Skip to main content
BMC Microbiology logoLink to BMC Microbiology
. 2019 Aug 5;19:177. doi: 10.1186/s12866-019-1516-5

Xpert MTB/RIF assay for the diagnosis of rifampicin resistance in different regions: a meta-analysis

Kaican Zong 1, Chen Luo 1, Hui Zhou 1, Yangzhi Jiang 1, Shiying Li 2,
PMCID: PMC6683411  PMID: 31382894

Abstract

Background

To estimate the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance in different regions, a meta-analysis was carried out.

Methods

Several databases were searched for relevant studies up to March 3, 2019. A bivariate random-effects model was used to estimate the diagnostic accuracy.

Results

We identified 97 studies involving 26,037 samples for the diagnosis of rifampicin resistance. The pooled sensitivity, specificity and AUC of Xpert MTB/RIF for rifampicin resistance detection were 0.93 (95% CI 0.90–0.95), 0.98 (95% CI 0.96–0.98) and 0.99 (95% CI 0.97–0.99), respectively. For different regions, the pooled sensitivity were 0.94(95% CI 0.89–0.97) and 0.92 (95% CI 0.88–0.94), the pooled specificity were 0.98 (95% CI 0.94–1.00) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.99 (95% CI 0.98–1.00) and 0.99 (95% CI 0.97–0.99) in high and middle/low income countries, respectively. The pooled sensitivity were 0.91 (95% CI 0.87–0.94) and 0.91 (95% CI 0.86–0.94), the pooled specificity were 0.98 (95% CI 0.96–0.99) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.98 (95% CI 0.97–0.99) and 0.99 (95% CI 0.97–0.99) in high TB burden and middle/low prevalence countries, respectively.

Conclusions

The diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection was excellent.

Keywords: Xpert MTB/RIF, Rifampicin resistance, Prevalence, Income, Meta-analysis

Background

Tuberculosis (TB) remains a major global health problem and ranks as the leading cause of death from an infectious disease worldwide. In 2017, TB infected about 10.0 million people and approximately 16% (1.6 million) of infected patients died from the disease, which was a higher global total for new TB cases and deaths than previous one. Of the 1.6 million died cases, 300,000 occurred among people infected with human immunodeficiency virus (HIV) [1].

Drug-resistant TB, including multidrug-resistant TB (MDR-TB, defined as resistance to at least isoniazid and rifampicin, the two most important first-line anti-TB drugs) and extensively drug-resistant TB (XDR-TB, defined as MDR-TB plus resistance to any fluoroquinolone, such as ofloxacin or moxifloxacin, and to at least one of three injectable second-line drugs, amikacin, capreomycin, or kanamycin) has become a serious threat to global health [2]. In 2017, approximately 460,000 people, which means 3.5% of new and 18% of previously treated TB cases, were estimated to have had MDR-TB globally. And 9.0% of them had developed to XDR-TB. Rifampicin resistance (RR) was the most common resistance drug, affected approximately 558,000 people [1].

When TB is detected and effectively treated, the disease is largely curable. However, accurate and rapid detection of TB can be difficult, as challenging sample collection from deep-seated tissues and the paucibacillary characteristics of the disease [3]. Worldwide, approximately 35% of all forms of TB and 75% of patients with MDR-TB remain undiagnosed [4]. Notablely, under 3% of people who diagnosed with TB are tested to have certain pattern of drug resistance [5]. Xpert MTB/RIF was an effective, rapid, new method to diagnose TB and RR-TB, which was recommended by WHO [1].

Traditionally, the best available reference standard for TB diagnosis is solid and/or liquid culture. However, in clinical practice, prolonged turnaround times and limited laboratory infrastructure in resource-limited settings undermine the utility of culture-based diagnosis [6]. Histology is widely used for the diagnosis of TB where the technical pathologists are available However, it is time-consuming, technically demanding, and lacks specificity [7]. In early 2011, the World Health Organization (WHO) endorsed the Xpert® MTB/RIF assay (Cepheid, Sunnyvale, USA) [8], a novel, rapid, automated, cartridge-based nucleic acid amplification test (NAAT), for the initial diagnosis in patients with suspected pulmonary MDR-TB or HIV-associated pulmonary TB [9, 10]. It can simultaneously detect TB through detection of the DNA of Mycobacterium tuberculosis and simultaneously identify a majority of the mutations that confer rifampicin resistance (which is highly predictive of MDR-TB). A high accuracy for pulmonary TB detection (sensitivity 89%, specificity 99%) was obtained [11]. In late 2013, WHO expanded its recommendations to include the diagnosis of TB in children and some forms of extrapulmonary TB (EPTB) [1].

A series of meta-analyses were carried out to determine the diagnostic accuracy of Xpert MTB/RIF in different forms of TB [1214], however, evaluation of its accuracy in rifampicin resistance is rare [11]. More importantly, no study estimated the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance in countries with different TB prevalence and income till now. To replenish this, in this review, we synthesized the available data, taking into account the accuracy of Xpert MTB/RIF in diagnosing rifampicin resistance.

Methods

Literature search strategy

We searched the MEDLINE, Cochrane library, EMBASE, and Web of Knowledge for published works without language restrictions. The key searching words were used were: “Xpert MTB/RIF”, “Xpert”, “Gene Xpert”, plus “rifampicin resistance”. Our last search was accomplished on March 3, 2019.

Study selection and data extraction

The study selection and data extraction procedures were performed by two researchers (Kaican Zong and Hui Zhou) independently. Any differences in the process were solved by discussing with a third author (Shiying Li).

Inclusion criteria and exclusion criteria

Studies included in our meta-analysis should meet the following criteria: (i) clinical trials that used Xpert MTB/RIF for the detection of rifampicin resistance; (ii) samples were body tissues or fluid from suspected TB patients; (iii) the number of cases were more than 10; (iv) original data were sufficient to calculate the true positive (TP), true negative (TN), false positive (FP), and false negative (FN); (v) drug-susceptibility testing (DST) was used as the gold standard. Studies were excluded from our meta-analysis if they were: (i) case report; (ii) abstract of any conference; (iii) non-clinical research; (iv) review.

Data extraction

The following data were extracted from each included study: first author, year of publication, country, study settings, gender, the number of patients, the number and type of samples, diagnostic characteristics of Xpert MTB/RIF such as TP, TN, FP and FN. We sent e-mails to the authors for more details when data of individual studies were insufficient for a meta-analysis. In the case of inability to obtain data from the authors, the studies were excluded.

Statistical analysis

MIDAS modules in the STATA statistical software (version 12.0; STATA Corporation, College Station, TX, USA) was used to perform the meta-analyses. The summary receiver operating characteristic (SROC) model and the bivariate random-effects model were used in our study to evaluate the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection. For each study, we calculated the sensitivity and specificity of Xpert MTB/RIF to diagnose rifampicin resistance along with 95% confidence intervals.

Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was introduced to assess the quality of each included study. The Review Manager software (version 5.3, The Nordic Cochrane Centre, Copenhagen, Denmark) was used to present the result of QUADAS assessment.

We assessed the heterogeneity between included studies by using a bivariate boxplot, which can describe the degree of interdependence including the central location and identification of any outliers with an inner oval representing the median distribution of the data points and an outer oval representing the 95% confidence bound (by visually examining the position of each individual study, within the range of boxplot suggesting more heterogeneity).

Results

Description of included studies

Finally, we included 97 studies in this meta-analysis [15111] (Fig. 1), including 26,037 samples for the diagnosis of rifampicin resistance. All studies were in English except five (three in Chinese [46, 64, 111] and two in Turkish [31, 79]). Twenty-six studies (26.8%) were conducted in high income countries (the World Bank income classification 2018) and 52 studies (53.6%) were in the 22 countries with a high burden of TB [1].

Fig. 1.

Fig. 1

Flow diagram for literature search and selections of studies in this meta-analysis

The median number of samples per study was 268 for rifampicin resistance detection. The samples of 56 included studies were pulmonary, such as sputum and BAL. Another 15 studies were extrapulmonary samples (e.g. body fluid, FNA, stool and blood), 16 studies included samples of both pulmonary and extrapulmonary (Tables 1 and 2).

Table 1.

Characteristics of studies included in the meta-analysis for rifampicin-resistance tuberculosis detection

Study First author [ref.] Year Country Study setting Male (%) HIV (%) Age (year) (Median, IQR) Patient selecting method Total samples n (included n) Specimen type (samples n) Gold standard
1 Al-Ateah SM [15] 2012 Saudi Arabia Laboratory 126 (53.8) 1 (0.4) NR Cross-sectional Unspecified 234 (239) Sputum (56), BAL (116); tissue (16), CSF (14), FNA (5), body fluid (22), abscess (10) DST
2 Antonenka U [16] 2013 German Clinical NR NR NR Retrospective Unspecified 121 (121) Respiratory specimens (121) Solid or liquid media DST
3 Balcells ME [17] 2012 Chile Clinical 127 (79.4) 160 (100) Adults> 18 (37.4, 19–65) Cross-sectional Prospective Consecutive 160 (12) Sputum (160) Solid and liquid media DST
4 Barmankulova A [18] 2015 Kyrgyzstan Laboratory 172 (57.3) NR Median 34, IQR 25–45 Cross-sectional Unspecified 300 (191) Sputum (300) Solid and liquid media DST
5 Barnard M [19] 2012 South Africa Laboratory NR NR NR Unspecified Consecutive 282 (68) Sputum (282) DST
6 Bates M [20] 2013 Zambia Clinical NR 22 (2.4) Children≤15 Prospective Unspecified 930 (930) Sputum, gastric lavage aspirate (930) Liquid culture
7 Biadglegne F [21] 2014 Ethiopia Clinical 99 (42.9) NR 14.7% ≤ 14, 85.3% > 14 Cross-sectional Unspecified 231 (32) Lymph node aspirates (231) DST
8 Blakemore R [22] 2010 America Clinical NR NR NR Unspecified Unspecified 168 (79) Sputum (168) DST
9 Boehme CC [23] 2010 Clinical 929 (53.7) 392 (22.7) Adults≥18 (34, 17–88) Prospective Consecutive 1730 (720) Sputum (1730) Solid media DST
Peru 181 (53.1) 3 (0.9) Adults≥18 (31, 18–79) 341 (209) Sputum (341) Solid media DST
Azerbaijan 251 (71.1) 9 (2.6) Adults≥18 (37, 20–69) 353 (143) Sputum (353) Solid or liquid media DST
South Africa 357 (49.2) 376 (51.8) Adults≥18 (34, 18–74) 726 (183) Sputum (726) Liquid media DST
India 140 (45.2) 4 (12.9) Adults≥18 (30, 17–88) 310 (185) Sputum (310) Liquid media DST
10 Boehme CC [24] 2011 Clinical 4043 (60.8) 1255 (18.9) Adults≥18 (38, 29–50) Unspecified Consecutive 6648 (1060) Sputum (6648) DST
Peru 607 (51.2) 5 (0.4) Adults≥18 (37, 26–53) 1185 (185) Sputum (1185) Liquid media DST
Azerbaijan 748 (99.9) 1 (0.1) Adults≥18 (36, 30–44) 749 (211) Sputum (749) Liquid media DST
South Africa 1275 (50.6) 947 (37.5) Adults≥18 (36, 29–46) 2522 (188) Sputum (2522) Solid media DST
Uganda 202 (54.3) 254 (68.3) Adults≥18 (32, 26–38) 372 (116) Sputum (372) Solid media DST
India 628 (69.6) 40 (4.4) Adults≥18 (45, 32–58) 902 (103) Sputum (902) Solid media DST
Philippines 583 (63.5) 8 (0.9) Adults≥18 (47, 34–58) 918 (257) Sputum (918) DST
11 Bowles EC [25] 2011 Netherlands Clinical NR NR NR Unspecified Unspecified 89 (60) Sputum (86), pleural fluid (1), gastric fluid (1), bronchial washing (1) DST
12 Carriquiry G [26] 2012 Peru Clinical 95 (73) 131 (100) Adults≥18 (35, 29–42) Cross-sectional Unspecified 131 (39) Sputum (131) Solid and liquid media DST
13 Cayci YT [27] 2017 Turkey Laboratory NR NR NR Unspecified Unspecified 34 (34) Respiratory (19) and Non-respirator specimens (15) Liquid media DST
14 Chakravorty S [28] 2017 South, Africa, India Laboratory NR NR NR Prospective Unspecified 139 (139) Sputum (139) Liquid media DST
15 Chiang TY [29] 2018 China Clinical 876 (29.6) NR Median 55, IQR 35.8–70.0 Prospective Unspecified 2957 (697) Sputum (697) Solid and liquid culture
16 Chikaonda T [30] 2017 Malawi Clinical NR 200 (57.0) Adult≥18 Retrospective Random 351 (188) Sputum (60) Solid and liquid media DST
17 Ciftçi IH [31] 2011 Turkey Clinical NR NR NR Unspecified Unspecified 85 (24) Sputum (50), BAL (25), thorasynthesis fluid (5), urine (5) Liquid media DST
18 Deggim V [32] 2013 Switzerland Clinical NR NR NR Prospective Unspecified 79 (10) Respiratory and Non-respirator specimens (79) DST
19 Dharan NJ [33] 2016 Russia, Peru, Hong Kong, Haiti, USA Clinical 358 (65.8) 536 (98.5) Median 54.2, IQR 19–88 Unspecified, Unspecified 544 (185) Sputum (185) DST
20 Dorman SE [34] 2012 South Africa Laboratory 6469 (93.8) 602 (8.7) Median 43, IQR 34–49 Cross-sectional Consecutive 6893 (144) Sputum (6893) Liquid media DST
21 Dorman SE [35] 2018 South Africa, Uganda, Kenya, India, China, Georgia, Belarus, Brazil Clinical 1059 (60.4) 441 (25.2) Median 38, IQR 28–50 Prospective Unspecified 1753 (551) Sputum (551) Liquid media DST
22 Du J [36 2015 China Clinical 70 (55.6) 5 (4.0) Adults> 16 (38.6, 25.4–51.8) Unspecified Unspecified 126 (126) Pleural biopsy (126), pleural fluid specimens (126) Liquid media DST
23 Feliciano CS [37] 2018 Brazil, Mozambique Clinical 22 (75.9) 6 (20.7) NR Cross-sectional Unspecified 29 (29) NR (29) Solid media DST
24 Giang do C [38] 2015 Vietnam Clinical 98 (65.3) 0 (0) Children< 15 (18.5 months, 5–170 months) Prospective Consecutive 150 (29) Sputum (79), Gastric fluid (215), CSF (3), Pleural fluid (4), Cervical lymphadenopathic pus (1) Liquid media DST
25 Gu Y [39] 2015 China Clinical 28 (46.7) NR Median 39.7, IQR 19.5–74.6 Prospective Unspecified 60 (24) Pus specimens (60) Liquid media DST
26 Guenaoui K [40] 2016 France Laboratory 35 (0.7) NR NR Prospective Unspecified 50 (50) Sputum (50) Liquid DST
27 Helb D [41] 2010 Uganda Clinical 38 (59.3) 20 (31.3) Median 34, IQR 18–60 Retrospective Consecutive 64 (64) Sputum (64) DST
28 Hillemann D [42] 2011 German Laboratory NR NR NR Unspecified Consecutive 521 (29) Urine (91), gastric aspirate (30), tissue (245), pleural fluid (113), CSF (19), stool (23) Liquid media DST
29 Huang H [43] 2018 China Laboratory NR NR NR Retrospective Unspecified 2910 (1066) NR Liquid media DST
30 Huh HJ [44] 2014 South Korea Clinical 197 (65.7) 1 (0.3) Median 58, IQR 18–93 Retrospective Unspecified 300 (98) Sputum (264), Bronchial washing or BAL (39) Solid and liquid media DST
31 Hu P [45] 2014 China Laboratory 1037 (76.7) NR 3.2% < 20, 96.8% ≥ 20 Unspecified Consecutive 1352 (332) Sputum (1352) Solid media DST
32 Jin YH [46] 2017 China Clinical 59 (54.1) NR Median 48.6, IQR 24.0–73.1 Unspecified Unspecified 109 (48) Pus (48) Liquid media DST
33 Kawkitinarong K [47] 2017 Thailand Clinical 284 (58.6) 128 (25.9) Median 41, IQR 30.8–54.3 Prospective Unspecified 521 (228) Pulmonary specimens (228) DST
34 Khalil KF [48] 2015 Pakistan Clinical 36 (38.7) 0 (0) > 16, 19.5–57.6 Unspecified Consecutive 93 (93) BAL (93) Solid media DST
35 Kim CH [49] 2014 South Korea Clinical 104 (60.8) 1 (0.6) Median 58.6, IQR 41.02–76.18 Retrospective Unspecified 171 (26) Pulmonary (160), Non-pulmonary (38) specimens Solid media DST
36 Kim CH [50] 2015 South Korea Clinical 217 (56.7) 1 (0.3) Median 56.31, IQR 38.43–74.18 Retrospective Convenience 383 (444) Sputum (176), Bronchial washes (225), BAL (4); Pleural fluid (36), Tissue (1), Pericardial fluid (1), Lymph node (1) Solid media DST
37 Kim MJ [51] 2015 South Korea Laboratory NR NR NR Unspecified Convenience 52 (45) Sputum (36), bronchial washing (10), pleural fluid (3), pleural mass (1), urine (2) Liquid media DST
38 Kim SY [52] 2012 South Korea Clinical NR NR NR Unspecified Consecutive 71 (62) Sputum (71) Solid and liquid DST
39 Kim YW [53] 2015 South Korea Clinical 761 (53.3) 12 (0.8) Median 59, IQR 0–99 Retrospective Consecutive 1429 (1540) LN and tissue/pus (397), body fluid (469), CSF (254), joint fluid (283), urine (106), others (31) Solid media DST
40 Kim YW [54] 2015 South Korea Clinical 196 (61.1) NR Median 56, IQR 38–71 Retrospective Consecutive 321 (321) Sputum (321) DST
41 Kokuto H [55] 2015 Japan Clinical 51 (54.8) 0 (0) Adult≥20 (59.6, 45.0–75.0) Retrospective Convenience 93 (56) fecal specimens (93) DST
42 Kostera J [56] 2018 Bangladesh Clinical NR NR NR Unspecified Unspecified 132 (122) Sputum (122) Liquid media DST
43 Kurbaniyazova G [57] 2017 Kyrgyzstan Laboratory NR NR Adult≥18 Retrospective Unspecified 2734 (364) (414) NR Solid and liquid media DST
44 Kurbatova EV [58] 2013 Russia Clinical NR NR Adults≥18 Unspecified Consecutive 201 (99) Sputum (201) Solid and liquid media DST
45 Kwak N [59] 2013 South Korea Clinical 426 (62.5) 5 (0.7) Median 61, IQR 47.5–73.0 Retrospective Unspecified 681 (127) Sputum (127) Solid media DST
46 Lawn SD [60] 2011 South Africa Clinical 162 (34.6) 468 (100) Adults≥18 (33.6, 27.8–40.7) Prospective Consecutive 468 (55) Sputum (468) Liquid media DST
47 Lee HY [61] 2013 South Korea Clinical 78 (59.1) 1 (0.8) Median 54.0, IQR 18–90 Retrospective Unspecified 132 (132) Bronchoscopy specimens (132) Ogawa media DST
48 Li Q [62] 2016 China Laboratory NR NR NR Unspecified Consecutive 1973 (449) Sputum (449) Liquid media DST
49 Li Y [63] 2017 China Laboratory 251 (60.6) NR Median 48.5, IQR 38.3–58.7 Unspecified Consecutive 420 (59) Extra-pulmonary specimens (59) Solid media DST
50 Liu X [64] 2015 China Clinical NR NR NR Unspecified Unspecified 134 (44) Pleural biopsy and pleural fluid specimens (100) Liquid media DST
51 Lorent N [65] 2015 Cambodia Clinical 160 (53.5) 189 (64.5) Median 43, IQR 34–52 Prospective Consecutive 299 (102) Sputum (102) Solid media DST
52 Luetkemeyer AF [66] 2016 USA South Africa Brazil Laboratory 446 (45.0) 617 (62.2) Median 46, IQR 35–64 Unspecified Unspecified 992 (194) Sputum (2) DST
53 Metcalfe JZ [67] 2016 Zimbabwe Clinical 216 (61.4) 238 (67.6) Median 36.3, IQR 29.0–44.4 Prospective Consecutive 352 (161) Sputum (161) Solid and liquid media DST
54 Mokaddas E [68] 2015 Kuwait Laboratory NR NR NR Unspecified Unspecified 452 (452) Sputum (287), FNA (66), pus (58), pleural fluid (14), tissue (10), other sterile fluids (8), urine (5), CSF (2), stool (2). Liquid media DST
55 Moon HW [69] 2015 South Korea Clinical NR NR NR Unspecified Unspecified 100 (100) Respiratory specimens (100) DST
56 Moure R [70] 2011 Spain Clinical NR NR NR Retrospective Unspecified 122 (85) Sputum (92), BA (12), pulmonary biopsy (1); pleural fluid (4), gastric aspirate (5), urine (2), stool (1),cerebrospinal fluid (3), ascitic fluid (2), lymph node aspirate (1), skin biopsy (1), mammary abscess (1) DST
57 Mwanza W [71] 2018 Zambia Laboratory NR NR NR Unspecified Consecutive 1070 (24) NR (24) Liquid media DST
58 Myneedu VP [72] 2014 India Laboratory NR NR NR Unspecified Unspecified 134 (88) Sputum (134) Liquid media DST
59 N’guessan K [73] 2014 Cote d’Ivoire Clinical 91 (75.8) NR Median 34.2, IQR 24.1–44.3 Unspecified Unspecified 120 (29) Sputum (120) Liquid media DST
60 N’Guessan K [74] 2018 Côte d’Ivoire Clinical 715 (65.3) 130 (12) Median 33, IQR 18–80 Cross-sectional Consecutive 1095 (162) Sputum (162) Liquid media DST
61 Nikolayevskyy V [75] 2018 Ukraine Clinical 2393 (68.8) 1265 (36.4) Median 38.3, IQR 27–51.6 Retrospective Unspecified 3478 (3167) Pulmonary specimens (3167) Solid and liquid media DST
62 Nicol MP [76] 2011 South Africa Clinical 250 (55.3) 108 (23.9) Children≤15 (19.4 months, 11.1–46.2 months) Prospective Consecutive 452 (77) Sputum (452) DST
63 O’Grady J [77] 2012 Zambia Clinical 446 (50.6) 595 (67.5) Adults> 15 (35, 28–43) Prospective Unspecified 881 (96) Sputum (881) Liquid media DST
64 Ou X [78] 2014 China Laboratory 1741 (70.9) NR NR Unspecified Consecutive 2454 (616) Sputum (2454) Solid media DST
65 Ozkutuk N [79] 2014 Turkey Laboratory NR NR NR Unspecified Unspecified 2639 (133) Sputum (721), BAL (757), gastric fluid (94), endotracheal aspirates (30), transtracheal aspirate (9); urine (341), pleural fluid (232), tissue (176), CSF (111), abscesses (94), peritoneal fluid (42), pericardial fluid (18), joint fluid (7), other (7) Liquid media DST
66 Pan X [80] 2018 China Clinical 120 (63.2) NR Median 46.7, IQR 16–84 Prospective Unspecified 190 (62) Sputum,BAL (62) DST
67 Pang Y [81] 2014 China Clinical 128 NR Children< 14 Prospective Consecutive 211 (10) Gastric lavage aspirates (211) Liquid media DST
68 Park KS [82] 2013 South Korea Clinical NR NR NR Prospective Consecutive 320 (19) Respiratory specimens (320) Liquid media DST
69 Pimkina E [83] 2015 Lithuania Laboratory 559 (70.6) NR Age ≥ 15 Retrospective Unspecified 791 (264) Respiratory specimens (264) Solid or liquid media DST
70 Pinyopornpanish K [84] 2015 Thailand Clinical 34 (59.6) 15 (26.3) ≥15 (55.6, 35.5–75.7) Cross-sectional Consecutive 57 (43) Sputum(57) Liquid media DST
71 Rachow A [85] 2011 Tanzania Clinical 141 (48.3) 172 (58.9) Median 39.2 Unspecified Consecutive 292 (61) Sputum (292) Liquid media DST
72 Rahman A [86] 2016 Bangladesh Clinical NR NR NR Unspecified Unspecified 92 (92) Sputum (92) Liquid media DST
73 Raizada N [87] 2014 India Clinical 2339 (50.8) NR Children< 14 Prospective Consecutive 4600 (48) Sputum (4600) DST
74 Reither K [88] 2015 Tanzania Uganda Clinical 219 (45.6) 197 (43.7) Children< 16 (5.6, 2.0–9.8) Prospective Consecutive 451 (25) Sputum (451) Liquid media DST
75 Rice JP [89] 2017 America Laboratory NR NR Median 50, IQR 35–60 Retrospective Unspecified 637 (120) Sputum (120) Liquid media DST
76 Sharma SK [90] 2015 India Laboratory 909 (64.7) NR Median 37.5, IQR 19.4–55.6 Unspecified Consecutive 1406 (422) Respiratory specimens (422) Solid and liquid media DST
77 Sharma SK [91] 2017 India Laboratory 1405 (55.6) NR Median 35.29, IQR 20–50 Unspecified Convenient 2468 (328) Extra-pulmonary specimens (328) Liquid media DST
78 Singh UB [92] 2016 India Clinical 589 (51.4) NR NR Prospective Unspecified 1145 (72) Pulmonary and Extra-pulmonary specimens (132) Liquid media DST
79 Soeroto AY [93] 2019 Indonesia Clinical 193 (56.9) 5 (1.5) Median 38.2, IQR 25.7–50.7 Retrospective Unspecified 339 (158) NR (158) DST
80 Ssengooba W [94] 2014 Uganda Clinical 155 (36.6) 424 (100) Median 32, IQR 32–34 Prospective Unspecified 424 (9) Sputum (424) Liquid media DST
81 Strydom K [95] 2015 South Africa Laboratory NR NR NR Retrospective Consecutive 120 (115) Sputum (120) Liquid media DST
82 Tahseen S [96] 2016 Pakistan Clinical 1078 (54.3) NR Median 33 Cross-sectional Consecutive 1984 (1533) Sputum (1533) Solid media DST
83 Theron G [97] 2011 South Africa Clinical 325 (67.7) 130 (27.1) Adults≥18 (36, 18–83) Unspecified Consecutive 480 (157) Sputum (480) Liquid media DST
84 Tsuyuguchi K [98] 2017 Japan Clinical 146 (61.6) NR Median 65.2, IQR 23–94 Prospective Consecutive 237 (201) Sputum (201) Solid media DST
85 Ullah I [99] 2017 Pakistan Clinical 130 (48.9) 0 (0) Median 34, IQR 3–80 Unspecified Unspecified 266 (88) Extra-pulmonary specimens (88) DST
86 Vadwai V [100] 2011 India Clinical 251 (45.9) 16 (2.9) Median 37, IQR 8 months-94 Unspecified Consecutive 547 (125) Biopsy (284), pus (147), body fluids (93), CSF (23) Solid and liquid media DST
87 van Kampen SC [101] 2015 Kazakhstan Laboratory NR 52(0.9) NR Prospective Consecutive 5611 (1054) Sputum (5611) Solid or liquid media DST
88 van Kampen SC [102] 2015 Indonesia Clinical 872 (60.5), missing 15(1.0) 35 (2.4) 0.5% < 15, 97.7% ≥ 16, 1.8% missing Unspecified Consecutive 1442 (339) Sputum (1442) DST
89 Wang G [103] 2017 China Clinical NR NR NR Prospective Undefined 1461 (538) Pulmonary specimens (1063), extra-pulmonary specimens (398) Solid media DST
90 Wang G [104] 2019 China Clinical 192 (65.75) 0 (0) Median 42, IQR 14–89 Prospective Consecutive 292 (119) Sputum (90), pleural fluid (29) Solid or liquid media DST
91 Williamson DA [105] 2012 New Zealand Clinical NR NR NR Unspecified Unspecified 169 (14) Respiratory specimens (89); extra-pulmonary specimens (9), MGIT liquid culture vials (71) Liquid media DST
92 Yin QQ [106] 2014 China Clinical 141 (55.3) NR Children≤18 (6.1, 0.3–15.3) Unspecified Unspecified 255 (21) BALF (255) Liquid media DST
93 Yuan M [107] 2016 China Clinical NR 0 (0) NR Retrospective Unspecified 328 (90) Extra-pulmonary specimens (90) DST
94 Zar HJ [108] 2012 South Africa Clinical 294 (55.0) 117 (21.9) Children< 15 (19.0 months, 11.2–38.3 months) Unspecified Consecutive 535 (125) Nasopharyngeal specimens, sputum (535) Liquid culture
95 Zar HJ [109] 2014 South Africa Clinical 181 (47) 31 (8) Children< 15 (38.3 months, 21.2–56.5 months) Prospective Consecutive 384 (18) Sputum (309), Nasopharyngeal aspirate specimens (309) DST
96 Zetola NM [110] 2014 Botswana Clinical 221 (59.7) 279 (59.4) Adult≥18 (37, 31–44) Retrospective Consecutive 370 (370) Sputum (370) DST
97 Zhang AM [111] 2016 China Clinical 65 (59.6) 0 (0) Children≤14 Unspecified Unspecified 109 (21) Pulmonary and Extra-pulmonary specimens (21) Liquid media DST

Sample selection: Study units selected prospectively, or retrospectively from existing samples; Consecutive, random or convenience sampling method. ‘Unspecified’ refers to studies where there was no clear indication how the study participants were chosen. Solid media culture(Löwensten-Jensen), liquid media culture (Bactec MGIT 960)

Table 2.

Data of diagnostic accuracy of studies included in the meta-analysis for rifampicin resistance tuberculosis detection

Study First author [ref.] Year Total samples n (included n) True positive False positive False negative True negative Specimen type
Study Al-Ateah SM [15] 2012 234 (59) 2 0 0 57 Respiratory and non-respiratory specimens
1 Antonenka U [16] 2013 121 (50) 2 0 0 48 Respiratory specimens
2 Balcells ME [17] 2012 160 (12) 0 2 0 10 Sputum
3 Barmankulova A [18] 2015 300 (191) 91 8 3 89 Sputum
4 Barnard M [19] 2012 282 (36) 3 0 0 33 Sputum
5 Bates M [20] 2013 930 (41) 2 1 0 38 Sputum, gastric lavage aspirate
6 Biadglegne F [21] 2014 231 (32) 2 1 0 29 Lymph node aspirates
7 Blakemore R [22] 2010 168 (79) 37 0 0 42 Sputum
8 Boehme CC [23] 2010 1730 (720) 200 10 5 505 Sputum
9 Peru 341 (209) 16 3 0 190
Azerbaijan 353 (143) 47 4 2 90
South Africa 726 (183) 18 0 1 164
India 310 (185) 119 3 2 61
Boehme CC [24] 2011 6648 (1060) 236 14 14 796 Sputum
10 Peru 1185 (185) 22 1 1 161
Azerbaijan 749 (211) 47 1 3 160
South Africa 2522 (188) 9 3 1 175
Uganda 372 (116) 1 1 2 112
India 902 (103) 8 2 2 91
Philippines 918 (257) 149 6 5 97
Bowles EC [25] 2011 89 (60) 8 0 0 52 Sputum, pleural fluid, gastric fluid, bronchial washing
11 Carriquiry G [26] 2012 131 (39) 6 3 0 30 Sputum
12 Cayci YT [27] 2017 34 (34) 3 1 0 30 Respiratory and none-respiratory specimens
13 Chakravorty S [28] 2017 139 (139) 38 1 3 97 Sputum
14 Chiang TY [29] 2018 2957 (697) 36 9 0 652 Sputum
15 Chikaonda T [30] 2017 351(200) 2 1 0 185 Sputum
16 Ciftçi IH [31] 2011 85 (24) 0 0 0 24 Sputum, BAL, thorasynthesis fluid, urine
17 Deggim V [32] 2013 79 (10) 0 3 0 7 Respiratory and None-respiratory
18 Dharan NJ [33] 2016 544 (185) 85 9 2 89 Sputum
19 Dorman SE [34] 2012 6893 (144) 5 5 0 134 Sputum
20 Dorman SE [35] 2018 1753 (551) 167 7 8 369 Sputum
21 Du J [36] 2015 126 (43) 9 2 1 31 Pleural biopsy specimen
22 Feliciano CS [37] 2018 29 (29) 12 3 4 10 NR
23 Giang do C [38] 2015 150(29) 1 0 0 28 Respiratory and non-respiratory specimens
24 Gu Y [39] 2015 60 (24) 6 0 0 18 Pus specimens
25 Guenaoui K [40] 2016 50 (50) 21 0 0 29 Sputum
26 Helb D [41] Uganda 2010 64 (64) 9 1 0 54 Sputum
27 Hillemann D [42] 2011 521 (29) 0 4 0 25 Non-respiratory specimens
28 Huang H [43] 2018 2910 (1066) 147 16 5 898 NR
29 Huh HJ [44] 2014 300 (98) 6 1 1 90 Respiratory specimens
30 Hu P [45] 2014 1352 (332) 26 4 2 300 Sputum
31 Jin YH [46] 2017 109 (48) 4 4 1 39 Pus
32 Kawkitinarong K [47] 2017 521 (228) 15 0 1 212 Pulmonary specimens
33 Khalil KF [48] 2015 93 (93) 5 0 1 87 BAL
34 Kim CH [49] 2014 171 (26) 2 0 0 24 Respiratory and non-respiratory specimens
35 Kim CH [50] 2015 383 (36) 4 1 0 31 Respiratory and Non Respiratory specimens
36 Kim MJ [51] 2015 52 (45) 1 0 1 43 Respiratory and non-respiratory specimens
37 Kim SY [52] 2012 71 (62) 21 0 0 41 Sputum
38 Kim YW [53] 2015 1429 (47) 4 0 1 42 Non-respiratory specimens
39 Kim YW [54] 2015 321 (321) 25 4 0 292 Sputum
40 Kokuto H [55] 2015 93 (56) 4 0 2 50 Fecal specimens
41 Kostera J [56] 2018 132 (122) 28 0 4 90 Sputum
42 Kurbaniyazova G [57] 2017 2734 (364, solid media DST) 120 20 12 212 NR
2734 (414, liquid media DST) 108 29 13 264 NR
43 Kurbatova EV [58] 2013 201 (99) 57 1 5 36 Sputum
44 Kwak N [59] 2013 681 (127) 8 6 0 113 Sputum
45 Lawn SD [60] 2011 468 (55) 4 3 0 48 Sputum
46 Lee HY [61] 2013 132 (35) 2 0 0 33 Bronchoscopy specimens
47 Li Q [62] 2016 1973 (449) 47 16 6 380 Sputum
48 Li Y [63] 2017 420 (59) 11 0 1 47 Extra-pulmonary specimens
49 Liu X [64] 2015 134 (44) 10 2 1 31 Pleural biopsy and pleural fluid specimens
50 Lorent N [65] 2015 299 (102) 24 6 3 69 Sputum
51 Luetkemeyer AF [66] 2016 992 (194) 5 1 2 186 Sputum
52 Metcalfe JZ [67] 2016 352 (161) 54 8 9 90 Sputum
53 Mokaddas E [68] 2015 452 (452) 10 2 0 440 Respiratory and non-respiratory specimens
smear(+)(179) 4 0 0 175
smear(−)(273) 6 2 0 265
pulmonary(287) 7 1 0 279
extrapulmonary(165) 3 1 0 161
54 Moon HW [69] 2015 100 (100) 47 0 3 50 Respiratory specimens
55 Muñoz L [70] 2011 122 (85) 6 0 1 78 Respiratory and non-respiratory specimens
56 Mwanza W [71] 2018 1070 (24) 13 3 0 8 NR
57 Myneedu VP [72] 2014 134 (88) 54 1 1 32 Sputum
58 N’guessan K [73] 2014 120 (29) 14 4 0 11 Sputum
59 N’Guessan K [74] 2018 1095 (162) 112 8 0 42 Sputum
60 Nikolayevskyy V [75] 2018 3478 (3167) 1212 77 86 1792 Pulmonary specimens
61 Nicol MP [76] 2011 452 (77) 3 4 0 70 Sputum
62 O’Grady J [77] 2012 881 (96) 13 2 3 78 Sputum
63 Ou X [78] 2014 2454 (616) 54 16 8 538 Sputum
64 Ozkutuk N [79] 2014 2639 (133) 1 1 0 131 Respiratory and non-respiratory specimens
65 Pan X [80] 2018 190 (62) 2 2 0 58 Sputum and BAL
66 Pang Y [81] 2014 211 (10) 1 0 0 9 Gastric lavage aspirates
67 Park KS [82] 2013 320 (19) 2 0 0 17 Respiratory specimens
68 Pimkina E [83] 2015 791 (264) 39 4 0 221 Sputum
69 Pinyopornpanish K [84] 2015 57 (43) 0 0 3 40 Sputum
70 Rachow A [85] 2011 292 (61) 0 0 0 61 Sputum
71 Rahman A [86] 2016 92 (92) 85 6 0 1 Sputum
72 Raizada N [87] 2014 4600 (48) 47 1 0 0 Sputum
73 Reither K [88] 2015 451 (25) 0 0 0 25 Sputum
74 Rice JP [89] 2017 637 (120) 2 2 0 116 Sputum
75 Sharma SK [90] 2015 1406 (422) 104 7 6 305 Respiratory specimens
76 Sharma SK [91] 2017 2468 (328) 38 2 3 285 Extra-pulmonary specimens
77 Singh UB [92] 2016 1145 (72) 14 0 2 56 Pulmonary and extra-pulmonary specimens
78 Soeroto AY [93] 2019 339 (158) 141 17 0 0 NR
79 Ssengooba W [94] 2014 424 (94) 4 0 0 9 Sputum
80 Strydom K [95] 2015 120 (115) 59 1 2 53 Sputum
81 Tahseen S [96] 2016 1984 (1533) 85 17 15 1416 Sputum
82 Theron G [97] 2011 480 (157) 5 1 0 151 Sputum
83 Tsuyuguchi K [98] 2017 237 (201) 22 3 0 176 Sputum
84 Ullah I [99] 2017 266 (88) 24 2 0 62 Extra-pulmonary specimens
85 Vadwai V [100] 2011 547 (125) 39 5 1 80 Non-respiratory specimens
86 van Kampen SC [101] 2015 5611(1054) 522 31 33 468 Sputum
87 van Kampen SC [102] 2015 1442 (339) 158 18 21 142 Sputum
88 Wang G [103] 2017 1461 (538) 145 0 3 390 Pulmonary and extra-pulmonary specimens
89 Wang G 104] 2019 229 (119) 21 0 1 97 Sputum, pleural fluid
90 15 0 1 74 Sputum
29 6 0 0 23 Pleural fluid
90 Williamson DA [105] 2012 169 (14) 7 6 0 1 Respiratory; extra-pulmonary specimens, positive MGIT liquid culture vials
91 Yin QQ [106] 2014 255 (21) 1 0 0 20 BALF
92 Yuan M [107] 2016 328(90) 12 0 3 75 Extra-pulmonary specimens
93 Zar HJ [108] 2012 535 (125) 5 5 1 114 Nasopharyngeal specimens, sputum
94 Zar HJ [109] 2014 384 (18) 0 0 0 18 Sputum Nasopharyngeal aspirate specimens
95 Zetola NM [110] 2014 370 (370) 51 1 4 314 Sputum
97 Zhang AM [111] 2016 109 (21) 6 0 0 15 Pulmonary and extra-pulmonary specimens

IQR Interquartile range, TA Tracheal aspirate, BA Bronchial aspirate, BAL Bronchoalveolar lavage, LN Lymph node, CSF Cerebrospinal fluid, EPTB Extra-pulmonary tuberculosis, CCRS Composite clinical reference standard, FNA Fine needle aspirate; DST: drug-susceptibility testing

Methodological quality of included studies

The overall methodological quality of the included studies was summarized in Fig. 2. Approximately half of the included studies collected data consecutively (n = 41; 42.2%) (Table 1) and no study used a case-control design. All studies were carried out either in tertiary care centers or reference laboratories. In index tests part, 15 studies (15.5%) were considered as unclear risk of bias. In reference standard part, 11 studies (11.3%) were considered as unclear risk of bias because the results of the reference standard were interpreted with unclear blind of the results of the index tests. In flow and timing part, 14 studies (24.7%) were considered as unclear risk of bias because not all patients were included in the analysis.

Fig. 2.

Fig. 2

Risk of bias and applicability concerns as percentages across the included studies for rifampicin resistance detection

The heterogeneity of the studies included in this study was tested by a bivariate boxplot (Fig. 3a) and a Deek’s funnel plot (Fig. 3b). Most of the included studies were in the bivariate boxplot, and the slope of Deek’s funnel was almost horizontal, which all meant a good heterogeneity.

Fig. 3.

Fig. 3

Heterogeneity test of included studies in this meta-analysis: a bivariate boxplot (a) and a Deek’s funnel plot (b)

Detection of rifampicin resistance in different prevalence and income regions

The accuracy of Xpert MTB/RIF for rifampicin resistance detection was estimated in 59 studies. The pooled sensitivity, specificity and AUC of Xpert MTB/RIF for detecting rifampicin resistance were 0.93 (95% CI 0.90–0.95), 0.98 (95% CI 0.96–0.98) and 0.99 (95% CI 0.97–0.99), respectively (Fig. 4).

Fig. 4.

Fig. 4

The SROC plot of Xpert MTB/RIF sensitivity and specificity for rifampicin resistance detection. The points represent the sensitivity and specificity of one study; the summary point represents the summary sensitivity and specificity

Of the 97 studies, 26 studies were of high income countries, 62 of middle and 9 were of low income. For TB prevalence, 52 studies were from the 22 high TB burden countries, and 45 were not. The pooled sensitivity were 0.94(95% CI 0.89–0.97) and 0.92 (95% CI 0.88–0.94), the pooled specificity were 0.98 (95% CI 0.94–1.00) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.99 (95% CI 0.98–1.00) and 0.99 (95% CI 0.97–0.99) in high and middle/low income countries, respectively (Fig. 5a and Fig. 5b). The pooled sensitivity were 0.91 (95% CI 0.87–0.94) and 0.91 (95% CI 0.86–0.94), the pooled specificity were 0.98 (95% CI 0.96–0.99) and 0.98 (95% CI 0.96–0.99), and the AUC were 0.98 (95% CI 0.97–0.99) and 0.99 (95% CI 0.97–0.99) in high TB burden and middle/low prevalence countries, respectively (Fig. 5c and Fig. 5d).

Fig. 5.

Fig. 5

The SROC plot of Xpert MTB/RIF sensitivity and specificity for rifampicin resistance detection. a High income countries, b Middle/low income countries, c High TB burden countries, d Middle/low TB prevalence countries. The points represent the sensitivity and specificity of one study; the summary point represents the summary sensitivity and specificity

Discussion

Several meta-analyses have focused on the diagnostic accuracy of Xpert MTB/RIF for pulmonary [12] or extra-pulmonary TB [13, 14] detection either on adults or children [12]. However, to our knowledge, this is the first meta-analysis for Xpert MTB/RIF diagnostic accuracy for rifampicin resistance detection in different prevalence and income regions. Our systematic review demonstrated that Xpert MTB/RIF is high sensitive diagnostic tool for rifampicin resistance detection. Firstly, the accuracy of Xpert MTB/RIF for rifampicin resistance detection was estimated in our meta-analysis. As shown in Fig. 4, the accuracy of Xpert MTB/RIF for rifampicin resistance detection was impressive. The pooled sensitivity, specificity and AUC were 0.93 (95% CI 0.90–0.95), 0.98 (95% CI 0.96–0.98) and 0.99 (95% CI 0.97–0.99), respectively. As estimated, about 75% of multi-drug resistant TB remains undiagnosed [4]. We strongly hope Xpert MTB/RIF, which provided a quick and accurate result, will contribute to early and accurate diagnosis of rifampicin resistance.

The overall sensitivity of Xpert MTB/RIF for rifampicin resistance detection were almost the same between high TB prevalence countries and middle/low ones (0.91, 95% CI 0.87–0.94 versus 0.91, 95% CI 0.86–0.94). And for different income levels, the sensitivities of high income ones was also similar with the ones of middle/low income (0.94, 95% CI 0.89–0.97 versus 0.92, 95% CI 0.88–0.94). We can see, taking the different levels of TB prevalence and country income into account, no significant differences were found between subgroups, either in sensitivities, specificities and AUCs.

TB remains one of the world’s deadliest communicable diseases. However, it is intensively distributed in several high burden countries. In 2017, more than half of the new TB was developed in the South-East Asia and Western Pacific Regions. To be specific, one quarter were in the African Region. India and China alone accounted for 24 and 13% of the total cases, respectively [4]. Interestingly, the tendency of TB prevalence was consisted with the economic development at some degree. The income levels of the 22 high TB burden countries all were all middle or low, except one (Russian) [4]. Therefore, it is of significant meanings to estimate the diagnostic accuracy of Xpert MTB/RIF in countries with different levels of TB prevalence and income. Some researchers discovered that the Xpert MTB/RIF showed a higher sensitivity of TB detection in lower TB prevalence countries, which could significantly help the physicians to make clinical decisions [112]. However, our result, from another aspect, showed the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection was not differed between countries with different TB prevalence and incomes.

Advantages of this review were the use of a standard protocol, a bivariate random-effects model used for meta-analysis, and independent reviewers. The data set involved comprehensive searching to identify studies as well as repeated correspondence with authors of study to obtain additional data on the studies.

While there were still some limitations in our analysis. We may have missed some studies despite the comprehensive search. Secondly, sample processing was highly variable across and within studies, as there was no recommendation available on how to process non-respiratory samples from the manufacturer or the WHO.

Conclusions

In conclusion, based on our meta-analysis, the diagnostic accuracy of Xpert MTB/RIF for rifampicin resistance detection was excellent. The overall sensitivity of Xpert MTB/RIF for rifampicin resistance detection in different TB prevalence and income countries were not significant different. We believe that the information obtained from this study will aid the decision making of physicians who take care of patients with possible resistant tuberculosis infection.

Acknowledgements

None.

Abbreviations

BA

Bronchial aspirate

BAL

Bronchoalveolar lavage

CCRS

Composite clinical reference standard

CSF

Cerebrospinal fluid

DST

Drug-susceptibility testing

EPTB

Extra-pulmonary tuberculosis

FN

False negative

FNA

Fine needle aspirate

FP

False positive

HIV

Human immunodeficiency virus

IQR

Interquartile range

LN

Lymph node

MDR-TB

multidrug-resistant TB

NAAT

Nucleic acid amplification test

QUADAS

Quality assessment of diagnostic accuracy studies

RR

Rifampicin resistance

SROC

Summary receiver operating characteristic

TA

Tracheal aspirate

TB

Tuberculosis

TN

True negative

TP

True positive

WHO

World Health Organization

XDR-TB

Extensively drug-resistant TB

Authors’ contributions

ZKC and LSY conceived the study. ZKC and JYZ carried out the literature selection, data extraction and statistical analysis. LC accomplished the manuscript draft. ZH and JYZ participated in the analysis. The final manuscript was approved by all the authors.

Funding

This work was supported by the National Science Foundation of China (No. 81801990).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The protocol was established according to the ethical guidelines of the Helsinki Declaration and approved by the Human Ethics Committee of Department of Respiratory Disease, The Seventh People’s hospital of Chongqing. Written informed consent was obtained from individual participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kaican Zong, Email: zongkaican1314@126.com.

Chen Luo, Email: 349648378@qq.com.

Hui Zhou, Email: 286465341@qq.com.

Yangzhi Jiang, Email: 571871561@qq.com.

Shiying Li, Phone: +86-2363693029, Email: lishiying__1985@126.com.

References

  • 1.World Health Organization (2018) Global Tuberculosis Report 2018. Geneva.
  • 2.Zumla A, Abubakar I, Raviglione M, Hoelscher M, Ditiu L, McHugh TD, Squire SB, Cox H, Ford N, McNerney R, Marais B, Grobusch M, Lawn SD, Migliori GB, Mwaba P, O'Grady J, Pletschette M, Ramsay A, Chakaya J, Schito M, Swaminathan S, Memish Z, Maeurer M, Atun R. Drug-resistant tuberculosis—current dilemmas, unanswered questions, challenges, and priority needs. J Infect Dis. 2012;205(Suppl 2):S228–S240. doi: 10.1093/infdis/jir858. [DOI] [PubMed] [Google Scholar]
  • 3.Harries A. How does the diagnosis of tuberculosis in persons infected with HIV differ from diagnosis in persons not infected with HIV? In: Frieden T, editor. Toman’s tuberculosis: case detection, treatment, and monitoring-questions and answers. Geneva: World Health Organization; 2004. pp. 80–83. [Google Scholar]
  • 4.Zumla A, George A, Sharma V, Herbert N. Baroness Masham of Ilton. WHO’s 2013 global report on tuberculosis: successes, threats, and opportunities. Lancet. 2013;382(9907):1765–1767. doi: 10.1016/S0140-6736(13)62078-4. [DOI] [PubMed] [Google Scholar]
  • 5.Chaisson RE, Nuermberger EL. Confronting multidrugresistant tuberculosis. N Engl J Med. 2012;366(23):2223–2224. doi: 10.1056/NEJMe1204478. [DOI] [PubMed] [Google Scholar]
  • 6.World Health Organization . Policy framework for implementing new tuberculosis diagnostics. Geneva: World Health Organization; 2011. [Google Scholar]
  • 7.Chakravorty S, Sen MK, Tyagi JS. Diagnosis of extrapulmonary tuberculosis by smear, culture, and PCR using universal sample processing technology. J Clin Microbiol. 2005;43:4357–4362. doi: 10.1128/JCM.43.9.4357-4362.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.World Health Organization . Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva: World Health Organization; 2011. [PubMed] [Google Scholar]
  • 9.Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, Cuevas LE, McHugh TD, Zijenah L, Kapata N, Abubakar I, McNerney R, Hoelscher M, Memish ZA, Migliori GB, Kim P, Maeurer M, Schito M, Zumla A. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 2013;13:349–361. doi: 10.1016/S1473-3099(13)70008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Automated Real-Time Nucleic Acid Amplification Technology for Rapid and SimultaneousDetection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. Geneva: World Health Organization; 2013. [PubMed]
  • 11.Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;1:CD009593. doi: 10.1002/14651858.CD009593.pub3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Detjen AK, DiNardo AR, Leyden J, Steingart KR, Menzies D, Schiller I, Dendukuri N, Mandalakas AM. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(6):451–461. doi: 10.1016/S2213-2600(15)00095-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Penz E, Boffa J, Roberts DJ, Fisher D, Cooper R, Ronksley PE, James MT. Diagnostic accuracy of the Xpert® MTB/RIF assay for extra-pulmonary tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2015;19(3):278–284. doi: 10.5588/ijtld.14.0262. [DOI] [PubMed] [Google Scholar]
  • 14.Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2014;44(2):435–446. doi: 10.1183/09031936.00007814. [DOI] [PubMed] [Google Scholar]
  • 15.Al-Ateah SM, Al-Dowaidi MM, El-Khizzi NA. Evaluation of direct detection of Mycobacterium tuberculosis complex in respiratory and non-respiratory clinical specimens using the Cepheid Gene Xpert® system. Saudi Med J. 2012;33(10):1100–1105. [PubMed] [Google Scholar]
  • 16.Antonenka U, Hofmann-Thiel S, Turaev L, Esenalieva A, Abdulloeva M, Sahalchyk E, Alnour T, Hoffmann H. Comparison of Xpert MTB/RIF with ProbeTec ET DTB and COBAS TaqMan MTB for direct detection of M. tuberculosis complex in respiratory specimens. BMC Infect Dis. 2013;13:280. doi: 10.1186/1471-2334-13-280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Balcells ME, García P, Chanqueo L, Bahamondes L, Lasso M, Gallardo AM, Cifuentes L. Rapid molecular detection of pulmonary tuberculosis in HIV-infected patients in Santiago, Chile. Int J Tuberc Lung Dis. 2012;16(10):1349–1353. doi: 10.5588/ijtld.12.0156. [DOI] [PubMed] [Google Scholar]
  • 18.Barmankulova A, Higuchi M, Sarker MA, Alim MA, Hamajima N. Tuberculosis and rifampicin resistance among migrants in kyrgyzstan: detection by a new diagnostic test. Nagoya J Med Sci. 2015;77(1–2):41–49. [PMC free article] [PubMed] [Google Scholar]
  • 19.Barnard M, Gey van Pittius NC, van Helden PD, Bosman M, Coetzee G, Warren RM. The diagnostic performance of the GenoType MTBDRplus version 2 line probe assay is equivalent to that of the Xpert MTB/RIF assay. J Clin Microbiol. 2012;50(11):3712–3716. doi: 10.1128/JCM.01958-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bates M, O’Grady J, Maeurer M, Tembo J, Chilukutu L, Chabala C, Kasonde R, Mulota P, Mzyece J, Chomba M, Mukonda L, Mumba M, Kapata N, Rachow A, Clowes P, Hoelscher M, Mwaba P, Zumla A. Assessment of the Xpert MTB/RIF assay for diagnosis of tuberculosis with gastric lavage aspirates in children in sub-Saharan Africa: a prospective descriptive study. Lancet Infect Dis. 2013;13(1):36–42. doi: 10.1016/S1473-3099(12)70245-1. [DOI] [PubMed] [Google Scholar]
  • 21.Biadglegne F, Mulu A, Rodloff AC, Sack U. Diagnostic performance of the Xpert MTB/RIF assay for tuberculous lymphadenitis on fine needle aspirates from Ethiopia. Tuberculosis (Edinb) 2014;94(5):502–505. doi: 10.1016/j.tube.2014.05.002. [DOI] [PubMed] [Google Scholar]
  • 22.Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, Chakravorty S, Jones M, Alland D. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–2501. doi: 10.1128/JCM.00128-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–1015. doi: 10.1056/NEJMoa0907847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, Gler MT, Blakemore R, Worodria W, Gray C, Huang L, Caceres T, Mehdiyev R, Raymond L, Whitelaw A, Sagadevan K, Alexander H, Albert H, Cobelens F, Cox H, Alland D, Perkins MD. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet. 2011;377(9776):1495–1505. doi: 10.1016/S0140-6736(11)60438-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bowles EC, Freyée B, van Ingen J, Mulder B, Boeree MJ, van Soolingen D. Xpert MTB/RIF®, a novel automated polymerase chain reaction-based tool for the diagnosis oftuberculosis. Int J Tuberc Lung Dis. 2011;15(7):988–989. doi: 10.5588/ijtld.10.0574. [DOI] [PubMed] [Google Scholar]
  • 26.Carriquiry G, Otero L, González-Lagos E, Zamudio C, Sánchez E, Nabeta P, Campos M, Echevarría J, Seas C, Gotuzzo E. A diagnostic accuracy study of Xpert®MTB/RIF in HIV-positive patients with high clinical suspicion of pulmonary tuberculosis in Lima, Peru. PLoS One. 2012;7(9):e44626. doi: 10.1371/journal.pone.0044626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cayci YT, Bilgin K, Coban AY, Birinci A, Durupınar B. An evaluation of false-positive rifampicin resistance on the Xpert MTB/RIF. Mem Inst Oswaldo Cruz. 2017;112(11):756–759. doi: 10.1590/0074-02760170051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J, Banada PP, Deshpande S, Shenai S, Gall A, Glass J, Krieswirth B, Schumacher SG, Nabeta P, Tukvadze N, Rodrigues C, Skrahina A, Tagliani E, Cirillo DM, Davidow A, Denkinger CM, Persing D, Kwiatkowski R, Jones M, Alland D. The new xpert MTB/RIF ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio. 20179;8(4). [DOI] [PMC free article] [PubMed]
  • 29.Chiang TY, Fan S, Jou R. Performance of an Xpert-based diagnostic algorithm for the rapid detection of drug-resistant tuberculosis among high-risk populations in a low-incidence setting. PLoS One. 2018;13(7):e0200755. doi: 10.1371/journal.pone.0200755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Chikaonda T, Nguluwe N, Barnett B, Gokhale RH, Krysiak R, Thengolose I, Rosenberg NE, Stanley C, Mpunga J, Hoffman IF, Hosseinipour M, Scott L, Stevens W. Performance of Xpert® MTB/RIF among tuberculosis outpatients in Lilongwe, Malawi. Afr J Lab Med. 2017;6(2):464. doi: 10.4102/ajlm.v6i2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ciftçi IH, Aslan MH, Aşık G. Evaluation of Xpert MTB/RIF results for the detection of Mycobacterium tuberculosis in clinical samples. Mikrobiyol Bul. 2011;45(1):43–47. [PubMed] [Google Scholar]
  • 32.Deggim V, Somoskovi A, Voit A, Böttger EC, Bloemberg GV. Integrating the Xpert MTB/RIF assay into a diagnostic workflow for rapid detection of Mycobacteriumtuberculosis in a low-prevalence area. J Clin Microbiol. 2013;51(7):2396–2399. doi: 10.1128/JCM.00151-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Dharan NJ, Blakemore R, Sloutsky A, Kaur D, Alexander RC, Ghajar M, Musser KA, Escuyer VE, Rowlinson MC, Crowe S, Laniado-Laborin R, Valli E, Nabeta P, Johnson P, Alland D. Performance of the G4 Xpert® MTB/RIF assay for the detection of mycobacterium tuberculosis and rifampin resistance: a retrospective case-control study of analytical and clinical samples from high- and low-tuberculosis prevalence settings. BMC Infect Dis. 2016;16(1):764. doi: 10.1186/s12879-016-2039-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Dorman SE, Chihota VN, Lewis JJ, Shah M, Clark D, Grant AD, Churchyard GJ, Fielding KL. Performance characteristics of the Cepheid Xpert MTB/RIF test in a tuberculosis prevalence survey. PLoS One. 2012;7(8):e43307. doi: 10.1371/journal.pone.0043307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, Hall SL, Chakravorty S, Cirillo DM, Tukvadze N, Bablishvili N, Stevens W, Scott L, Rodrigues C, Kazi MI, Joloba M, Nakiyingi L, Nicol MP, Ghebrekristos Y, Anyango I, Murithi W, Dietze R, Lyrio Peres R, Skrahina A, Auchynka V, Chopra KK, Hanif M, Liu X, Yuan X, Boehme CC, Ellner JJ, Denkinger CM, Study Team Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76–84. doi: 10.1016/S1473-3099(17)30691-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Du J, Huang Z, Luo Q, Xiong G, Xu X, Li W, Liu X, Li J. Rapid diagnosis of pleural tuberculosis by Xpert MTB/RIF assay using pleural biopsy and pleural fluid specimens. J Res Med Sci. 2015;20(1):26–31. [PMC free article] [PubMed] [Google Scholar]
  • 37.Feliciano CS, Namburete EI, Rodrigues Plaça J, Peronni K, Dippenaar A, Warren RM, Silva WA, Jr, Bollela VR. Accuracy of whole genome sequencing versus phenotypic (MGIT) and commercial molecular tests for detection of drug-resistant Mycobacterium tuberculosis isolated from patients in Brazil and Mozambique. Tuberculosis (Edinb) 2018;110:59–67. doi: 10.1016/j.tube.2018.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.do Giang C, Duong TN, Ha DT, Nhan HT, Wolbers M, Nhu NT, Heemskerk D, Quang ND, Phuong DT, Hang PT, Loc TH, Lan NT, Dung NH, Farrar J, Caws M. Prospective evaluation of GeneXpert for the diagnosis of HIV- negative pediatric TB cases. BMC Infect Dis. 2015;15:70. doi: 10.1186/s12879-015-0814-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Gu Y, Wang G, Dong W, Li Y, Ma Y, Shang Y, Qin S, Huang H. Xpert MTB/RIF and GenoType MTBDRplus assays for the rapid diagnosis of bone and jointtuberculosis. Int J Infect Dis. 2015;36:27–30. doi: 10.1016/j.ijid.2015.05.014. [DOI] [PubMed] [Google Scholar]
  • 40.Guenaoui K, Harir N, Ouardi A, Zeggai S, Sellam F, Bekri F, Cherif TS. Use of GeneXpert mycobacterium tuberculosis/rifampicin for rapid detection of rifampicin resistant mycobacterium tuberculosis strains of clinically suspected multi-drug resistance tuberculosis cases. Ann Transl Med. 2016;4(9):168. doi: 10.21037/atm.2016.05.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, Kop J, Owens MR, Rodgers R, Banada P, Safi H, Blakemore R, Lan NT, Jones-López EC, Levi M, Burday M, Ayakaka I, Mugerwa RD, McMillan B, Winn-Deen E, Christel L, Dailey P, Perkins MD, Persing DH, Alland D. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol. 2010;48(1):229–237. doi: 10.1128/JCM.01463-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Hillemann D, Rüsch-Gerdes S, Boehme C, Richter E. Rapid molecular detection of extrapulmonary tuberculosis by the automated GeneXpert MTB/RIF system. J Clin Microbiol. 2011;49(4):1202–1205. doi: 10.1128/JCM.02268-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Huang H, Zhang Y, Li S, Wang J, Chen J, Pan Z, Gan H. Rifampicin resistance and multidrug-resistant tuberculosis detection using Xpert MTB/RIF in Wuhan, China: a retrospective study. Microb Drug Resist. 2018;24(5):675–679. doi: 10.1089/mdr.2017.0114. [DOI] [PubMed] [Google Scholar]
  • 44.Huh HJ, Jeong BH, Jeon K, Koh WJ, Ki CS, Lee NY. Performance evaluation of the Xpert MTB/RIF assay according to its clinical application. BMC Infect Dis. 2014;14:589. doi: 10.1186/s12879-014-0589-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hu P, Bai L, Liu F, Ou X, Zhang Z, Yi S, Chen Z, Gong D, Liu B, Guo J, Tan Y. Evaluation of the Xpert MTB/RIF assay for diagnosis of tuberculosis and rifampin resistance in county-level laboratories in Hunan province, China. Chin Med J (Engl) 2014;127(21):3744–3750. [PubMed] [Google Scholar]
  • 46.Jin YH, Shi SY, Zheng Q, Shen J, Ying XZ, Wang YF. Application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance. Zhongguo Gu Shang. 2017;30(9):787–791. doi: 10.3969/j.issn.1003-0034.2017.09.002. [DOI] [PubMed] [Google Scholar]
  • 47.Kawkitinarong K, Suwanpimolkul G, Kateruttanakul P, Manosuthi W, Ubolyam S, Sophonphan J, Avihingsanon A, Ruxrungtham K. Real-Life Clinical Practice of Using the Xpert MTB/RIF Assay in Thailand. Clin Infect Dis. 2017;64(suppl_2):S171–S178. doi: 10.1093/cid/cix151. [DOI] [PubMed] [Google Scholar]
  • 48.Khalil KF, Butt T. Diagnostic yield of Bronchoalveolar Lavage gene Xpert in smear-negative and sputum-scarce pulmonary tuberculosis. J Coll Physicians Surg Pak. 2015;25(2):115–118. [PubMed] [Google Scholar]
  • 49.Kim CH, Woo H, Hyun IG, Kim C, Choi JH, Jang SH, Park SM, Kim DG, Lee MG, Jung KS, Hyun J, Kim HS. A comparison between the efficiency of the Xpert MTB/RIF assay and nested PCR in identifying Mycobacterium tuberculosis during routine clinical practice. J Thorac Dis. 2014;6(6):625–631. doi: 10.3978/j.issn.2072-1439.2014.04.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kim CH, Hyun IG, Hwang YI, Kim DG, Lee CY, Lee MG, Jung KS, Woo H, Hyun J, Kim HS, Park MJ. Identification of Mycobacterium tuberculosis and rifampin resistance in clinical specimens using theXpert MTB/RIF assay. Ann Clin Lab Sci. 2015;45(1):32–38. [PubMed] [Google Scholar]
  • 51.Kim MJ, Nam YS, Cho SY, Park TS, Lee HJ. Comparison of the Xpert MTB/RIF Assay and Real-time PCR for the Detection of Mycobacteriumtuberculosis. Ann Clin Lab Sci. 2015;45(3):327–332. [PubMed] [Google Scholar]
  • 52.Kim SY, Kim H, Kim SY, Ra EK, Joo SI, Shin S, Seong MW, Yoo CG, Kim EC, Park SS. The Xpert® MTB/RIF assay evaluation in South Korea, a country with an intermediate tuberculosisburden. Int J Tuberc Lung Dis. 2012;16(11):1471–1476. doi: 10.5588/ijtld.11.0602. [DOI] [PubMed] [Google Scholar]
  • 53.Kim YW, Kwak N, Seong MW, Kim EC, Yoo CG, Kim YW, Han SK, Yim JJ. Accuracy of the Xpert® MTB/RIF assay for the diagnosis of extra-pulmonary tuberculosis in South Korea. Int J Tuberc Lung Dis. 2015;19(1):81–86. doi: 10.5588/ijtld.14.0500. [DOI] [PubMed] [Google Scholar]
  • 54.Kim YW, Seong MW, Kim TS, Yoo CG, Kim YW, Han SK, Yim JJ. Evaluation of Xpert(®) MTB/RIF assay: diagnosis and treatment outcomes in rifampicin-resistant tuberculosis. Int J Tuberc Lung Dis. 2015;19(10):1216–1221. doi: 10.5588/ijtld.15.0183. [DOI] [PubMed] [Google Scholar]
  • 55.Kokuto H, Sasaki Y, Yoshimatsu S, Mizuno K, Yi L, Mitarai S. Detection of Mycobacterium tuberculosis (MTB) in Fecal Specimens From Adults Diagnosed With Pulmonary Tuberculosis Using the Xpert MTB/Rifampicin Test. Open Forum Infect Dis. 2015;2(2):ofv074. doi: 10.1093/ofid/ofv074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kostera J, Leckie G, Abravaya K, Wang H. Performance of the Abbott RealTime MTB RIF/INH resistance assay when used to test mycobacterium tuberculosis specimens from Bangladesh. Infect Drug Resist. 2018;11:695–699. doi: 10.2147/IDR.S158953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Kurbaniyazova G, Joncevska M, Kalon S, Kalmambetova G, Mohr T, Toktogonova A, Takieva K, Islam KM, Luelmo F. Results of Xpert® MTB/RIF implementation in Kyrgyzstan. Int J Tuberc Lung Dis. 2017;21(3):333–337. doi: 10.5588/ijtld.16.0191. [DOI] [PubMed] [Google Scholar]
  • 58.Kurbatova EV, Kaminski DA, Erokhin VV, Volchenkov GV, Andreevskaya SN, Chernousova LN, Demikhova OV, Ershova JV, Kaunetis NV, Kuznetsova TA, Larionova EE, Smirnova TG, Somova TR, Vasilieva IA, Vorobieva AV, Zolkina SS, Cegielski JP. Performance of Cepheid ® Xpert MTB/RIF ® and TB-Biochip ® MDR in two regions of Russia with a high prevalence of drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis. 2013;32(6):735–743. doi: 10.1007/s10096-012-1798-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Kwak N, Choi SM, Lee J, Park YS, Lee CH, Lee SM, Yoo CG, Kim YW, Han SK, Yim JJ. Diagnostic accuracy and turnaround time of the Xpert MTB/RIF assay in routine clinical practice. PLoS One. 2013;8(10):e77456. doi: 10.1371/journal.pone.0077456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Lawn SD, Brooks SV, Kranzer K, Nicol MP, Whitelaw A, Vogt M, Bekker LG, Wood R. Screening for HIV-associated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med. 2011;8(7):e1001067. doi: 10.1371/journal.pmed.1001067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Lee HY, Seong MW, Park SS, Hwang SS, Lee J, Park YS, Lee CH, Lee SM, Yoo CG, Kim YW, Han SK, Yim JJ. Diagnostic accuracy of Xpert® MTB/RIF on bronchoscopy specimens in patients with suspected pulmonary tuberculosis. Int J Tuberc Lung Dis. 2013;17(7):917–921. doi: 10.5588/ijtld.12.0885. [DOI] [PubMed] [Google Scholar]
  • 62.Li Q, Bao XD, Liu Y, Ou XC, Pang Y, Zhao YL. Comparison of two molecular assays for detecting smear negative pulmonary tuberculosis. Biomed Environ Sci. 2016;29(4):248–253. doi: 10.3967/bes2016.032. [DOI] [PubMed] [Google Scholar]
  • 63.Li Y, Pang Y, Zhang T, Xian X, Wang X, Yang J, Wang R, Chen M, Chen W. Rapid diagnosis of extrapulmonary tuberculosis with Xpert mycobacterium tuberculosis/rifampicin assay. J Med Microbiol. 2017;66(7):910–914. doi: 10.1099/jmm.0.000522. [DOI] [PubMed] [Google Scholar]
  • 64.Liu X, Huang Z, Du J. Rapid diagnosis of pleural tuberculosis by Xpert MTB/RIF assay. Zhonghua Jie He He Hu Xi Za Zhi. 2015;38(10):741–745. [PubMed] [Google Scholar]
  • 65.Lorent N, Kong C, Kim T, Sam S, Thai S, Colebunders R, Rigouts L, Lynen L. Systematic screening for drug-resistant tuberculosis with Xpert(®) MTB/RIF in a referral hospital in Cambodia. Int J Tuberc Lung Dis. 2015;19(12):1528–1535. doi: 10.5588/ijtld.14.0956. [DOI] [PubMed] [Google Scholar]
  • 66.Luetkemeyer AF, Firnhaber C, Kendall MA, Wu X, Mazurek GH, Benator DA, Arduino R, Fernandez M, Guy E, Johnson P, Metchock B, Sattler F, Telzak E, Wang YF, Weiner M, Swindells S, Sanne IM, Havlir DV, Grinsztejn B, Alland D. AIDS Clinical Trials Group A5295 and Tuberculosis Trials Consortium Study 34 Teams. Evaluation of Xpert MTB/RIF versus AFB smear and culture to Identify pulmonary tuberculosis in patients with suspected tuberculosis from low and higher prevalence settings. Clin Infect Dis. 2016;62(9):1081–1088. doi: 10.1093/cid/ciw035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Metcalfe JZ, Makumbirofa S, Makamure B, Sandy C, Bara W, Mason P, Hopewell PC. Xpert(®) MTB/RIF detection of rifampin resistance and time to treatment initiation in Harare, Zimbabwe. Int J Tuberc Lung Dis. 2016;20(7):882–889. doi: 10.5588/ijtld.15.0696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Mokaddas E, Ahmad S, Eldeen HS, Al-Mutairi N. Discordance between Xpert MTB/RIF assay and Bactec MGIT 960 Culture System for detection of rifampin-resistant Mycobacterium tuberculosis isolates in a country with a low tuberculosis (TB) incidence. J Clin Microbiol. 2015;53(4):1351–1354. doi: 10.1128/JCM.03412-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Moon HW, Hur M, Kim JY, Yun YM. Comparison of three molecular assays for the detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Lab Anal. 2015;29(2):142–145. doi: 10.1002/jcla.21742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Moure R, Muñoz L, Torres M, Santin M, Martín R, Alcaide F. Rapid detection of Mycobacterium tuberculosis complex and rifampin resistance in smear-negative clinical samples by use of an integrated real-time PCR method. J Clin Microbiol. 2011;49(3):1137–1139. doi: 10.1128/JCM.01831-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Mwanza W, Milimo D, Chilufya MM, Kasese N, Lengwe MC, Munkondya S, de Haas P, Ayles H, Muyoyeta M. Diagnosis of rifampicin-resistant tuberculosis: discordant results by diagnostic methods. Afr J Lab Med. 2018;7(2):806. doi: 10.4102/ajlm.v7i2.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Myneedu VP, Behera D, Verma AK, Bhalla M, Singh N, Arora J, Singhal R, Mathur M, Lal P, Sarin R. Xpert(®) MTB/RIF assay for tuberculosis diagnosis: evaluation in an Indian setting. Int J Tuberc Lung Dis. 2014;18(8):958–960. doi: 10.5588/ijtld.13.0328. [DOI] [PubMed] [Google Scholar]
  • 73.N’guessan K, Assi JS, Ouassa T, Ahui-Brou JM, Tehe A, Keita Sow M, Guei A, Kouakou J, Dosso M. Assessment of the genotype MTBDRplus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d'Ivoire. Eur J Microbiol Immunol (Bp) 2014;4(3):166–173. doi: 10.1556/EUJMI-D-14-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.N'Guessan K, Ouassa T, Dean AS, Alagna R, Adagra GD, Ibode V, Cirillo DM, Kouakou J. Multidrug-resistant tuberculosis in Côte d'Ivoire from 1995 to 2016: results of National Surveys. Eur J Microbiol Immunol (Bp) 2018;8(3):91–94. doi: 10.1556/1886.2018.00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Nikolayevskyy V., Kontsevaya I., Nikolaevskaya E., Surkova E., Samchenko S., Esipenko S. Diagnostic performance and impact of routinely implemented Xpert® MTB/RIF assay in a setting of high incidence of drug-resistant TB in Odessa Oblast, Ukraine. Clinical Microbiology and Infection. 2019;25(8):1040.e1-1040.e6. doi: 10.1016/j.cmi.2018.12.013. [DOI] [PubMed] [Google Scholar]
  • 76.Nicol MP, Workman L, Isaacs W, Munro J, Black F, Eley B, Boehme CC, Zemanay W, Zar HJ. Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa: a descriptive study. Lancet Infect Dis. 2011;11(11):819–824. doi: 10.1016/S1473-3099(11)70167-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.O’Grady J, Bates M, Chilukutu L, Mzyece J, Cheelo B, Chilufya M, Mukonda L, Mumba M, Tembo J, Chomba M, Kapata N, Maeurer M, Rachow A, Clowes P, Hoelscher M, Mwaba P, Zumla A. Evaluation of the Xpert MTB/RIF assay at a tertiary care referral hospital in a setting wheretuberculosis and HIV infection are highly endemic. Clin Infect Dis. 2012;55(9):1171–1178. doi: 10.1093/cid/cis631. [DOI] [PubMed] [Google Scholar]
  • 78.Ou X, Xia H, Li Q, Pang Y, Wang S, Zhao B, Song Y, Zhou Y, Zheng Y, Zhang Z, Zhang Z, Li J, Dong H, Chi J, Zhang J, Kam KM, Huan S, Jun Y, Chin DP, Zhao Y. A feasibility study of the Xpert MTB/RIF test at the peripheral level laboratory in China. Int J Infect Dis. 2015;31:41–46. doi: 10.1016/j.ijid.2014.09.011. [DOI] [PubMed] [Google Scholar]
  • 79.Ozkutuk N, Surucüoglu S. Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonarytuberculosis in an intermediate-prevalence setting. Mikrobiyol Bul. 2014;48(2):223–232. doi: 10.5578/mb.7456. [DOI] [PubMed] [Google Scholar]
  • 80.Pan X, Yang S, Deighton MA, Qu Y, Hong L, Su F. A comprehensive evaluation of Xpert MTB/RIF assay with Bronchoalveolar lavage fluid as a single test or combined with conventional assays for diagnosis of pulmonary tuberculosis in China: a two-center prospective study. Front Microbiol. 2018;9:444. doi: 10.3389/fmicb.2018.00444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Pang Y, Wang Y, Zhao S, Liu J, Zhao Y, Li H. Evaluation of the Xpert MTB/RIF assay in gastric lavage aspirates for diagnosis of smear-negative childhood pulmonary tuberculosis. Pediatr Infect Dis J. 2014;33(10):1047–1051. doi: 10.1097/INF.0000000000000403. [DOI] [PubMed] [Google Scholar]
  • 82.Park KS, Kim JY, Lee JW, Hwang YY, Jeon K, Koh WJ, Ki CS, Lee NY. Comparison of the Xpert MTB/RIF and Cobas TaqMan MTB assays for detection of Mycobacteriumtuberculosis in respiratory specimens. J Clin Microbiol. 2013;51(10):3225–3227. doi: 10.1128/JCM.01335-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Pimkina E, Zablockis R, Nikolayevskyy V, Danila E, Davidaviciene E. The Xpert® MTB/RIF assay in routine diagnosis of pulmonary tuberculosis: a multicentre study in Lithuania. Respir Med. 2015;109(11):1484–1489. doi: 10.1016/j.rmed.2015.07.006. [DOI] [PubMed] [Google Scholar]
  • 84.Pinyopornpanish K, Chaiwarith R, Pantip C, Keawvichit R, Wongworapat K, Khamnoi P, Supparatpinyo K, Sirisanthana T. Comparison of Xpert MTB/RIF Assay and the Conventional Sputum Microscopy in Detecting Mycobacterium tuberculosis in Northern Thailand. Tuberc Res Treat. 2015;2015:571782. doi: 10.1155/2015/571782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Rachow A, Zumla A, Heinrich N, Rojas-Ponce G, Mtafya B, Reither K, Ntinginya EN, O'Grady J, Huggett J, Dheda K, Boehme C, Perkins M, Saathoff E, Hoelscher M. Rapid and accurate detection of Mycobacterium tuberculosis in sputum samples by Cepheid XpertMTB/RIF assay--a clinical validation study. PLoS One. 2011;6(6):e20458. doi: 10.1371/journal.pone.0020458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Rahman A, Sahrin M, Afrin S, Earley K, Ahmed S, Rahman SM, Banu S. Comparison of Xpert MTB/RIF assay and GenoType MTBDRplus DNA probes for detection of mutations associated with rifampicin resistance in mycobacterium tuberculosis. PLoS One. 2016;11(4):e0152694. doi: 10.1371/journal.pone.0152694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Raizada N, Sachdeva KS, Nair SA, Kulsange S, Gupta RS, Thakur R, Parmar M, Gray C, Ramachandran R, Vadera B, Ekka S, Dhawan S, Babre A, Ghedia M, Alavadi U, Dewan P, Khetrapal M, Khanna A, Boehme C, Paramsivan CN. Enhancing TB case detection: experience in offering upfront Xpert MTB/RIF testing to pediatric presumptive TB and DR TB cases for early rapid diagnosis of drug sensitive and drug resistant TB. PLoS One. 2014;9(8):e105346. doi: 10.1371/journal.pone.0105346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Reither K, Manyama C, Clowes P, Rachow A, Mapamba D, Steiner A, Ross A, Mfinanga E, Sasamalo M, Nsubuga M, Aloi F, Cirillo D, Jugheli L, Lwilla F. Xpert MTB/RIF assay for diagnosis of pulmonary tuberculosis in children: a prospective, multi-centre evaluation. J Infect. 2015;70(4):392–399. doi: 10.1016/j.jinf.2014.10.003. [DOI] [PubMed] [Google Scholar]
  • 89.Rice JP, Seifert M, Moser KS, Rodwell TC. Performance of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis and rifampin resistance in a low-incidence, high-resource setting. PLoS One. 2017;12(10):e0186139. doi: 10.1371/journal.pone.0186139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Sharma SK, Kohli M, Yadav RN, Chaubey J, Bhasin D, Sreenivas V, Sharma R, Singh BK. Evaluating the diagnostic accuracy of Xpert MTB/RIF assay in pulmonary tuberculosis. PLoS One. 2015;10(10):e0141011. doi: 10.1371/journal.pone.0141011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Sharma SK, Chaubey J, Singh BK, Sharma R, Mittal A, Sharma A. Drug resistance patterns among extra-pulmonary tuberculosis cases in a tertiary care Centre in North India. Int J Tuberc Lung Dis. 2017;21(10):1112–1117. doi: 10.5588/ijtld.16.0939. [DOI] [PubMed] [Google Scholar]
  • 92.Singh UB, Pandey P, Mehta G, Bhatnagar AK, Mohan A, Goyal V, Ahuja V, Ramachandran R, Sachdeva KS, Samantaray JC. Genotypic, phenotypic and clinical validation of GeneXpert in extra-pulmonary and pulmonary tuberculosis in India. PLoS One. 2016;11(2):e0149258. doi: 10.1371/journal.pone.0149258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Soeroto AY, Lestari BW, Santoso P, Chaidir L, Andriyoko B, Alisjahbana B, van Crevel R, Hill PC. Evaluation of Xpert MTB-RIF guided diagnosis and treatment of rifampicin-resistant tuberculosis in Indonesia: a retrospective cohort study. PLoS One. 2019;14(2):e0213017. doi: 10.1371/journal.pone.0213017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Ssengooba W, Nakiyingi L, Armstrong DT, Cobelens FG, Alland D, Manabe YC, Dorman SE, Ellner JJ, Joloba ML. Clinical utility of a novel molecular assay in various combination strategies with existing methods for diagnosis of HIV-related tuberculosis in Uganda. PLoS One. 2014;9(9):e107595. doi: 10.1371/journal.pone.0107595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Strydom K, Ismail F, Matabane MM, Onwuegbuna O, Omar SV, Ismail N. Comparison of Three Commercial Molecular Assays for Detection of Rifampin and Isoniazid Resistance among Mycobacterium tuberculosis Isolates in a High-HIV-Prevalence Setting. J Clin Microbiol. 2015;53(9):3032–3034. doi: 10.1128/JCM.01691-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Tahseen S, Qadeer E, Khanzada FM, Rizvi AH, Dean A, Van Deun A, Zignol M. Use of Xpert(®) MTB/RIF assay in the first national anti-tuberculosis drug resistance survey in Pakistan. Int J Tuberc Lung Dis. 2016;20(4):448–455. doi: 10.5588/ijtld.15.0645. [DOI] [PubMed] [Google Scholar]
  • 97.Theron G, Peter J, van Zyl-Smit R, Mishra H, Streicher E, Murray S, Dawson R, Whitelaw A, Hoelscher M, Sharma S, Pai M, Warren R, Dheda K. Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med. 2011;184(1):132–140. doi: 10.1164/rccm.201101-0056OC. [DOI] [PubMed] [Google Scholar]
  • 98.Tsuyuguchi K, Nagai H, Ogawa K, Matsumoto T, Morimoto K, Takaki A, Mitarai S. Performance evaluation of Xpert MTB/RIF in a moderate tuberculosis incidence compared with TaqMan MTB and TRCRapid M.TB. J Infect Chemother. 2017;23(2):101–106. doi: 10.1016/j.jiac.2016.11.004. [DOI] [PubMed] [Google Scholar]
  • 99.Ullah I, Javaid A, Masud H, Ali M, Basit A, Ahmad W, Younis F, Yasmin R, Khan A, Jabbar A, Husain M, Butt ZA. Rapid detection of mycobacterium tuberculosis and rifampicin resistance in extrapulmonary tuberculosis and sputum smear-negative pulmonary suspects using Xpert MTB/RIF. J Med Microbiol. 2017;66(4):412–418. doi: 10.1099/jmm.0.000449. [DOI] [PubMed] [Google Scholar]
  • 100.Vadwai V, Boehme C, Nabeta P, Shetty A, Alland D, Rodrigues C. Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J Clin Microbiol. 2011;49(7):2540–2545. doi: 10.1128/JCM.02319-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.van Kampen SC, Tursynbayeva A, Koptleuova A, Murzabekova Z, Bigalieva L, Aubakirova M, Pak S, van den Hof S. Effect of Introducing Xpert MTB/RIF to Test and Treat Individuals at Risk of Multidrug-ResistantTuberculosis in Kazakhstan: A Prospective Cohort Study. PLoS One. 2015;10(7):e0132514. doi: 10.1371/journal.pone.0132514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.van Kampen SC, Susanto NH, Simon S, Astiti SD, Chandra R, Burhan E, Farid MN, Chittenden K, Mustikawati DE, Alisjahbana B. Effects of introducing Xpert MTB/RIF on diagnosis and treatment of drug-resistant tuberculosispatients in Indonesia: A pre-post intervention study. PLoS One. 2015;10(6):e0123536. doi: 10.1371/journal.pone.0123536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Wang G, Wang S, Jiang G, Fu Y, Shang Y, Huang H. Incremental cost-effectiveness of the second Xpert MTB/RIF assay to detect mycobacterium tuberculosis. J Thorac Dis. 2018;10(3):1689–1695. doi: 10.21037/jtd.2018.02.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Wang Guirong, Wang Shuqi, Jiang Guanglu, Yang Xinting, Huang Mailing, Huo Fengmin, Ma Yifeng, Dai Guangming, Li Weimin, Chen Xiaoyou, Huang Hairong. Xpert MTB/RIF Ultra improved the diagnosis of paucibacillary tuberculosis: A prospective cohort study. Journal of Infection. 2019;78(4):311–316. doi: 10.1016/j.jinf.2019.02.010. [DOI] [PubMed] [Google Scholar]
  • 105.Williamson DA, Basu I, Bower J, Freeman JT, Henderson G, Roberts SA. An evaluation of the Xpert MTB/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2012;74(2):207–209. doi: 10.1016/j.diagmicrobio.2012.06.013. [DOI] [PubMed] [Google Scholar]
  • 106.Yin QQ, Jiao WW, Han R, Jiao AX, Sun L, Tian JL, Ma YY, Rao XC, Shen C, Li QJ, Shen AD. Rapid diagnosis of childhood pulmonary tuberculosis by Xpert MTB/RIF assay using bronchoalveolar lavage fluid. Biomed Res Int. 2014;2014:310194. doi: 10.1155/2014/310194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Yuan M, Lyu Y, Chen ST, Cai C, Li Y, Zhang ZG, Li YX, Dong LL, Fu YH, Huang HR, Gao JM, Li WM. Evaluation of Xpert MTB/RIF for the diagnosis of Extrapulmonary tuberculosis in China. Biomed Environ Sci. 2016;29(8):599–602. doi: 10.3967/bes2016.080. [DOI] [PubMed] [Google Scholar]
  • 108.Zar HJ, Workman L, Isaacs W, Munro J, Black F, Eley B, Allen V, Boehme CC, Zemanay W, Nicol MP. Rapid molecular diagnosis of pulmonary tuberculosis in children using nasopharyngeal specimens. Clin Infect Dis. 2012;55(8):1088–1095. doi: 10.1093/cid/cis598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Zar HJ, Workman L, Isaacs W, Dheda K, Zemanay W, Nicol MP. Rapid diagnosis of pulmonary tuberculosis in African children in a primary care setting by use ofXpert MTB/RIF on respiratory specimens: a prospective study. Lancet Glob Health. 2013;1(2):e97–104. doi: 10.1016/S2214-109X(13)70036-6. [DOI] [PubMed] [Google Scholar]
  • 110.Zetola NM, Shin SS, Tumedi KA, Moeti K, Ncube R, Nicol M, Collman RG, Klausner JD, Modongo C. Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J Clin Microbiol. 2014;52(7):2422–2429. doi: 10.1128/JCM.02489-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Zhang AM, Li F, Liu XH, Xia L, Lu SH. Application of Gene Xpert Mycobacterium tuberculosis DNA and resistance to rifampicin assay in the rapid detection of tuberculosis in children. Zhonghua Er Ke Za Zhi. 2016;54(5):370–374. doi: 10.3760/cma.j.issn.0578-1310.2016.05.012. [DOI] [PubMed] [Google Scholar]
  • 112.Li S, Liu B, Peng M, Chen M, Yin W, Tang H, Luo Y, Hu P, Ren H. Diagnostic accuracy of Xpert MTB/RIF for tuberculosis detection in different regions with different endemic burden: a systematic review and meta-analysis. PLoS One. 2017;12(7):e0180725. doi: 10.1371/journal.pone.0180725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.


Articles from BMC Microbiology are provided here courtesy of BMC

RESOURCES