element derived 1 6p22.1 Alkelai et al. [2012]
PGP Phosphoglycolate phosphatase 19p13.11 Wright et al. [2013]
PHF3 PHD (plant homeodomain) finger protein 3 6q12 Wright et al. [2013]
PHOX2B Paired-like homeobox 2B 4p13 Toyota et al. [2004]
PI4KA Phosphatidylinositol 4-kinase, catalytic, alpha 22q11.21 Tabarés-Seisdedos et al. [2011]
PICK1 Protein interacting with C kinase 1 22q13.1 Tabarés-Seisdedos et al. [2011]
PIK3C3 Phosphatidylinositol 3-kinase, class 3 18q12.3 Tabarés-Seisdedos et al. [2011]
PIK4CA Phosphatidylinositol 4-kinase, catalytic, alpha 22q11.21 Sullivan [2005]
PIP4K2A Phosphatidylinositol-5-phosphate 4-kinase, type II, alpha 10p12.2 Tabarés-Seisdedos et al. [2011]
PLA2G1B Phospholipase A2, group IB 12q24.31 Tabarés-Seisdedos et al. [2011]
PLA2G4A Phospholipase A2, group IVA 1q31.1 Tabarés-Seisdedos et al. [2011]
PLA2G4C Phospholipase A2, group IVC 19q13.33 Tabarés-Seisdedos et al. [2011]
PLA2G4D Phospholipase A2, group IVD 15q15.1 Tabarés-Seisdedos et al. [2011]
PLA2G6 Phospholipase A2, group VI 22q13.1 Tabarés-Seisdedos et al. [2011]
PLA2G7 Phospholipase A2, group VII 6p12.3 Tabarés-Seisdedos et al. [2011]
PLAA Phospholipase A2-activating protein 9p21.2 Athanasiu et al. [2010]
PLP1 Proteolipid protein 1 Xq22.2 Aberg et al. [2006]
PLXNA2 Plexin A2 1q32.2 Allen et al. [2008]
PNOC Prepronociceptin 8p21.1 Tabarés-Seisdedos et al. [2011]
POM121L2 POM121 (POM121 transmembrane nucleoporin) transmembrane nucleoporin-like 2 6p22.1 Aberg et al. [2006]
PON1a Paraoxonase 1 7q21.3 Tabarés-Seisdedos et al. [2011]
PPARG Peroxisome proliferator-activated receptor gamma 3p25.2 Tabarés-Seisdedos et al. [2011]
PPP1R1Ba Protein phosphatase 1, regulatory (inhibitor) subunit 1B 17q12 Meyer-Lindenberg et al. [2007]
PPP2R2B Protein phosphatase 2, regulatory subunit B, beta 5q32 Tabarés-Seisdedos et al. [2011]
PPP3CC Protein phosphatase 3, catalytic subunit, gamma isoform 8p21.3 Wockner et al. [2014]
PRKAB2 Protein kinase, AMP-activated, beta 2 non-catalytic subunit 1q21.1 Wright et al. [2013]
PRKCA Protein kinase C, alpha 17q24.2 Tabarés-Seisdedos et al. [2011]
PRKCD Protein kinase C, delta 3p21.1 Sanders et al. [2013]
PRODHa Proline dehydrogenase 22q11.21 Sullivan [2005]
PRODH2 Proline dehydrogenase 2 19q13.12 Harrison and Weinberger [2005]
PRNP Prion protein 20p13 Tabarés-Seisdedos et al. [2011]
PRRT4 Proline-rich transmembrane protein 4 7q32.1 Wright et al. [2013]
PRSS16 Protease, serine, 16 6p22.1 Stefansson et al. [2009]
PTBP3 Polypyrimidine tract-binding protein 3 9q32 Sanders et al. [2013]
PTGS2a Prostaglandin-endoperoxide synthase 2 1q31.1 Tabarés-Seisdedos et al. [2011]
PTPN21 Protein tyrosine phosphatase, non-receptor type 21 14q31.3 Chen et al. [2011a]
PTPRZ1 Protein tyrosine phosphatase, receptor-type, zeta 1 7q31.32 Tabarés-Seisdedos et al. [2011]
QKI QKI, KH (K homology) domain containing, RNA binding 6q26 Aberg et al. [2006]
QPCT Glutaminyl-peptide cyclotransferase 2p22.2 Ripke et al. [2013]
RAI1a Retinoic acid induced 1 17p11.2 Toulouse et al. [2003]
RANBP2 Ran binding protein 2 2q12.3 Wright et al. [2013]
RAPGEF6 Rap guanine nucleotide exchange factor 6 5q31.1 Tabarés-Seisdedos et al. [2011]
RELNa Reelin 7q22.1 van Schijndel et al. [2009]
REST RE1-silencing transcription factor 4q12 Loe-Mie et al. [2010]
RGS2 Regulator of G-protein signaling 2 1q31.2 Tabarés-Seisdedos et al. [2011]
RGS4 Regulator of G-protein signaling 4 1q23.3 Harrison and Weinberger [2005]
RGS9 Regulator of G-protein signaling 9 17q24.1 Tabarés-Seisdedos et al. [2011]
RNF144 Ring finger protein 144A 2p25.2 Xu and He [2010]
RNF5 Ring finger protein 5 6p21.32 de Jong et al. [2012]
RSRC1 Arginine/serine-rich coiled-coil 1 3q25.32 Potkin et al. [2009]
RTN4 Reticulon 4 2p16.1 Tabarés-Seisdedos et al. [2011]
RTN4R Reticulon 4 receptor 22q11.21 Sinibaldi et al. [2004]
RXRB Retinoid X receptor, beta 6p21.32 Tabarés-Seisdedos et al. [2011]
S100A10 S100 calcium-binding protein A10 1q21.3 Sanders et al. [2013]
S100B S100 calcium-binding protein beta 21q22.3 Tabarés-Seisdedos et al. [2011]
SBK1 SH3 (SRC homology 3) domain-binding kinase 1 16p11.2 Wright et al. [2013]
SDCCAG8 Serologically defined colon cancer antigen 8 1q43 Ripke et al. [2013]
SELENBP1 Selenium-binding protein 1 1q21.3 Tabarés-Seisdedos et al. [2011]
SEMA3D Semaphorin 3D 7q21.11 Tabarés-Seisdedos et al. [2011]
SEZ6L2a Seizure-related 6 homolog (mouse)-like 2 16p11.2 Wright et al. [2013]
SGK1 Serum/glucocorticoid-regulated kinase 1 6q23.2 Sanders et al. [2013]
SHANK3a SH3 and multiple ankyrin repeat domains 3 22q13.33 Gauthier et al. [2010]
SHMT1 Serine hydroxymethyltransferase, cytosolic 17p11.2 Tabarés-Seisdedos et al. [2011]
SHOX Short stature homeobox Xp22.33 Loe-Mie et al. [2010]
SIGMAR1 Sigma non-opioid intracellular receptor 1 9p13.3 Ohi et al. [2011]
SLC17A1 Solute carrier family 17 (organic anion transporter), member 1 6p22.2 Shi et al. [2009]
SLC17A3 Solute carrier family 17 (organic anion transporter), member 3 6p22.2 Shi et al. [2009]
SLC17A6 Solute carrier family 17 (vesicular glutamate transporter), member 6 11p14.3 Tabarés-Seisdedos et al. [2011]
SLC17A7 Solute carrier family 17 (vesicular glutamate transporter), member 7 19q13.33 Tabarés-Seisdedos et al. [2011]
SLC18A1 Solute carrier family 18 (vesicular glutamate transporter), member 1 8p21.3 Tabarés-Seisdedos et al. [2011]
SLC18A2 Solute carrier family 18 (vesicular glutamate transporter), member 2 10q25.3 Tabarés-Seisdedos et al. [2011]
SLC1A1a Solute carrier family 1, member 1 9p24.2 Allen et al. [2008]
SLC1A2 Solute carrier family 1 (glial high-affinity glutamate transporter), member 2 11p13 Tabarés-Seisdedos et al. [2011]
SLC1A3 Solute carrier family 1 (glial high-affinity glutamate transporter), member 3 5p13.2 Tabarés-Seisdedos et al. [2011]
SLC1A4 Solute carrier family 1 (glutamate/neutral amino acid transporter), member 4 2p14 Tabarés-Seisdedos et al. [2011]
SLC1A6 Solute carrier family 1 (high affinity aspartate/glutamate transporter), member 6 19p13.12 Tabarés-Seisdedos et al. [2011]
SLC24A5 Solute carrier family 24 (sodium/potassium/calcium exchanger), member 5 15q21.1 Tabarés-Seisdedos et al. [2011]
SLC39A8 Solute carrier family 39 (zinc transporter), member 8 4q24 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
SLC5A7 Solute carrier family 5 (sodium/choline cotransporter), member 7 2q12.3 Wright et al. [2013]
SLC6A2 Solute carrier family 6 (neurotransmitter transporter, noradrenaline), member 2 16q12.2 Tabarés-Seisdedos et al. [2011]
SLC6A3a Solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 5p15.33 Tabarés-Seisdedos et al. [2011]
SLC6A4a Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 17q11.2 Allen et al. [2008]
SLC6A9 Solute carrier family 6 (neurotransmitter transporter, glycine), member 9 1p34.1 Tabarés-Seisdedos et al. [2011]
SLC9A3R2 Solute carrier family 9, member 3, regulator 2 16p13.3 Wright et al. [2013]
SLCO6A1 Solute carrier organic anion transporter family, member 6A1 5q21.1 Ripke et al. [2013]
SLX4 SLX4, S. cerevisiae, homolog of 16p13.3 Wright et al. [2013]
SMARCA2 SW1/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 2 9p24.3 Loe-Mie et al. [2010]
SNAP25 Synaptosomal-associated protein, 25kDa 20p12.2 Dai et al. [2014]
SNAP29 Synaptosomal-associated protein, 29-kDa 22q11.21 Sun et al. [2008]
SNX19a Sorting nexin 19 11q24.3 Ripke et al. [2013]
SOD2 Superoxide dismutase 2 6q25.3 Tabarés-Seisdedos et al. [2011]
SOX10 SRY (sex determining region Y)-box 10 22q13.1 Yuan et al. [2012]
SP4 Sp4 transcription factor 7p15.3 Tabarés-Seisdedos et al. [2011]
SP8 Sp8 transcription factor 7p21.1 Kondo et al. [2013]
SRC V-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog 20q11.23 Pitcher et al. [2011]
SRD5A1 Steroid-5-alpha-reductase 1 5p15.31 Tabarés-Seisdedos et al. [2011]
SREBF1 Sterol regulatory element binding transcription factor 1 17p11.2 Tabarés-Seisdedos et al. [2011]
SREBF2 Sterol regulatory element binding transcription factor 2 22q13.2 Tabarés-Seisdedos et al. [2011]
SRR Serine racemase 17p13.3 Tabarés-Seisdedos et al. [2011]
ST3GAL1 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 8q24.22 Xu and He [2010]
ST6GAL2 ST6 beta-galactosamide alpha-2,6-sialyltranferase 2 2q12.3 Wright et al. [2013]
ST8SIA2a ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 15q26.1 Tabarés-Seisdedos et al. [2011]
STAC2 SH3 and cysteine-rich domain 2 17q12 Wright et al. [2013]
STT3A Oligosaccharyltransferase complex, catalytic subunit STT3A 11q24.2 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
STX1B Syntaxin 1B 16p11.2 Wright et al. [2013]
STX6a Syntaxin 6 1q25.3 Sanders et al. [2013]
SULT4A1 Sulfotransferase family 4A, member 1 22q13.31 Tabarés-Seisdedos et al. [2011]
SYN2a Synapsin II 3p25.2 Saviouk et al. [2007]
SYN3a Synapsin lll 22q12.3 Kao et al. [1998]
SYNGR1 Synaptogyrin 1 22q13.1 Tabarés-Seisdedos et al. [2011]
SYT11 Synaptotagmin 11 1q22 Sanders et al. [2013]
TAAR6 Trace amine-associated receptor 6 6q23.2 Duan et al. [2004]
TACR1 Tachykinin receptor 1 2p12 Tabarés-Seisdedos et al. [2011]
TAF15 TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68 kDa 17q12 Wright et al. [2013]
TAP2 Transporter, ATP-binding cassette, major histocompatibility complex, 2 6p21.32 Tabarés-Seisdedos et al. [2011]
TBX1a T-box 1 22q11.21 Tabarés-Seisdedos et al. [2011]
TCF4a Transcription factor 4 18q21.2 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
TF Transferrin 3q22.1 Aberg et al. [2006]
THa Tyrosine hydroxylase 11p15.5 Tabarés-Seisdedos et al. [2011]
TIMELESS Timeless, Drosophila, homolog of 12q13.3 Tabarés-Seisdedos et al. [2011]
TMED5 Transmembrane emp24 protein transport domain containing 5 1p22.1 Wright et al. [2013]
TMEM245 Transmembrane protein 245 9q31.3 Xu and He [2010]
TNF Tumor necrosis factor 6p21.33 Sacchetti et al. [2007]
TNFRSF1B Tumor necrosis factor receptor superfamily, member 1B 1p36.22 Tabarés-Seisdedos et al. [2011]
TNR Tenascin R 1q25.1 Tabarés-Seisdedos et al. [2011]
TP53 Tumor protein p53 17p13.1 Allen et al. [2008]
TPH1 Tryptophan hydroxylase 1 11p15.1 Allen et al. [2008]
TPH2a Tryptophan hydroxylase 2 12q21.1 Tabarés-Seisdedos et al. [2011]
TRAX Translin-associated factor X 1q42.2 Cannon et al. [2005]
TRIM26 Tripartite motif containing 26 6p22.1 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
TSNARE1 T-SNARE (soluble NSF attachment protein receptor) domain containing 1 8q24.3 Ripke et al. [2013]
TSNAX Translin-associated factor X 1q42.2 Tabarés-Seisdedos et al. [2011]
TSPAN33 Tetraspanin 33 7q32.1 Wright et al. [2013]
TXNDC5 Thioredoxin domain containing 5 6p24.3 Tabarés-Seisdedos et al. [2011]
UBE3Ca Ubiquitin protein ligase E3C 7q36.3 Wright et al. [2013]
UFD1L Ubiquitin fusion degradation 1 like 22q11.21 Tabarés-Seisdedos et al. [2011]
UGT1A4 UDP (uridine 5’-diphospho-) glucuronosyltransferase 1 family, polypeptide A4 2q37.1 Tabarés-Seisdedos et al. [2011]
UHMK1 U2AF (U2 auxiliary factor) homology motif kinase 1 1q23.3 Dumaine et al. [2011]
VAMP4 Vesicle-associated membrane protein 4 1q24.3 Sanders et al. [2013]
VDR Vitamin D receptor 12q13.11 Tabarés-Seisdedos et al. [2011]
VIPR2 Vasoactive intestinal peptide receptor 2 7q36,3 Vacic et al. [2011]
VKORC1 Vitamin K epoxide reductase complex, subunit 1 16p11.2 Wright et al. [2013]
VRK2 Vaccinia related kinase 2 2p16.1 Stefansson et al. [2009]
WHSC1L1 Wolf-Hirschhorn syndrome candidate 1-like 1 8p11.23 Shi et al. [2011]
WWC1 WW, C2, and coiled-coil domain-containing 1 5q34 Tabarés-Seisdedos et al. [2011]
XBP1 X-box binding protein 1 22q12.1 Tabarés-Seisdedos et al. [2011]
XKR4 XK, Kell blood group complex subunit-related family, member 4 8q12.1 Tabarés-Seisdedos et al. [2011]
YES V-yes-1 Yamaguchi sarcoma viral related oncogene homolog 6q21 Tabarés-Seisdedos et al. [2011]
YWHAEa Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon isoform 17p13.3 Ikeda et al. [2008]
YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, Eta 22q12.3 Tabarés-Seisdedos et al. [2011]
ZBTB42 Zinc finger and BTB (BR-C, ttk and bab) domain containing 42 14q32.33 Ocklenburg et al. [2013]
ZDHHC8 Zinc finger, DHHC (Asp-His-His-Cys)-type containing 8 22q11.21 Sullivan [2005]
ZEB2 Zinc finger E-box binding homeobox 2 2q22.3 Ripke et al. [2013]
ZNF184 Zinc finger protein 184 6p22.1 Shi et al. [2009]
ZNF385D Zinc finger protein 385D 3p24.3 Xu and He [2010]
ZNF804Aa Zinc finger protein 804A 2q32.1 Williams et al. [2011]
ZSWIM6 Zinc finger, SWIM (SWI2/SNF2 and MuDR)-type containing 6 5q12.1 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium [2011]
a

Overlap with recognized Autism Spectrum Disorders (ASD) genes.

FIG. 1.

FIG. 1.

FIG. 1.

High resolution human chromosome ideograms (850 band level) with gene symbols representing currently recognized genes for schizophrenia plotted on chromosome bands for each of the 560 genes. The centromere area is highlighted in black which separates the upper short ‘p’ arm from the lower long ‘q’ arm for each chromosome. The gene symbols are arranged in alphabetical order with the expanded name and precise chromosome band location listed in Table 1. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/journal/ajmgb].

Genome wide pathway analysis was carried out for the derived gene master list and all mapped genomic variants associated with schizophrenia using a commercially available software program and data analysis application, GeneAnalytics (http://geneanalytics.genecards.org/) which is part of the GeneCards Suite developed by LifeMap Sciences (http://www.lifemapsc.com/products/genecards-suite-premium-tools/). GeneCards Suite provides enhanced gene variant prioritization, gene feature, and pathway analysis through three premium analytical tools: VarElect, the NGS phenotyper, GeneAnalytics™, a novel gene set analysis tool, and GeneALaCart, the GeneCards batch querying application. These applications are integrated with GeneCards® human gene database, MalaCards human disease database, PathCards, human biological pathways database, and LifeMap Discovery® tissues and cells database to provide an extensive universe of data from human genes, proteins, cells, biological pathways, diseases and their relationships.

The GeneAnalytics program was used to organize mammalian gene sets into functional categories based upon tissues and cells, diseases, pathways, GO-biological processes, GO- molecular function, phenotypes, and compounds (endogenous or exogenous) with functional links to the queried schizophrenia gene set. Gene ontology (GO) terms (e.g., superpathways and GO-biological function) were scored based upon transformation of the binomial P-value which is equivalent to a corrected P-value with significance defined at P < 0.0001. Disease-matching scores were derived based upon the number of overlapping genes and the nature of the gene-disease association. Tissues and cells were scored using a matching algorithm that weighs tissue specificity, abundance, and function of the gene. Related pathways were then grouped into superpathways to improve inferences, pathway enrichment, reduce redundancy, and rank genes within a biological mechanism via the multiplicity of constituent pathways.

RESULTS AND DISCUSSION

Based on existing literature in peer-reviewed journal articles and computer genomic-based websites for schizophrenia, we identified a total of 560 recognized or proposed, clinically relevant or susceptibility genes for schizophrenia. VarElect NGS phenotyping of the derived list of genes identified a direct relationship between 465 of those genes and schizophrenia phenotype; 86 genes were indirectly associated with schizophrenia phenotype; two genes were found to be unrelated to schizophrenia phenotype (COMTD1, L1RE1) and seven genes were not recognized by the VarElect application. Our analysis considered the spatial relationship of the identified genes to ascertain any patterning or potential for hot spot regions relevant to causation or course. This analysis was necessarily adjusted for the total length of the chromosome which is related to the total number of genes per chromosome. Our master list of genes or genetic markers provides additional support for previous reports of targeted chromosomal regions associated with schizophrenia. For example, chromosomes 1, 6, and 22 contained genetic regions previously identified as areas of interest for schizophrenia [Riley and Kendler, 2006]. These three chromosomes also possessed over 30% of the total number of genes identified on our master gene list but reflect only 15% of the chromosomal material by size in humans [Shaffer et al., 2012] (Table II). When examining the distribution of genes by chromosome arm for these top three chromosomes (i.e., 1, 6, 22), we found that chromosome 1, considered the largest human chromosome with nearly equal length short (p) and long (q) arms, contained a similar number of genes on each chromosome arm. In contrast, chromosome 22 is the second smallest chromosome but had the third highest number of genes recorded for schizophrenia. Chromosome 22 is an acrocentric chromosome as are chromosomes 13, 14, 15, and 21 and contain only ribosomal genes on their p arms. Chromosome 6 is approximately two-thirds the length of chromosome 1, but showed an unexpectedly high number of schizophrenia genes in relationship to its size. In addition, the short arm of chromosome 6 is about one-half the size of the long arm but contained three times the number of genes for schizophrenia than the long arm. Interestingly, the major histocompatibility immune function gene complex is located on the short arm of chromosome 6.

TABLE II.

The Number of Schizophrenia Genes With Distribution Among Chromosomes

Chromosome Schizophrenia genes Percentage of total genes Genes on p arm Genes on q arm
6 66 11.8 49 17
1 57 10.2 27 30
22 48 8.6 0 48
7 39 7.0 9 30
2 37 6.6 10 27
5 35 6.2 4 31
17 30 5.3 15 15
11 27 4.8 8 19
3 25 4.5 14 11
16 22 3.9 17 5
8 21 3.7 15 6
10 20 3.7 3 17
19 19 3.4 7 12
12 18 3.2 5 13
15 15 2.7 0 15
X 15 2.7 7 8
4 14 2.5 7 7
9 12 2.1 4 8
14 11 2.0 0 11
20 11 2.0 5 6
18 7 1.2 2 5
13 7 1.2 0 7
21 4 0.7 0 4
Y 0 0.0 0 0
Total 560 100 208 352

p, short arm; q, long arm.

Chromosomes are arranged by the highest to lowest number of contained schizophrenia genes.

Genome wide pathway analysis found the identified genes with a proposed role in schizophrenia and of potential clinical relevance for susceptibility, causation, treatment response, or course of illness impacted a broad range of biological pathways, mechanisms, tissues, and cell types including significant association with the cerebellum, cerebral cortex, medulla, thalamus, hypothalamus, pons, and amygdala. These genes were significantly associated with 10 recognized disease states with strongest overlap to schizophrenia (score = 126.6, 141 of 239 genes) supporting the validity of our compiled list to predict phenotype. Additionally, disease states, such as obesity (score = 32.3, 44 of 576 genes), breast cancer (score = 32.2, 47 of 781 genes), malaria (score = 28.8, 35 of 335 genes), rheumatoid arthritis (score = 24.2, 37 of 502 genes), bipolar disorder (score = 23.0, 20 of 31 genes), lung cancer (score = 22.4, 34 of 622 genes), colorectal cancer (score = 22.2,37 of 807), and obsessive-compulsive disorder (score = 211, 15 of 17) significantly overlapped with our compiled gene list and may suggest genetic pleiotropic relationships with clinical relevance to co-morbidity and outcome. Not surprisingly, 20 different GeneAnalytics molecular pathways associated with our gene list impacted ionotropic glutamate and GABA activity, protein/amino acid binding, transporter activity and receptor binding/function for dopamine and serotonin were broadly represented by significant associations with 69 biological processes in 95 superpathways. Pathways and mechanisms included ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolic enzymes (e.g., CYP1A2, CYP2C19, CYP2D6), brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA), and immune function (e.g., HLA-A, HLA-DRB1) and interleukins [e.g., IL1A, IL10, IL6]). Multiple genes involved with neurotransmitter function were identified impacting dopamine (e.g., DRD1, DRD2), GABA (e.g., GABBR1, GABRA1), and serotonin (e.g., HTR1A, HTR2C) pathways with a large number directly tied to glutamate processing (e.g., GAD1, GLUL) and signaling (e.g., GRIK3, GRM5).

To further assess the role of genetics in the neurodevelopment and function, we compared our list of proposed schizophrenia genes with a separate list of genes recently recognized in Autism Spectrum Disorders (ASD) [Butler et al., 2015]. Researchers have sought to uncover the similarities and differences between these two common neurobehavioral disorders [Cheung et al., 2010; Meyer et al., 2011; Hommer and Swedo, 2015]. We found overlap with a shared group of 116 genes between the two disorders (Table I), and the list of genes, their names, expression, and function may begin to suggest possible mechanisms including epigenetics playing a role in schizophrenia as well as a multifactorial basis. VarElect NGS phenotyping similarly identified a direct relationship between 191 genes from our schizophrenia gene list and autism phenotype; 352 genes were indirectly associated with autism phenotype; 10 genes were found to be unrelated to autism phenotype (seven genes were not recognized). The master list of recognized genes represented several molecular mechanisms further supporting that schizophrenia is not due to a single condition but results from a combination of neurochemical disturbances and manifest themselves differently across affected people. The changes that occur over time in those with schizophrenia may represent endophenotypes of the disorder that are genetically based and include interactions with environmental factors (epigenetics). More studies are required in schizophrenia to address these observations and patterns in affected individuals. Research involving the common genes should further advance our knowledge in the causation of brain disorders, psychiatry, neurological function, and development.

Better understanding of factors contributing to schizophrenia can be advanced through the genetic testing and analysis of several types of tissue sources (e.g., peripheral blood and saliva) and not solely brain specimens. Progress in the field of genetics has made tissue sources, such as the ones previously mentioned, readily available for testing; helping to accelerate the potential for discovery of novel genes associated with schizophrenia. For example, a growing number of biological specimens exist at tissue bank repositories for obtaining RNA to study transcription or coding with non-coding expression pattern profiles in individuals with schizophrenia, along with other brain disorders.

The authors encourage the use of this collection of recognized or proposed clinically relevant candidate and susceptibility genes and biomarkers for schizophrenia in their evaluation of patients and families presenting for genetic services requiring accurate information for diagnosis, genetic counseling risk estimates, and natural history and prognostic concerns. Early detection of schizophrenia, possibly through the use of genetic involvement, may help reduce the potentially devastating long-term effects of the disorder for an individual [Abbas and Lieberman, 2015]. A comprehensive approach should include a clinical genetics evaluation to rule out dysmorphic features or recognizable syndromes in which schizophrenia is a feature, cytogenetic or metabolic testing, identification of single gene disorders, or the use of high-resolution microarrays to identify subtle structural abnormalities supported by next generation DNA sequencing analysis for discovery of new gene mutations or variants. Interviews with parents for collection of family history and individual medical records are needed for support from health caregivers and their record overviews of medical history information. Additionally, a three-generation family pedigree should be obtained to include recording of developmental milestones and description with recording of onset of atypical behaviors and triggering events, if any.

A current list of medications and ongoing treatments with list of previous medications and outcomes, along with diagnostic or surgical procedures, should be obtained and may be helpful, given the role genetics play in medication metabolism and effects as several key cytochrome p450 hepatic enzymes involved with medication/drug metabolism were identified and included in our master list [Smith et al., 2015]. Pharmacogenetics has also been shown to contribute in weight gain as side effects associated with antipsychotic medications [Kao and Müller, 2013; Smith et al., 2015]. Also, much of the time a single type of antipsychotic medication is not sufficient to manage symptoms and these medications are often taken in conjunction with other psychoactive medications, such as mood stabilizers and antidepressants [Abbas and Lieberman, 2015]. Genetic information regarding medication metabolism and selectivity could potentially aid health care providers to optimize safety and efficacy of treatment plans for their patients. Furthermore, brain imaging and electroencephalogram patterns should be reviewed, if available, along with analysis of routine laboratory test results to assess drug screens, liver, vision, kidney and cardiac function, metabolic and immune status, complete blood counts, and neurological system findings.

In summary, we illustrated the master list of recognized or proposed clinically relevant, susceptible genes for schizophrenia as genetic biomarkers by plotting on individual high-resolution chromosome ideograms. We generated a table to increase awareness required for diagnosis, genetic testing, and counseling purposes for family members presenting for neuropsychiatric and genetic services. Creating a master list of genes related to schizophrenia is a complicated process; new genes are continually identified, but not all genes are equally important as biomarkers or certain to be causative. The authors encourage the undertaking of additional research to further investigate the causal relationships between specific genes and schizophrenia and understanding the molecular pathways that lead to this debilitating neuropsychiatric disorder.

ACKNOWLEDGMENTS

We would like to acknowledge the support of the Headley Family Scholarship and the National Institutes of Health (NICHD grant number HD02528). We also thank Lorie Gavulic for excellent artistic design and preparation of chromosome ideograms.

Grant sponsor: Headley Family Scholarship; Grant sponsor: National Institutes of Health; Grant number: HD02528.

REFERENCES

  1. Abbas AI, Lieberman JA. 2015. Pharmacological treatments for schizophrenia In: Nathan PE, Gorman JM, editors. A guide to treatments that work. New York, NY: Oxford University Press; pp 175–215. [Google Scholar]
  2. Aberg K, Saetre P, Jareborg N, Jazin E. 2006. Human QKI, a potential regulator of mRNA expression of hum an oligodendrocyte-related genes involved in schizophrenia. Proc Nat Acad Sci 103:7482–7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aberg KA, Liu Y, Bukszár J, McClay JL, Khachane AN, Andreassen OA, Blackwood D, Corvin A, Djurovic S, Gurling H, Ophoff R, Pato CN, Pato MT, Riley B, W ebb T, Kendler K, O’Donovan M, Craddock N, Kirov G, Owen M, Rujescu D, St Clair D, Werge T, Hultman CM, Delisi LE, Sullivan P, van den Oord EJ. 2013. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiat 70:573–581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alkelai A, Lupoli S, Greenbaum L, Kohn Y, Kanyas-Sarner K, Ben-Asher E, Lancet D, Macciardi F, Lerer B. 2012. DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population. Int J Neuro-psychopharmacol 15(4):459–469. [DOI] [PubMed] [Google Scholar]
  5. Allen NC, Bagade S, McQueen B, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L. 2008. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: The SzGene database. Nat Genet 40:827–834. [DOI] [PubMed] [Google Scholar]
  6. American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders, 5th edition Arlington, VA: American Psychiatric Publishing. [Google Scholar]
  7. Andreasen NC, Black DW. 2006. Introductory Textbook of Psychiatry, 4th edition Washington, DC: American Psychiatric Publishing, Inc. [Google Scholar]
  8. Andrew A, Knapp M, McCrone P, Parsonage M, Trachtenberg M. 2012. Effective interventions in schizophrenia: The economic case A report prepared for the Schizophrenia Commmission. London: Rethink Mental Illness. [Google Scholar]
  9. Athanasiu L, Mattingsdal M, Kähler AK, Brown A, Gustafsson O, Agartz I, Giegling I, Muglia P, Cichon S, Rietschel M, Pietiläinen OP, Peltonen L, Bramon E, Collier D, Clair DS, Sigurdsson E, Petursson H, Rujescu D, Melle I, Steen VM, Djurovic S, Andreassen OA. 2010. Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. J Psychiatr Res 44(12):748–753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bahn S 2002. Gene expression in bipolar disorder and schizophrenia: New approaches to old problems. Bipolar Disord 4(Suppl. 1):70–72. [DOI] [PubMed] [Google Scholar]
  11. Banno M, Koide T, Aleksic B, Yamada K, Kikuchi T, Kohmura K, Adachi Y, Kawano N, Kushima I, Ikeda M, Inada T, Yoshikawa T, Iwata N, Ozaki N. 2011. A case control association study and cognitive function analysis of Neuropilin and Tolloid-Like 1 gene and schizophrenia in the Japanese population. PLoS ONE 6:e28929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Begni S, Moraschi S, Bignotti S, Fumagalli F, Rillosi L, Perez J, Gennarelli M. 2003. Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biol Psychiat 53:617–619. [DOI] [PubMed] [Google Scholar]
  13. Brzustowicz LM, Hayter JE, Hodgkinson KA, Chow EWC, Bassett AS. 2002. Fine mapping of the schizophrenia susceptibility locus on chromosome 1q22. Hum Hered 54:199–209. [DOI] [PubMed] [Google Scholar]
  14. Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K. 2014. Increased L1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–313. [DOI] [PubMed] [Google Scholar]
  15. Butler MG, Rafi SK, Manzardo AM. 2015. High-resolution chromosome ideogram representation of currently recognized genes for autism spectrum disorders. Int J Mol Sci 16(3):6464–6495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cannon TD, Hennah W, van Erp TGM, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L. 2005. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiat 62:1205–1213. [DOI] [PubMed] [Google Scholar]
  17. Cardno AG, Gottesman II. 2000. Twin studies of schizophrenia: From bow-and-arrow concordances to Star Wars Mx and functional genomics. Am J Med Genet 97:12–17. [PubMed] [Google Scholar]
  18. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH, Gutman GA, Crocq MA, Ganguli R, Nimgaonkar V, Morris-Rosendahl DJ, Gargus JJ. 1998. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: A candidate for schizophrenia and bipolar disorder? Molec Psychiat 3:32–37. [DOI] [PubMed] [Google Scholar]
  19. Chen J, Lee G, Fanous AH, Zhao Z, Jia P, O’Neill A, Walsh D, Kendler KS, Chen X, International Schizophrenia Consortium. 2011a. Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. Schizophr Res 131:43–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chen X, Lee G, Maher BS, Fanous AH, Chen J, Zhao Z, Guo A, van den Oord E, Sullivan PF, Shi J, Levinson DF, Gejman PV, Sanders A, Duan J, Owen MJ, Craddock NJ, O ‘Donovan MC, Blackman J, Lewis D, Kirov GK, Qin W, Schwab S, Wildenauer D, Chowdari K, Nimgaonkar V, Straub RE, Weinberger DR, O’Neill FA, Walsh D, Bronstein M, Darvasi A, Lencz T, Malhotra AK, Rujescu D, Giegling I, Werge T, Hansen T, Ingason A, Nöethen MM, Rietschel M, Cichon S, Djurovic S, Andreassen OA, Cantor RM, Ophoff R, Corvin A, Morris DW, Gill M, Pato CN, Pato MT, Macedo A, Gurling HM, McQuillin A, Pimm J, Hultman C, Lichtenstein P, Sklar P, Purcell SM, Scolnick E, St Clair D, Blackwood DH, Kendler KS, GROUP Investigators, International Schizophrenia Consortium. 2011b. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Mol Psychiatry 16:1117–1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cheung C, Yu K, Fung G, Leung M, Wong C, Li Q, Sham P, Chua S, McAlonan G. 2010. Autistic disorders and schizophrenia: Related or remote? An anatomical likelihood estimation. PloS One 5(8):e12233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chong HY, Chaiyakunapruk N, Wu DBC, Lee KKC, Chiou CF. 2014. Global economic burden of schizophrenia: A systematic review. Value Health 7(17):A767. [DOI] [PubMed] [Google Scholar]
  23. Choudhury K, McQuillin A, Puri V, Pimm J, Datta S, Thirumalai S, Krasucki R, Lawrence J, Bass NJ, Quested D, Crombie C, Fraser G, Walker N, Nadeem H, Johnson S, Curtis D, St Clair D, Gurling HM. 2007. A genetic association study of chromosome 11q 22–24 in two different samples implicates the FXYD6 gene, encoding phosphohippolin, in susceptibility to schizophrenia. Am J Hum Genet 80:664–672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D. 2002. Genetic and physiological data implicating the new hum an gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Nat Acad Sci 99:13675–13680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Chun S, Westmoreland JJ, Bayazitov IT, Eddins D, Pani AK, Smeyne RJ, Yu J, Blundon JA, Zakharenko SS. 2014. Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science 344:1178–1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dai D, Wang Y, Yuan J, Zhou X, Jiang D, Li J, Zhang Y, Yin H, Duan S. 2014. Meta-analyses of 10 polymorphisms associated with the risk of schizophrenia. Biomed Rep 2:729–736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. de Jong S, van Eijk KR, Zeegers DW, Strengman E, Janson E, Veldink JH, van den Berg LH, Cahn W, Kahn RS, Boks MP. Ophoff RA; PGC Schizophrenia (GWAS) Consortium. 2012. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur J Hum Genet 20(9):1004–1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T, Mowry BJ, Crowe RR, Silverman JM, Levinson DF, Gejman PV. 2004. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet 75:624–638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dumaine J, Maucuer A, Barbet A, Manceau V, Deshommes J, Meary A, Szöke A, Schürhoff F, Llorca PM, Lancon C, Leboyer M, Jamain S. 2011. Genetic and moleculate exploration of UHMK1 in schizophrenic patients. Psychiatr Genet 21:315–318. [DOI] [PubMed] [Google Scholar]
  30. Franzek E, Beckmann H. 1998. Different genetic background of schizophrenia spectrum psychoses: A twin study. Am J Psychiatry 155(1): 76–83. [DOI] [PubMed] [Google Scholar]
  31. Frydecka D, Beszłej JA, Pawlak-Adamska E, Misiak B, Karabon L, Tomkiewicz A, Partyka A, Jonkisz A, Szewczuk-Bogusławska M, Zawadzki M, Kiejna A. 2015. CTLA4 and CD28 gene polymorphisms with respect to affective symptom domain in schizophrenia. Neuro-psychobiology 71:158–167. [DOI] [PubMed] [Google Scholar]
  32. Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng H, Côté M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Néri C, Dubé MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA. S2D Team. 2010. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Nat Acad Sci 107:7863–7868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Georgieva L, Moskvina V, Peirce T, Norton N, Bray NJ, Jones L, Holmans P, Macgregor S, Zammit S, Wilkinson J, Williams H, Nikolov I, Williams N, Ivanov D, Davis KL, Haroutunian V, Buxbaum JD, Craddock N, Kirov G, Owen MJ, O’Donovan MC. 2006. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Nat Acad Sci 103:12469–12474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E. 2000. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study. Arch Gen Psychiat 57:1061–1069. [DOI] [PubMed] [Google Scholar]
  35. Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, Deppen P, Preisig M, Ruiz V, Steullet P, Tosic M, Werge T, Cuénod M, Do KQ. 2007. Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence. Proc Nat Acad Sci 104(42): 16621–16626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Harrison PJ, Weinberger DR. 2005. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol Psychiatry 2005(10):40–68. [DOI] [PubMed] [Google Scholar]
  37. Hashimoto R, Ohi K, Yasuda Y, Fukumoto M, Yamamori H, Kamino K, Morihara T, Iwase M, Kazui H, Takeda M. 2013. The KCNH2 gene is associated with neurocognition and the risk of schizophrenia. World J Biol Psychiatry 14(2):114–120. [DOI] [PubMed] [Google Scholar]
  38. Hommer RE, Swedo SE. 2015. Schizophrenia and autism—Related disorders. Schizophr Bull 41(2):313–314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ikeda M, Hikita T, Taya S, Uraguchi-Asaki J, Toyo-oka K, Wynshaw-Boris A, Ujike H, Inada T, Takao K, Miyakawa T, Ozaki N, Kaibuchi K, Iwata N. 2008. Identification of YWHAE, a gene encoding 14–3-3epsilon, as a possible susceptibility gene for schizophrenia. Hum Molec Genet 17:3212–3222. [DOI] [PubMed] [Google Scholar]
  40. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, Ito Y, Nakamura Y, Kishi T, Okumura T, Fukuo Y, Williams HJ, Hamshere ML, Ivanov D, Inada T, Suzuki M, Hashimoto R, Ujike H, Takeda M, Craddock N, Kaibuchi K, Owen MJ, Ozaki N, O’Donovan MC, Iwata N. 2011. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 69(15):472–478. [DOI] [PubMed] [Google Scholar]
  41. Ingason A, Giegling I, Cichon S, Hansen T, Rasmussen HB, Nielsen J, Jürgens G, Muglia P, Hartmann AM, Strengman E, Vasilescu C, Mühleisen TW, Djurovic S, Melle I, Lerer B, Möller HJ, Francks C, Pietiläinen OP, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Walshe M, Vassos E, Di Forti M, Murray R, Bonetto C, Tosato S, Investigators GROUP, Cantor RM, Rietschel M, Craddock N, Owen MJ, Peltonen L, Andreassen OA, Nöthen MM, St Clair D, Ophoff RA, O ‘Donovan MC, Collier DA, Werge T, Rujescu D. 2010. A large replication study and meta-analysis in European samples provides further support for associaiton of AHI1 markers with schizophrenia. Hum Molec Genet 19:1379–1386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. International Schizophrenia Consortium. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Jackson KJ, Fanous AH, Chen J, Kendler KS, Chen X. 2013. Variants in the 15q25 gene cluster are associated with risk for schizophrenia and bipolar disorder. Psychiatr Genet 23(1):20–28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Jia P, Wang L, Fanous AH, Pato CN, Edwards TL, International Schizophrenia Consortium, Zhao Z. 2012. Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia. PLoS Comput Biol 8(7):e1002587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kao A, Müller D. 2013. Genetics of antipsychotic-induced weight gain: Update and current perspectives. Pharmacogenomics 14(16):2067–2083. [DOI] [PubMed] [Google Scholar]
  46. Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M, Benfenati F, Greengard P. 1998. A third member of the synapsin gene family. Proc Nat Acad Sci 95:4667–4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR, Law AJ. 2010. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci USA 107(35):15619–15624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kavanagh DH, Tansey KE, O’Donovan MC, Owen MJ. 2015. Schizophrenia genetics: Emerging themes for a complex disorder. Mol Psychiatry 20(1):72–76. [DOI] [PubMed] [Google Scholar]
  49. Kendler KS, Diehl SR. 1993. The genetics of schizophrenia: A current, genetic-epidemiologic perspective. Schizophr Bull 19:261–285. [DOI] [PubMed] [Google Scholar]
  50. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O’Donovan MC, Erdogan F, Owen MJ, Ropers HH, Ullmann R. 2008. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 17(3):458–465. [DOI] [PubMed] [Google Scholar]
  51. Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF, Condie A, White A, Hawkins W, McGhee K, van Beck M, MacIntyre DJ, Starr JM, Deary IJ, Visscher PM, Porteous DJ, Cannon RE, St Clair D, Muir WJ, Blackwood DH. 2009. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet 85(6):833–846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kondo K, Ikeda M, Kajio Y, Saito T, Iwayama Y, Aleksic B, Yamada K, Toyota T, Hattori E, Ujike H, Inada T, Kunugi H, Kato T, Yoshikawa T, Ozaki N, Iwata N. 2013. Genetic variants on 3q21 and in the Sp8 transcription factor gene (SP8) as susceptibility loci for psychotic disorders: A genetic association study. PLoS One 8(8):e70964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kushima I, Aleksic B, Ikeda M, Yamanouchi Y, Kinoshita Y, Ito Y, Nakamura Y, Inada T, Iwata N, Ozaki N. 2010. Association study of bromodomain-containing 1 gene with schizophrenia in Japanese population. Am J Med Genet B Neuropsychiatr Genet 153B:786–791. [DOI] [PubMed] [Google Scholar]
  54. Lauriat TL, Dracheva S, Kremerskothen J, Duning K, Haroutunian V, Buxbaum JD, Hyde TM, Kleinman JE, McInnes LA. 2006. Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton. Brain Res 1121:1–11. [DOI] [PubMed] [Google Scholar]
  55. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM. 2009. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet 373(9659):234–239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, Chen HY, Costain G, Walker S, Egger G, Thiruvahindrapuram B, Merico D, Prasad A, Anagnostou E, Fombonne E, Zwaigenbaum L, Roberts W, Szatmari P, Fernandez BA, Georgieva L, Brzustowicz LM, Roetzer K, Kaschnitz W, Vincent JB, Windpassinger C, Marshall CR, Trifiletti RR, Kirmani S, Kirov G, Petek E, Hodge JC, Bassett AS, Scherer SW. 2013. Rare exonic deletions implicate the synaptic organizer gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Hum Molec Genet 22:2055–2066. [DOI] [PubMed] [Google Scholar]
  57. Loe-Mie Y, Lepagnol-Bestel AM, Maussion G, Doron-Faigenboim A, Imbeaud S, Delacroix H, Aggerbeck L, Pupko T, Gorwood P, Simonneau M, Moalic JM. 2010. SMARCA2 and other genome-wide supported schizophrenia-associated genes: Regulation by REST/NRSF, network organization and primate-specific evolution. Hum Molec Genet 19:2841–2857. [DOI] [PubMed] [Google Scholar]
  58. Luo XJ, Huang L, Oord EJ, Aberg KA, Gan L, Zhao Z, Yao YG. 2014. Common variants in the MKL1 gene confer risk of schizophrenia. Schizophr Bull 41(3):715–727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Macintyre G, Alford T, Xiong L, Rouleau GA, Tibbo PG, Cox DW. 2010. Association of NPAS3 exonic variation with schizophrenia. Schizophr Res 120(1–3)):143–149. [DOI] [PubMed] [Google Scholar]
  60. Matsumoto M, Straub RE, Marenco S, Nicodemus KK, Matsumoto S, Fujikawa A, Miyoshi S, Shobo M, Takahashi S, Yarimizu J, Yuri M, Hiramoto M, Morita S, Yokota H, Sasayama T, Terai K, Yoshino M, Miyake A, Callicott JH, Egan MF, Meyer-Lindenberg A, Kempf L, Honea R, Vakkalanka RK, Takasaki J, Kamohara M, Soga T, Hiyama H, Ishii H, Matsuo A, Nishimura S, Matsuoka N, Kobori M, Matsushime H, Katoh M, Furuichi K, Weinberger DR. 2008. The evolutionarily conserved Gprotein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Nat Acad Sci 105:6133–6138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Meyer U, Feldon J, Dammann O. 2011. Schizophrenia and autism: Both shared and disorder-specific pathogenesis via perinatal inflammation?. Pediatr Res 69:26R–33R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Meyer-Lindenberg A, Straub RE, Lipska BK, Verchinski BA, Goldberg T, Callicott JH, Egan MF, Huffaker SS, Mattay VS, Kolachana B, Kleinman JE, Weinberger DR. 2007. Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. J Clin Invest 117:672–682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thom son PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ. 2005. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191. [DOI] [PubMed] [Google Scholar]
  64. Millar JK, James R, Brandon NJ, Thomson PA. 2004. DISC1 and DIS C2: Discovering and dissecting molecular mechanisms underlying psychiatric illness. Ann Med 36(5):367–378. [DOI] [PubMed] [Google Scholar]
  65. Mimmack ML, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull RL, McKenna PJ, Jones PB, Arai H, Starkey M, Emson PC, Bahn S. 2002. Gene expression analysis in schizophrenia: Reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Nat Acad Sci 99:4680–4685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. 2000. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28:53–67. [DOI] [PubMed] [Google Scholar]
  67. Moens LN, Ceulemans S, Alaerts M, Van Den Bossche MJ, Lenaerts AS, De Zutter S, Norrback KF, Adolfsson R, Del-Favero J. 2010. PCM1 and schizophrenia: A replication study in the northern Swedish population. Am J Med Genet B Neuropsychiatr Genet 153B:1240–1243. [DOI] [PubMed] [Google Scholar]
  68. Neale BM, Sklar P. 2015. Genetic analysis of schizophrenia and bipolar disorder reveals polygenicity but also suggests new directions for molecular interrogation. Curr Opin Neurobiol 30:131–138. [DOI] [PubMed] [Google Scholar]
  69. Novak G, Seeman P, Tallerico T. 2000. Schizophrenia: Elevated mRNA for calcium-calmodulin-dependent protein kinase II-beta in frontal cortex. Molec Brain Res 82:95–100. [DOI] [PubMed] [Google Scholar]
  70. Ocklenburg S, Beste C, Güntürkün O. 2013. Handedness: A neurogenetic shift of perspective. Neurosci Biobehav Rev 37(10):2788–2793. [DOI] [PubMed] [Google Scholar]
  71. Ohi K, Hashimoto R, Yasuda Y, Yoshida T, Takahashi H, Iike N, Iwase M, Kamino K, Ishii R, Kazui H, Fukumoto M, Takamura H, Yamamori H, Azechi M, Ikezawa K, Tanimukai H, Tagami S, Morihara T, Okochi M, Yamada K, Numata S, Ikeda M, Tanaka T, Kudo T, Ueno S, Yoshikawa T, Ohmori T, Iwata N, Ozaki N, Takeda M. 2010. The chitinase 3-like 1 gene and schizophrenia: Evidence from a multi-center case-control study and meta-analysis. Schizophr Res 116(2–3):126–132. [DOI] [PubMed] [Google Scholar]
  72. Petryshen TL, Middleton FA, Tahl AR, Rockwell GN, Purcell S, Aldinger KA, Kirby A, Morley CP, McGann L, Gentile KL, Waggoner SG, Medeiros HM, Carvalho C, Macedo A, Albus M, Maier W, Trixler M, Eichhammer P, Schwab SG, Wildenauer DB, Azevedo MH, Pato MT, Pato CN, Daly MJ, Sklar P. 2005. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 10(12):1074–1088. [DOI] [PubMed] [Google Scholar]
  73. Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW. 2011. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nature Med 17:470–478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Potkin SG, Turner JA, Fallon JA, Lakatos A, Keator DB, Guffanti G, Macciardi F. 2009. Gene discovery through imaging genetics: Identification of two novel genes associated with schizophrenia. Mol Psychiatry 14(4):416–428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Rice J, McGuffin P, Goldin LR, Shaskan EG, Gershon ES. 1984. Platelet monoamine oxidase (MAO) activity: Evidence for a single major locus. Am J Hum Genet 36:36–43. [PMC free article] [PubMed] [Google Scholar]
  76. Riley B, Kendler K. 2006. Molecular genetic studies of schizophrenia. Europ J Hum Genet 14(6):669–680. [DOI] [PubMed] [Google Scholar]
  77. Riley B, Williamson M, Collier D, Wilkie H, Makoff A. 2002. A 3-Mb map of a large segmental duplication overlapping the alpha-7-nicotinic acetylcholine receptor gene (CHRNA7) at human 15q13-q14. Genomics 79:197–209. [DOI] [PubMed] [Google Scholar]
  78. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, Kim Y, Lee SH, Magnusson PK, Sanchez N, Stahl EA, Williams S, Wray NR, Xia K, Bettella F, Borglum AD, Bulik-Sullivan BK, Cormican P, Craddock N, de Leeuw C, Durmishi N, Gill M, Golimbet V, Hamshere ML, Hol-mans P, Hougaard DM, Kendler KS, Lin K, Morris DW, Mors O, Mortensen PB, Neale BM, O’Neill FA, Owen MJ, Milovancevic MP, Posthum a D, Powell J, Richards AL, Riley BP, Ruderfer D, Rujescu D, Sigurdsson E, Silagadze T, Smit AB, Stefansson H, Steinberg S, Suvisaari J, Tosato S, Verhage M, Walters JT, Multicenter Genetic Studies of Schizophrenia Consortium, Levinson DF, Gejman PV, Kendler KS, Laurent C, Mowry BJ, O’Donovan MC, Owen MJ, Pulver AE, Riley BP, Schwab SG, Wildenauer DB, Dudbridge F, Holmans P, Shi J, Albus M, Alexander M, Campion D, Cohen D, Dikeos D, Duan J, Eichhammer P, Godard S, Hansen M, Lerer FB, Liang KY, Maier W, Mallet J, Nertney DA, Nestadt G, Norton N, O’Neill FA, Papadimitriou GN, Ribble R, Sanders AR, Silverman JM, Walsh D, Williams NM, Wormley B, Psychosis Endophenotypes International Consortium, Arranz MJ, Bakker S, Bender S, Bramon E, Collier D, Crespo-Facorro B, Hall J, Iyegbe C, Jablensky A, Kahn RS, Kalaydjieva L, Lawrie S, Lewis CM, Lin K, Linszen DH, Mata I, McIntosh A, Murray RM, Ophoff RA, Powell J, Rujescu D, Van Os J, Walshe M, Weisbrod M, Wiersma D, Wellcome Trust Case Control Consortium, Donnelly P, Barroso I, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin AP, Deloukas P, Duncanson A, Jankowski J, Markus HS, Mathew CG, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Spencer CC, Band G, Bellenguez C, Freeman C, Hellenthal G, Giannoulatou E, Pirinen M, Pearson RD, Strange A, Su Z, Vukcevic D, Donnelly P, Langford C, Hunt SE, Edkins S, Gwilliam R, Blackburn H, Bumpstead SJ, Dronov S, Gillman M, Gray E, Hammond N, Jayakumar A, McCann OT, Liddle J, Potter SC, Ravindrarajah R, Ricketts M, Tashakkori-Ghanbaria A, Waller MJ, Weston P, Widaa S, Whittaker P, Barroso I, Deloukas P, Mathew CG, Blackwell JM, Brown MA, Corvin AP, McCarthy MI, Spencer CC, Bramon E, Corvin AP, O’Donovan MC, Stefansson K, Scolnick E, Purcell S, McCarroll SA, Sklar P, Hultman CM, Sullivan PF. 2013. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45(8): 1150–1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Rodriguez-Murillo L, Xu B, Roos JL, Abecasis GR, Gogos JA, Karayiorgou M. 2014. Fine mapping on chromosome 13q 32–34 and brain expression analysis implicates MYO16 in schizophrenia. Neuropscyhopharmacology 39(4):934–943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Roussos P, Haroutunian V. 2014. Schizophrenia: Susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 8:5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Sacchetti E, Bocchio-Chiavetto L, Valsecchi Pl, Scassellati C, Pasqualetti P, Bonvicini C, Corsini P, Rossi G, Cesana BM, Barlati S, Gennarelli M. 2007. G308A tum or necrosis factor alpha functional polymorphism and schizophrenia risk: Meta-analysis plus association study. Brain Behav Immun 21:450–457. [DOI] [PubMed] [Google Scholar]
  82. Sanders AR, Göring HH, Duan J, Drigalenko EI, Moy W, Freda J, He D, Shi J, MGS, Gejman PV. 2013. Transcriptome study of differential expression in schizophrenia. Hum Molec Genet 22(24):5001–5014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Saviouk V, Moreau MP, Tereshchenko IV, Brzustowicz LM. 2007. Association of synapsin 2 with schizophrenia in families of Northern European ancestry. Schizophr Res 96(1–3):100–111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. 2011. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43(10):969–976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Shaffer LG, McGowan-Jordan J, Schmid M. 2012. ISCN 2013: An international system for human cytogenetic nomenclature (2013). Unionville, CT: Karger Medical and Scientific Publishers. [Google Scholar]
  87. Shi J, Badner JA, Gershon ES, Liu C. 2008. Genetic associations with schizophrenia: Meta-analyses of 12 candidate genes. Schizophr Res 104:96–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R, Gejman PV. 2009. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256):753–757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J, Zhang F, Chen J, Zhou G, Ji W, Li B, Xu Y, Liu D, Wang P, Yang P, Liu B, Sun W, Wan C, Qin S, He G, Steinberg S, Cichon S, Werge T, Sigurdsson E, Tosato S, Palotie A, Nöthen MM, Rietschel M, Ophoff RA, Collier DA, Rujescu D, Clair DS, Stefansson H, Stefansson K, Ji J, Wang Q, Li W, Zheng L, Zhang H, Feng G, He L. 2011. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 43(12):1224–1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Sinibaldi L, De Luca A, Bellacchio E, Conti E, Pasini A, Paloscia C, Spalletta G, Caltagirone C, Pizzuti A, Dallapiccola B. 2004. Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat 24(6):534–535. [DOI] [PubMed] [Google Scholar]
  91. Smith T, Sharp S, Manzardo AM, Butler MG. 2015. Pharmacogenetics informed decision making in adolescent psychiatric treatment: A clinical case report. Int J Mol Sci 16(3):4416–4428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller HJ, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Genetic Risk and Outcome in Psychosis (GROUP), Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA. 2009. Common variants conferring risk of schizophrenia. Nature 460:744–747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Sullivan PF. 2005. The genetics of schizophrenia. PLoS Med 2(7):e212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z. 2008. Candidate genes for schizophrenia: A survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet 147B(7):1173–1181. [DOI] [PubMed] [Google Scholar]
  95. Tabarés-Seisdedos R, Dumont N, Baudot A, Valderas JM, Climent J, Valencia A, Crespo-Facorro B, Vieta E, Gómez-Beneyto M, Martínez S, Rubenstein JL. 2011. No paradox, no progress: Inverse cancer comorbidity in people with other complex diseases. Lancet Oncol 12:604–608. [DOI] [PubMed] [Google Scholar]
  96. Takata A, Iwayama Y, Fukuo Y, Ikeda M, Okochi T, Maekawa M, Toyota T, Yamada K, H attori E, Ohnishi T, Toyoshima M, Ujike H, Inada T, Kunugi H, Ozaki N, Nanko S, Nakamura K, Mori N, Kanba S, Iwata N, Kato T, Yoshikawa T. 2013. A population-specific uncommon variant in GRIN3A associated with schizophrenia. Biol Psychiatry 73(6):532–539. [DOI] [PubMed] [Google Scholar]
  97. Thomson PA, Wray NR, Thom son AM, Dunbar DR, Grassie MA, Condie A, Walker MT, Smith DJ, Pulford DJ, Muir W, Blackwood DH, Porteous DJ. 2005. Sex-specific association between bipolar affective disorder in women and GPR50, and X-linked orphan G protein-coupled receptor. Molec Psychiat 10:470–478. [DOI] [PubMed] [Google Scholar]
  98. Tosic M, Ott J, Barral S, Bovet P, Deppen P, Gheorghita F, Matthey ML, Parnas J, Preisig M, Saraga M, Solida A, Timm S, Wang AG, Werge T, Cuénod M, Do KQ. 2006. Schizophrenia and oxidative stress: Glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 79:586–592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Toulouse A, Rochefort D, Roussel J, Joober R, Rouleau GA. 2003. Molecular cloning and characterization of human RAI1, a gene associated with schizophrenia. Genomics 82:162–171. [DOI] [PubMed] [Google Scholar]
  100. Toyota T, Yoshitsugu K, Ebihara M, Yamada K, Ohba H, Fukasawa M, Minabe Y, Nakamura K, Sekine Y, Takei N, Suzuki K, Itokawa M, Meerabux JM, Iwayama-Shigeno Y, Tomaru Y, Shimizu H, Hattori E, Mori N, Yoshikawa T. 2004. Association between schizophrenia with ocular misalignment and polyalanine length variation in PMX2B. Hum Mol Genet 13(5):551–561. [DOI] [PubMed] [Google Scholar]
  101. Uezato A, Kimura-Sato J, Yamamoto N, Iijima Y, Kunugi H, Nishikawa T. 2012. Further evidence for a male-selective genetic association of synapse-associated protein 97 (SAP97) genet with schizophrenia. Behav Brain Funct 8:2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, Makarov V, Yoon S, Bhandari A, Corominas R, Iakoucheva LM, Krastoshevsky O, Krause V, Larach-Walters V, Welsh DK, Craig D, Kelsoe JR, Gershon ES, Leal SM, Dell Aquila M, Morris DW, Gill M, Corvin A, Insel PA, McClellan J, King MC, Karayiorgou M, Levy DL, DeLisi LE, Sebat J. 2011. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471:499–503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. van Schijndel JE, van Loo KMJ, van Zweeden M, Djurovic S, Andreassen OA, Hansen T, Werge T, Kallunki P, Pedersen JT, Martens GJ. 2009. Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia. J Psychiatr Res 43:1195–1199. [DOI] [PubMed] [Google Scholar]
  104. Wang KS, Liu XF, Aragam N. 2010. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr Res 124:192–199. [DOI] [PubMed] [Google Scholar]
  105. Wang S, Detera-Wadleigh SD, Coon H, Sun CE, Goldin LR, Duffy DL, Byerley WF, Gershon ES, Diehl SR. 1996. Evidence of linkage disequilibrium between schizophrenia and the SCA1 CAG repeat on chromosome 6p23. Am J Hum Genet 59:731–736. [PMC free article] [PubMed] [Google Scholar]
  106. Weber H, Klamer D, Freudenberg F, Kittel-Schneider S, Rivero O, Scholz CJ, Volkert J, Kopf J, Heupel J, Herterich S, Adolfsson R, Alttoa A, Post A, Grußendorf H, Kramer A, Gessner A, Schmidt B, Hempel S, Jacob CP, Sanjuán J, Moltö MD, Lesch KP, Freitag CM, Kent L, Reif A. 2014. The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: Further evidence and meta-analysis. Eur Neuropsychopharmacol 24(1):65–85. [DOI] [PubMed] [Google Scholar]
  107. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, M orris DW, Quinn EM, Giegling I, Ikeda M, Wood J, Lencz T, Hultman C, Lichtenstein P, Thiselton D, Maher BS, Molecular Genetics of Schizophrenia Collaboration (MGS) International Schizophrenia Consortium (ISC), SGENE-plus GROUP, Malhotra AK, Riley B, Kendler KS, Gill M, Sullivan P, Sklar P, Purcell S, Nimgaonkar VL, Kirov G, Holmans P, Corvin A, Rujescu D, Craddock N, Owen MJ, O’Donovan MC. 2011. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 16:429–441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Williams J, McGuffin P, Nothen M, Owen MJ. 1997. Meta-analysis of association betwen the 5-HT2a receptor T102C polymorphism and schizophrenia. Lancet 349:1221. [DOI] [PubMed] [Google Scholar]
  109. Williams J, Spurlock G, Holmans P, Mant R, Murphy K, Jones L, Cardno A, Asherson P, Blackwood D, Muir W, Meszaros K, Aschauer H, Mallet J, Laurent C, Pekkarinen P, Seppala J, Stefanis CN, Papadimitriou GN, Macciardi F, Verga M, Pato C, Azevedo H, Crocq MA, Gurling H, Owen MJ. 1998. A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Mol Psychiatry 3:141–149. [DOI] [PubMed] [Google Scholar]
  110. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, Voisey J. 2014. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 4(1):e339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. World Health Organization. 2008. The global burden of disease: 2004 update. Geneva, Switzerland: World Health Organization. [Google Scholar]
  112. Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N. 2013. Potential impact of miR-137 and its targets in schizophrenia. Front Genet 4:58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Xu C, Aragam N, Li X, Villla EC, Wang L, Briones D, Petty L, Posada Y, Arana TB, Cruz G, Mao C, Camarillo C, Su BB, Escamilla MA, Wang K. 2013. BCL9 and C9orf5 are associated with negative symptoms in schizophrenia: Meta-analysis of two genome-wide association studies. PLos One 8(1):e51674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Xu M, He L. 2010. Covergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophr Res 120:131–142. [DOI] [PubMed] [Google Scholar]
  115. Yuan A, Yi Z, Sun J, Du Y, Yu T, Zhang C, Liu Y, Zhou Y, Liu D, Li H, Xu Y, Cheng Z, Li W, Yu S. 2012. Effect of SOX10 gene polymorphism on early onset schizophrenia in Chinese Han population. Neurosci Lett 521:93–97. [DOI] [PubMed] [Google Scholar]
  116. Zhang J, Liao G, Liu C, Sun L, Liu Y, Wang Y, Jiang Z, Wang Z. 2011. The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics. Mol Biol Rep 38(1):349–354. [DOI] [PubMed] [Google Scholar]
  117. Zhang R, Lu S, Meng L, Min Z, Tian J, Valenzuela RK, Guo T, Tian L, Zhao W, Ma J. 2012. Genetic evidence for the association between the early growth response 3 (ERG3) gene and schizophrenia. PLoS ONE 7:e30237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Zintzaras E 2006. C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: A meta-analysis of genetic association studies. Psychiatr Genet 16:105–115. [DOI] [PubMed] [Google Scholar]

RESOURCES