The title compound is built up by two dioxolo, two pyridine, one pyridazine and one pyran rings. The two dioxolo rings are in envelope conformations, while the pyran ring is in twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, C—Hdioxolo⋯Odioxolo, O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds link the molecules into a supramolecular structure. A weak C—Hmethoxymethyl⋯π interaction is also observed.
Keywords: crystal structure, pyridazine, dioxolo, Hirshfeld surface, electrochemical measurements
Abstract
In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds link the molecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmethoxymethyl⋯π interaction complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Electrochemical measurements are also reported.
Chemical context
Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of 3,6-di(pyridin-2-yl)pyridazine and its derivatives has been a goal of chemists in recent years. 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2′-deoxyuridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015 ▸). Systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016 ▸). Heterocyclic molecules such as 3,6-bis (2′-pyridyl)-1,2,4,5-tetrazine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987 ▸). This bidentate chelate ligand is popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001 ▸). We report herein the synthesis and the molecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and its corrosion inhibition properties.
Structural commentary
The title molecule contains two dioxolo, two pyridine, one pyridazine and one pyran rings (Fig. 1 ▸). The pyridazine ring is linked to the pyran ring through the methoxymethyl moiety. The two dioxolo rings, B (O2/O3/C2–C4) and C (O4/O5/C5–C7), are in envelope conformations. Atoms O3 and O4 are at the flap positions and are displaced by 0.442 (2) and −0.397 (2) Å, respectively, from the least-squares planes of the four atoms. A puckering analysis of the pyran ring A (O1/C1/C2/C4–C6), gave the parameters Q
T = 0.6508 (25) Å, q
2 = 0.6451 (25) Å, q
3 = −0.0865 (26) Å, φ = 214.6 (2)° and θ = 97.64 (23)°, indicating a twisted-boat conformation. The pyradizine ring D (N1/N2/C14–C17) is oriented at dihedral angles of 9.23 (6) and 12.98 (9)°, respectively, to the pyridine rings E (N3/C18–C22) and F (N4/C23–C27), while the dihedral angle between the two pyridine rings is 13.45 (10)°. The methoxymethyl moiety is nearly co-planar with the pyradizine ring, as indicated by the O6—C13—C14—C15 torsion angle of −172.8 (2)°.
Figure 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are not shown.
Supramolecular features
In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1 ▸ and Fig. 2 ▸) link the molecules, forming chains along [010]. The hydrogen bond involving H7B is bifurcated. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmethoxymethyl⋯π interaction complete the three-dimensional structure.
Table 1. Hydrogen-bond geometry (Å, °).
Cg is the centroid of the N3/C18–C22 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O7—H7A⋯N2i | 0.84 (2) | 2.18 (3) | 3.019 (4) | 172 (6) |
| O7—H7B⋯O1 | 0.86 (2) | 2.30 (3) | 3.112 (4) | 157 (6) |
| O7—H7B⋯O6 | 0.86 (2) | 2.57 (5) | 3.176 (5) | 129 (5) |
| C2—H2⋯O3ii | 0.98 | 2.51 | 3.444 (4) | 160 |
| C12—H12A⋯Cg iv | 0.97 | 3.07 | 3.761 (3) | 130 |
Symmetry codes: (i)
; (ii)
; (iv)
.
Figure 2.
A partial packing diagram showing the O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1 ▸) as dashed lines.
Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out by using CrystalExplorer17.5 (Turner et al., 2017 ▸). In the HS plotted over d norm (Fig. 3 ▸), white indicates contacts with distances equal to the sum of van der Waals radii, while red and blue indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016 ▸). The bright-red spots appearing near O1, O6, N2 and hydrogen atoms H2, H7A, H7B indicate their roles as the respective donors and/or acceptors. The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if these are absent, then there are no π–π interactions. Fig. 4 ▸ clearly suggest that there are no π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 5 ▸ a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N ⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007 ▸) are illustrated in Fig. 5 ▸ b–g, respectively, together with their relative contributions to the Hirshfeld surface. Selected contacts are listed in Table 2 ▸.
Figure 3.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.4555 to 1.4860 a.u.
Figure 4.
Hirshfeld surface of the title compound plotted over shape-index.
Figure 5.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) C⋯N/N⋯C interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Table 2. Selected interatomic distances (Å).
| O1⋯O3 | 3.153 (2) | C2⋯C4ii | 3.538 (4) |
| O1⋯O4 | 3.115 (3) | C2⋯H4ii | 2.96 |
| O1⋯O5 | 2.999 (3) | C3⋯H1 | 2.88 |
| O1⋯O6 | 2.920 (3) | C4⋯H11A | 2.84 |
| O3⋯O1 | 3.153 (2) | C4⋯H2iii | 2.83 |
| O3⋯C1 | 3.002 (3) | C4⋯H1 | 2.76 |
| O7⋯O1 | 3.112 (3) | C5⋯H9A | 2.85 |
| O7⋯O6 | 3.176 (3) | C10⋯H1 | 2.93 |
| O7⋯N2i | 3.020 (3) | H1⋯H10C | 2.24 |
| O2⋯H1 | 2.70 | H2⋯H4ii | 2.44 |
| O2⋯H4ii | 2.90 | H4⋯H11A | 2.47 |
| O3⋯H1 | 2.54 | H5⋯H9A | 2.56 |
| O3⋯H2iii | 2.51 | H7A⋯H19i | 2.20 |
| O5⋯H12B | 2.70 | H7A⋯N1i | 2.84 (3) |
| O5⋯H12A | 2.77 | H7A⋯N2i | 2.19 (4) |
| O6⋯H17 | 2.23 | H7B⋯O1 | 2.30 (2) |
| O7⋯H19i | 2.64 | H7B⋯O6 | 2.56 (4) |
| N4⋯C13 | 2.776 (3) | H8A⋯H9C | 2.55 |
| N1⋯H24 | 2.44 | H8B⋯H9B | 2.50 |
| N2⋯H19 | 2.56 | H8C⋯H11C ii | 2.48 |
| N3⋯H17 | 2.46 | H10A⋯H11C | 2.53 |
| N4⋯H13A | 2.56 | H10B⋯H11B | 2.57 |
| N4⋯H13B | 2.54 | H12A⋯H13B | 2.26 |
| C1⋯C3 | 3.485 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
.
The most important interaction is H⋯H, contributing 55.7% to the overall crystal packing, which is reflected in Fig. 5 ▸ b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at d e = d i ∼1.00 Å. In the presence of a weak C—H⋯π interaction, the wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.6% contribution to the HS) have a symmetrical distribution of points, Fig. 5 ▸ c, with the thin and thick edges at d e + d i = 2.85 and 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (14.5%, Fig. 5 ▸ d) arises from the O—H⋯O and C—H⋯O hydrogen bonds (Table 1 ▸) as well as from the H⋯O/O⋯H contacts (Table 2 ▸) and has a pair of spikes with the tips at d e + d i = 2.18 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5 ▸ e, 9.6%) arises from the O—H⋯N hydrogen bonds (Table 1 ▸) as well as from the H⋯N/N⋯H contacts has a pair of spikes with the tips at d e + d i = 2.04 Å. Finally, the C⋯C contacts (Fig. 5 ▸ g, 2.4%) have a wide spike with the tip at d e = d i = 1.75 Å.
The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions in Fig. 6 ▸ a–d, respectively.
Figure 6.
Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H interactions.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Electrochemical measurements
The effect of the title compound as an inhibitor of the corrosion of mild steel (MS) were studied using electrochemical impedance spectroscopy in the concentration range of 10−6 to 10−3 M at 308 K. The electrochemical experiment consisted of a 3 electrode electrolytic cell consisting of platinum foil as counter-electrode, saturated calomel as reference electrode and MS as working electrode with an exposed area of 1 cm2. The MS specimen was immersed in a test solution for 0.5 h until a steady-state potential was achieved using a PGZ100 potentiostat (Bouayad et al., 2018 ▸). Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 0.1 × 10−3 KHz to 10 mHz and an amplitude of 10 mV with 10 points per decade. The percentage inhibition efficiency is calculated from R t values as (Sikine et al., 2016 ▸) E (%) = [1 − R t(HCl)/Rt(inh)] × 100, where R t(inh) and R t(HCl) are the charge-transfer resistances for MS immersed in HCl, with the title compound and without inhibitor. Nyquist representations of mild steel in 1 M HCl in the absence and presence of the inhibitor system are shown in Fig. 7 ▸.
Figure 7.
Nyquist plots of mild steel in 1M HCl in presence of different concentrations of 3,6-bis(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)methoxy]methyl}pyridazine monohydrate.
The impedance method provides information about the kinetics of the electrode processes and the surface properties of the investigated systems. The technique is based on the measurement of the impedance of the double layer at the MS/solution interface, and represents the Nyquist plots of mild steel (MS) specimens in 1 M HCl without and with various concentrations of the inhibitor. The impedance diagrams obtained have an almost semicircular appearance. This indicates that the corrosion of mild steel in aqueous solution is mainly controlled by a charge-transfer process. The impedance parameters are given in Fig. 8 ▸. It is observed from the plots that the impedance response of mild steel was significantly changed after addition of the inhibitor. R ct is increased to a maximum value of 185 Ω cm2 for the inhibitor, showing a maximum inhibition efficiency of 91% at 10−3 M. The decrease in C dl from the HCl acid value of 200 µF cm−2, may be due to the increase in the thickness of the electrical double layer or to a decrease in the local dielectric constant (Elmsellem et al., 2014 ▸). This is caused by the gradual displacement of water molecules by the adsorption of organic molecules on the mild steel surface (Hjouji et al., 2016 ▸). Apart from the experimental impedance (EIS) results, the following conclusion is drawn: the alternating impedance spectrum reveals that the double-layer capacitances decrease with respect to the blank solution when the title compound is added. This fact confirms the adsorption of inhibitor molecules on the surface of the MS.
Figure 8.
EIS parameters for the corrosion of mild steel in 1M HCl with and without inhibitor 3,6-bis(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)methoxy]methyl}pyridazine monohydrate at 308 K.
Database survey
Silver(I) complexes coordinated by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable et al., 2008 ▸). Three other metal complexes including 3,6-di(pyridin-2-yl)pyridazine have also been reported, viz. aquabis[3,6-bis(pyridin-2-yl)pyridazine-κ2 N 1,N 6]copper(II) bis(trifluoromethanesulfonate) (Showrilu et al., 2017 ▸), tetrakis[μ-3,6-di(pyridin-2-yl)pyridazine]bis(μ-hydroxo)bis(μ-aqua)tetranickel(II) hexakis(nitrate) tetradecahydrate (Marino et al., 2019 ▸) and catena-[[μ2-3,6-di(pyridin-2-yl)pyridazine]bis(μ2-azido)diazaidodicopper monohydrate] (Mastropietro et al., 2013 ▸).
Synthesis and crystallization
6-O-Propargyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranoside (4 mmol) was added to a solution of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (4 mmol) in toluene (20 ml). Stirring was continued at room temperature for 4 h. The solvent was removed under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1:2) as eluent. Colourless crystals were isolated on evaporation of the solvent (yield: 82%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. Water hydrogen atoms were located in a difference-Fourier map and refined with the distance constraint O—H = 0.80 (2) Å. Other H atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with U iso(H) = 1.5U eq(C-methyl) or 1.2U eq(C) for all other H atoms.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C27H30N4O6·H2O |
| M r | 524.56 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 150 |
| a, b, c (Å) | 8.8417 (3), 11.3252 (3), 25.7003 (8) |
| V (Å3) | 2573.47 (14) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.82 |
| Crystal size (mm) | 0.47 × 0.15 × 0.10 |
| Data collection | |
| Diffractometer | Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2 |
| Absorption correction | Multi-scan (CrysAlis PRO (Rigaku OD, 2015 ▸) |
| T min, T max | 0.656, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 6128, 4277, 3853 |
| R int | 0.037 |
| (sin θ/λ)max (Å−1) | 0.618 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.048, 0.121, 1.10 |
| No. of reflections | 4277 |
| No. of parameters | 353 |
| No. of restraints | 2 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.27, −0.36 |
| Absolute structure | Flack x determined using 1226 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | −0.01 (16) |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019009848/lh5910sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009848/lh5910Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019009848/lh5910Isup3.cdx
CCDC reference: 1939591
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C27H30N4O6·H2O | Dx = 1.354 Mg m−3 |
| Mr = 524.56 | Cu Kα radiation, λ = 1.54184 Å |
| Orthorhombic, P212121 | Cell parameters from 2843 reflections |
| a = 8.8417 (3) Å | θ = 3.3–72.3° |
| b = 11.3252 (3) Å | µ = 0.82 mm−1 |
| c = 25.7003 (8) Å | T = 150 K |
| V = 2573.47 (14) Å3 | Plate, colourless |
| Z = 4 | 0.47 × 0.15 × 0.10 mm |
| F(000) = 1112 |
Data collection
| Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2 diffractometer | 4277 independent reflections |
| Radiation source: SuperNova(Cu) micro-focus sealed X-ray Source | 3853 reflections with I > 2σ(I) |
| Detector resolution: 5.1990 pixels mm-1 | Rint = 0.037 |
| ω scans | θmax = 72.4°, θmin = 3.4° |
| Absorption correction: multi-scan (CrysAlis PRO (Rigaku OD, 2015) | h = −9→10 |
| Tmin = 0.656, Tmax = 1.000 | k = −13→5 |
| 6128 measured reflections | l = −31→29 |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0538P)2 + 0.4885P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.121 | (Δ/σ)max < 0.001 |
| S = 1.10 | Δρmax = 0.27 e Å−3 |
| 4277 reflections | Δρmin = −0.36 e Å−3 |
| 353 parameters | Absolute structure: Flack x determined using 1226 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 2 restraints | Absolute structure parameter: −0.01 (16) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.3541 (3) | 0.1622 (2) | 0.41689 (9) | 0.0282 (5) | |
| O2 | 0.3948 (3) | 0.34989 (19) | 0.45130 (10) | 0.0314 (5) | |
| O3 | 0.6462 (3) | 0.30998 (18) | 0.44345 (9) | 0.0275 (5) | |
| O4 | 0.5889 (3) | 0.00085 (19) | 0.47272 (8) | 0.0298 (5) | |
| O5 | 0.5504 (4) | −0.04337 (19) | 0.38768 (10) | 0.0397 (7) | |
| O6 | 0.2874 (3) | 0.20336 (19) | 0.30710 (9) | 0.0341 (6) | |
| N1 | 0.0414 (3) | 0.4001 (2) | 0.16743 (11) | 0.0279 (6) | |
| N2 | 0.0957 (3) | 0.5016 (2) | 0.18697 (10) | 0.0280 (6) | |
| N3 | 0.3589 (4) | 0.6013 (3) | 0.28330 (11) | 0.0324 (6) | |
| N4 | 0.0746 (4) | 0.0864 (2) | 0.17094 (12) | 0.0358 (7) | |
| C1 | 0.4587 (4) | 0.1547 (3) | 0.37413 (12) | 0.0258 (7) | |
| H1 | 0.495093 | 0.234348 | 0.366098 | 0.031* | |
| C2 | 0.4106 (4) | 0.2260 (3) | 0.45945 (13) | 0.0277 (7) | |
| H2 | 0.355033 | 0.203400 | 0.490891 | 0.033* | |
| C3 | 0.5408 (4) | 0.4049 (3) | 0.44788 (14) | 0.0310 (7) | |
| C4 | 0.5790 (4) | 0.2100 (3) | 0.46886 (12) | 0.0246 (6) | |
| H4 | 0.600843 | 0.212023 | 0.506234 | 0.030* | |
| C5 | 0.6463 (4) | 0.0999 (3) | 0.44448 (12) | 0.0254 (6) | |
| H5 | 0.756973 | 0.102135 | 0.446060 | 0.031* | |
| C6 | 0.5926 (4) | 0.0790 (3) | 0.38885 (12) | 0.0272 (7) | |
| H6 | 0.676097 | 0.092996 | 0.364527 | 0.033* | |
| C7 | 0.5754 (4) | −0.0947 (3) | 0.43729 (13) | 0.0310 (7) | |
| C8 | 0.4413 (5) | −0.1669 (4) | 0.4525 (2) | 0.0550 (12) | |
| H8A | 0.453499 | −0.194150 | 0.487614 | 0.082* | |
| H8B | 0.432577 | −0.233440 | 0.429569 | 0.082* | |
| H8C | 0.351559 | −0.119463 | 0.450095 | 0.082* | |
| C9 | 0.7193 (5) | −0.1667 (3) | 0.43584 (15) | 0.0394 (9) | |
| H9A | 0.802843 | −0.116353 | 0.427016 | 0.059* | |
| H9B | 0.709878 | −0.227881 | 0.410208 | 0.059* | |
| H9C | 0.736583 | −0.201467 | 0.469376 | 0.059* | |
| C10 | 0.5503 (5) | 0.4786 (3) | 0.39910 (15) | 0.0427 (9) | |
| H10A | 0.650263 | 0.510885 | 0.395892 | 0.064* | |
| H10B | 0.478045 | 0.541722 | 0.400967 | 0.064* | |
| H10C | 0.528653 | 0.430067 | 0.369395 | 0.064* | |
| C11 | 0.5698 (5) | 0.4759 (3) | 0.49680 (16) | 0.0442 (9) | |
| H11A | 0.569729 | 0.424125 | 0.526380 | 0.066* | |
| H11B | 0.491803 | 0.534147 | 0.500856 | 0.066* | |
| H11C | 0.666221 | 0.514400 | 0.494189 | 0.066* | |
| C12 | 0.3729 (4) | 0.1086 (3) | 0.32779 (13) | 0.0286 (7) | |
| H12A | 0.442659 | 0.078782 | 0.301797 | 0.034* | |
| H12B | 0.306342 | 0.044768 | 0.338237 | 0.034* | |
| C13 | 0.2122 (4) | 0.1736 (3) | 0.26014 (13) | 0.0275 (7) | |
| H13A | 0.122273 | 0.127514 | 0.267550 | 0.033* | |
| H13B | 0.278292 | 0.127130 | 0.238042 | 0.033* | |
| C14 | 0.1697 (4) | 0.2873 (3) | 0.23325 (12) | 0.0253 (6) | |
| C15 | 0.0791 (4) | 0.2958 (3) | 0.18820 (12) | 0.0247 (6) | |
| C16 | 0.1872 (4) | 0.4980 (3) | 0.22846 (12) | 0.0247 (6) | |
| C17 | 0.2238 (4) | 0.3919 (3) | 0.25319 (12) | 0.0263 (6) | |
| H17 | 0.284224 | 0.391984 | 0.282822 | 0.032* | |
| C18 | 0.2537 (4) | 0.6114 (3) | 0.24658 (12) | 0.0265 (7) | |
| C19 | 0.2107 (4) | 0.7197 (3) | 0.22546 (14) | 0.0315 (7) | |
| H19 | 0.135761 | 0.723846 | 0.200145 | 0.038* | |
| C20 | 0.2823 (5) | 0.8210 (3) | 0.24304 (15) | 0.0380 (8) | |
| H20 | 0.256630 | 0.894499 | 0.229490 | 0.046* | |
| C21 | 0.3920 (4) | 0.8114 (3) | 0.28088 (15) | 0.0376 (9) | |
| H21 | 0.441630 | 0.877961 | 0.293426 | 0.045* | |
| C22 | 0.4265 (5) | 0.7001 (3) | 0.29975 (14) | 0.0349 (8) | |
| H22 | 0.500690 | 0.693707 | 0.325247 | 0.042* | |
| C23 | 0.0175 (4) | 0.1927 (3) | 0.15887 (12) | 0.0253 (7) | |
| C24 | −0.0897 (4) | 0.2085 (3) | 0.12003 (13) | 0.0325 (7) | |
| H24 | −0.126828 | 0.283313 | 0.112401 | 0.039* | |
| C25 | −0.1402 (5) | 0.1107 (3) | 0.09294 (14) | 0.0378 (8) | |
| H25 | −0.211674 | 0.119110 | 0.066653 | 0.045* | |
| C26 | −0.0836 (5) | 0.0004 (3) | 0.10520 (14) | 0.0375 (8) | |
| H26 | −0.116014 | −0.066836 | 0.087656 | 0.045* | |
| C27 | 0.0224 (5) | −0.0065 (3) | 0.14423 (15) | 0.0414 (9) | |
| H27 | 0.060342 | −0.080694 | 0.152640 | 0.050* | |
| O7 | 0.0146 (4) | 0.1893 (3) | 0.38725 (14) | 0.0542 (8) | |
| H7A | −0.011 (7) | 0.141 (5) | 0.3642 (19) | 0.081* | |
| H7B | 0.111 (3) | 0.189 (6) | 0.386 (2) | 0.081* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0250 (11) | 0.0272 (10) | 0.0325 (11) | −0.0023 (10) | −0.0016 (10) | −0.0023 (9) |
| O2 | 0.0294 (12) | 0.0210 (10) | 0.0438 (13) | 0.0057 (9) | −0.0026 (11) | −0.0024 (9) |
| O3 | 0.0280 (11) | 0.0181 (10) | 0.0364 (12) | 0.0007 (9) | 0.0010 (10) | 0.0006 (9) |
| O4 | 0.0419 (14) | 0.0190 (9) | 0.0286 (11) | −0.0011 (10) | −0.0005 (11) | 0.0020 (8) |
| O5 | 0.0627 (18) | 0.0179 (10) | 0.0385 (13) | 0.0041 (11) | −0.0184 (14) | −0.0038 (9) |
| O6 | 0.0499 (15) | 0.0190 (9) | 0.0333 (12) | 0.0033 (11) | −0.0182 (12) | −0.0023 (9) |
| N1 | 0.0324 (15) | 0.0203 (12) | 0.0310 (13) | −0.0004 (11) | −0.0037 (13) | −0.0002 (10) |
| N2 | 0.0339 (16) | 0.0192 (11) | 0.0310 (13) | 0.0005 (11) | 0.0006 (13) | −0.0010 (10) |
| N3 | 0.0367 (16) | 0.0252 (13) | 0.0352 (14) | −0.0026 (12) | −0.0011 (13) | −0.0045 (11) |
| N4 | 0.0485 (18) | 0.0212 (12) | 0.0377 (15) | 0.0021 (13) | −0.0154 (15) | −0.0018 (11) |
| C1 | 0.0331 (17) | 0.0180 (12) | 0.0265 (15) | −0.0010 (13) | −0.0025 (14) | 0.0020 (11) |
| C2 | 0.0333 (17) | 0.0201 (13) | 0.0298 (15) | 0.0016 (13) | 0.0036 (15) | −0.0006 (12) |
| C3 | 0.0324 (18) | 0.0192 (13) | 0.0415 (18) | 0.0039 (14) | −0.0005 (16) | −0.0011 (13) |
| C4 | 0.0299 (16) | 0.0179 (12) | 0.0260 (14) | −0.0003 (13) | −0.0018 (14) | −0.0005 (11) |
| C5 | 0.0295 (16) | 0.0188 (13) | 0.0280 (15) | 0.0026 (13) | 0.0008 (14) | 0.0019 (12) |
| C6 | 0.0333 (18) | 0.0209 (13) | 0.0274 (15) | 0.0010 (13) | −0.0001 (14) | −0.0005 (12) |
| C7 | 0.0382 (19) | 0.0194 (13) | 0.0354 (17) | 0.0006 (14) | −0.0015 (16) | −0.0004 (12) |
| C8 | 0.047 (2) | 0.0365 (19) | 0.081 (3) | −0.012 (2) | 0.017 (2) | −0.020 (2) |
| C9 | 0.044 (2) | 0.0321 (17) | 0.042 (2) | 0.0111 (17) | −0.0034 (18) | 0.0023 (15) |
| C10 | 0.051 (2) | 0.0257 (16) | 0.051 (2) | 0.0042 (16) | 0.002 (2) | 0.0079 (15) |
| C11 | 0.051 (2) | 0.0317 (17) | 0.050 (2) | 0.0028 (18) | −0.007 (2) | −0.0124 (16) |
| C12 | 0.0360 (18) | 0.0191 (12) | 0.0307 (15) | 0.0030 (13) | −0.0085 (15) | 0.0024 (12) |
| C13 | 0.0331 (17) | 0.0174 (13) | 0.0319 (16) | −0.0019 (13) | −0.0062 (14) | 0.0005 (12) |
| C14 | 0.0270 (16) | 0.0224 (14) | 0.0265 (15) | 0.0009 (13) | −0.0004 (13) | 0.0014 (12) |
| C15 | 0.0269 (16) | 0.0194 (13) | 0.0277 (14) | 0.0000 (13) | −0.0005 (14) | −0.0013 (12) |
| C16 | 0.0265 (16) | 0.0212 (13) | 0.0265 (14) | −0.0003 (12) | 0.0026 (13) | −0.0020 (11) |
| C17 | 0.0297 (16) | 0.0220 (13) | 0.0272 (15) | 0.0006 (13) | −0.0020 (14) | −0.0011 (12) |
| C18 | 0.0285 (16) | 0.0217 (14) | 0.0293 (15) | −0.0001 (12) | 0.0037 (14) | −0.0029 (12) |
| C19 | 0.0348 (18) | 0.0208 (14) | 0.0389 (17) | −0.0005 (15) | −0.0010 (16) | −0.0021 (13) |
| C20 | 0.043 (2) | 0.0209 (15) | 0.050 (2) | −0.0014 (15) | 0.0039 (18) | −0.0021 (14) |
| C21 | 0.039 (2) | 0.0247 (15) | 0.049 (2) | −0.0039 (14) | 0.0037 (18) | −0.0108 (14) |
| C22 | 0.0395 (19) | 0.0276 (15) | 0.0375 (17) | −0.0033 (16) | −0.0026 (16) | −0.0073 (14) |
| C23 | 0.0262 (16) | 0.0238 (14) | 0.0259 (14) | −0.0037 (12) | 0.0008 (13) | 0.0003 (12) |
| C24 | 0.0327 (18) | 0.0295 (15) | 0.0353 (16) | 0.0029 (15) | −0.0075 (15) | −0.0002 (14) |
| C25 | 0.0383 (19) | 0.0395 (18) | 0.0358 (18) | −0.0010 (17) | −0.0148 (17) | −0.0026 (15) |
| C26 | 0.049 (2) | 0.0271 (15) | 0.0366 (17) | −0.0079 (17) | −0.0059 (18) | −0.0080 (14) |
| C27 | 0.058 (3) | 0.0234 (15) | 0.0428 (19) | 0.0013 (16) | −0.015 (2) | −0.0027 (15) |
| O7 | 0.0524 (18) | 0.0479 (16) | 0.0623 (19) | 0.0030 (15) | −0.0015 (16) | −0.0140 (14) |
Geometric parameters (Å, º)
| O1—C2 | 1.403 (4) | C9—H9B | 0.9600 |
| O1—C1 | 1.439 (4) | C9—H9C | 0.9600 |
| O2—C2 | 1.425 (4) | C10—H10A | 0.9600 |
| O2—C3 | 1.437 (4) | C10—H10B | 0.9600 |
| O3—C3 | 1.428 (4) | C10—H10C | 0.9600 |
| O3—C4 | 1.436 (4) | C11—H11A | 0.9600 |
| O4—C7 | 1.419 (4) | C11—H11B | 0.9600 |
| O4—C5 | 1.430 (4) | C11—H11C | 0.9600 |
| O5—C7 | 1.418 (4) | C12—H12A | 0.9700 |
| O5—C6 | 1.436 (4) | C12—H12B | 0.9700 |
| O6—C12 | 1.416 (4) | C13—C14 | 1.509 (4) |
| O6—C13 | 1.418 (4) | C13—H13A | 0.9700 |
| N1—C15 | 1.339 (4) | C13—H13B | 0.9700 |
| N1—N2 | 1.343 (4) | C14—C17 | 1.377 (4) |
| N2—C16 | 1.339 (4) | C14—C15 | 1.411 (4) |
| N3—C18 | 1.330 (5) | C15—C23 | 1.493 (4) |
| N3—C22 | 1.337 (5) | C16—C17 | 1.397 (4) |
| N4—C27 | 1.339 (5) | C16—C18 | 1.488 (4) |
| N4—C23 | 1.341 (4) | C17—H17 | 0.9300 |
| C1—C12 | 1.506 (5) | C18—C19 | 1.394 (5) |
| C1—C6 | 1.510 (5) | C19—C20 | 1.386 (5) |
| C1—H1 | 0.9800 | C19—H19 | 0.9300 |
| C2—C4 | 1.519 (5) | C20—C21 | 1.378 (6) |
| C2—H2 | 0.9800 | C20—H20 | 0.9300 |
| C3—C10 | 1.508 (5) | C21—C22 | 1.385 (5) |
| C3—C11 | 1.514 (5) | C21—H21 | 0.9300 |
| C4—C5 | 1.517 (4) | C22—H22 | 0.9300 |
| C4—H4 | 0.9800 | C23—C24 | 1.388 (5) |
| C5—C6 | 1.525 (4) | C24—C25 | 1.382 (5) |
| C5—H5 | 0.9800 | C24—H24 | 0.9300 |
| C6—H6 | 0.9800 | C25—C26 | 1.383 (5) |
| C7—C8 | 1.492 (6) | C25—H25 | 0.9300 |
| C7—C9 | 1.512 (5) | C26—C27 | 1.375 (6) |
| C8—H8A | 0.9600 | C26—H26 | 0.9300 |
| C8—H8B | 0.9600 | C27—H27 | 0.9300 |
| C8—H8C | 0.9600 | O7—H7A | 0.84 (2) |
| C9—H9A | 0.9600 | O7—H7B | 0.86 (2) |
| O1···O3 | 3.153 (2) | C2···C4ii | 3.538 (4) |
| O1···O4 | 3.115 (3) | C2···H4ii | 2.96 |
| O1···O5 | 2.999 (3) | C3···H1 | 2.88 |
| O1···O6 | 2.920 (3) | C4···H11A | 2.84 |
| O3···O1 | 3.153 (2) | C4···H2iii | 2.83 |
| O3···C1 | 3.002 (3) | C4···H1 | 2.76 |
| O7···O1 | 3.112 (3) | C5···H9A | 2.85 |
| O7···O6 | 3.176 (3) | C10···H1 | 2.93 |
| O7···N2i | 3.020 (3) | H1···H10C | 2.24 |
| O2···H1 | 2.70 | H2···H4ii | 2.44 |
| O2···H4ii | 2.90 | H4···H11A | 2.47 |
| O3···H1 | 2.54 | H5···H9A | 2.56 |
| O3···H2iii | 2.51 | H7A···H19i | 2.20 |
| O5···H12B | 2.70 | H7A···N1i | 2.84 (3) |
| O5···H12A | 2.77 | H7A···N2i | 2.19 (4) |
| O6···H17 | 2.23 | H7B···O1 | 2.30 (2) |
| O7···H19i | 2.64 | H7B···O6 | 2.56 (4) |
| N4···C13 | 2.776 (3) | H8A···H9C | 2.55 |
| N1···H24 | 2.44 | H8B···H9B | 2.50 |
| N2···H19 | 2.56 | H8C···H11Cii | 2.48 |
| N3···H17 | 2.46 | H10A···H11C | 2.53 |
| N4···H13A | 2.56 | H10B···H11B | 2.57 |
| N4···H13B | 2.54 | H12A···H13B | 2.26 |
| C1···C3 | 3.485 (3) | ||
| C2—O1—C1 | 113.4 (2) | H10A—C10—H10B | 109.5 |
| C2—O2—C3 | 110.4 (2) | C3—C10—H10C | 109.5 |
| C3—O3—C4 | 106.7 (2) | H10A—C10—H10C | 109.5 |
| C7—O4—C5 | 107.6 (2) | H10B—C10—H10C | 109.5 |
| C7—O5—C6 | 109.6 (2) | C3—C11—H11A | 109.5 |
| C12—O6—C13 | 112.9 (2) | C3—C11—H11B | 109.5 |
| C15—N1—N2 | 121.1 (3) | H11A—C11—H11B | 109.5 |
| C16—N2—N1 | 119.2 (3) | C3—C11—H11C | 109.5 |
| C18—N3—C22 | 117.7 (3) | H11A—C11—H11C | 109.5 |
| C27—N4—C23 | 117.2 (3) | H11B—C11—H11C | 109.5 |
| O1—C1—C12 | 107.5 (3) | O6—C12—C1 | 107.7 (2) |
| O1—C1—C6 | 110.3 (2) | O6—C12—H12A | 110.2 |
| C12—C1—C6 | 113.4 (3) | C1—C12—H12A | 110.2 |
| O1—C1—H1 | 108.5 | O6—C12—H12B | 110.2 |
| C12—C1—H1 | 108.5 | C1—C12—H12B | 110.2 |
| C6—C1—H1 | 108.5 | H12A—C12—H12B | 108.5 |
| O1—C2—O2 | 111.0 (3) | O6—C13—C14 | 107.7 (2) |
| O1—C2—C4 | 114.3 (3) | O6—C13—H13A | 110.2 |
| O2—C2—C4 | 103.7 (3) | C14—C13—H13A | 110.2 |
| O1—C2—H2 | 109.2 | O6—C13—H13B | 110.2 |
| O2—C2—H2 | 109.2 | C14—C13—H13B | 110.2 |
| C4—C2—H2 | 109.2 | H13A—C13—H13B | 108.5 |
| O3—C3—O2 | 105.4 (2) | C17—C14—C15 | 116.4 (3) |
| O3—C3—C10 | 108.3 (3) | C17—C14—C13 | 118.5 (3) |
| O2—C3—C10 | 109.9 (3) | C15—C14—C13 | 125.1 (3) |
| O3—C3—C11 | 110.8 (3) | N1—C15—C14 | 121.9 (3) |
| O2—C3—C11 | 109.4 (3) | N1—C15—C23 | 113.5 (3) |
| C10—C3—C11 | 112.8 (3) | C14—C15—C23 | 124.6 (3) |
| O3—C4—C5 | 107.3 (2) | N2—C16—C17 | 121.9 (3) |
| O3—C4—C2 | 103.9 (2) | N2—C16—C18 | 117.5 (3) |
| C5—C4—C2 | 114.6 (3) | C17—C16—C18 | 120.5 (3) |
| O3—C4—H4 | 110.3 | C14—C17—C16 | 119.3 (3) |
| C5—C4—H4 | 110.3 | C14—C17—H17 | 120.3 |
| C2—C4—H4 | 110.3 | C16—C17—H17 | 120.3 |
| O4—C5—C4 | 107.2 (2) | N3—C18—C19 | 122.9 (3) |
| O4—C5—C6 | 104.1 (2) | N3—C18—C16 | 115.1 (3) |
| C4—C5—C6 | 113.2 (3) | C19—C18—C16 | 122.0 (3) |
| O4—C5—H5 | 110.7 | C20—C19—C18 | 118.5 (3) |
| C4—C5—H5 | 110.7 | C20—C19—H19 | 120.8 |
| C6—C5—H5 | 110.7 | C18—C19—H19 | 120.8 |
| O5—C6—C1 | 109.8 (3) | C21—C20—C19 | 119.1 (3) |
| O5—C6—C5 | 104.5 (2) | C21—C20—H20 | 120.5 |
| C1—C6—C5 | 113.0 (3) | C19—C20—H20 | 120.5 |
| O5—C6—H6 | 109.8 | C20—C21—C22 | 118.3 (3) |
| C1—C6—H6 | 109.8 | C20—C21—H21 | 120.8 |
| C5—C6—H6 | 109.8 | C22—C21—H21 | 120.8 |
| O5—C7—O4 | 106.1 (2) | N3—C22—C21 | 123.5 (3) |
| O5—C7—C8 | 109.6 (4) | N3—C22—H22 | 118.2 |
| O4—C7—C8 | 108.4 (3) | C21—C22—H22 | 118.2 |
| O5—C7—C9 | 109.3 (3) | N4—C23—C24 | 122.6 (3) |
| O4—C7—C9 | 110.9 (3) | N4—C23—C15 | 116.6 (3) |
| C8—C7—C9 | 112.3 (3) | C24—C23—C15 | 120.8 (3) |
| C7—C8—H8A | 109.5 | C25—C24—C23 | 118.7 (3) |
| C7—C8—H8B | 109.5 | C25—C24—H24 | 120.7 |
| H8A—C8—H8B | 109.5 | C23—C24—H24 | 120.7 |
| C7—C8—H8C | 109.5 | C24—C25—C26 | 119.5 (3) |
| H8A—C8—H8C | 109.5 | C24—C25—H25 | 120.3 |
| H8B—C8—H8C | 109.5 | C26—C25—H25 | 120.3 |
| C7—C9—H9A | 109.5 | C27—C26—C25 | 117.7 (3) |
| C7—C9—H9B | 109.5 | C27—C26—H26 | 121.2 |
| H9A—C9—H9B | 109.5 | C25—C26—H26 | 121.2 |
| C7—C9—H9C | 109.5 | N4—C27—C26 | 124.4 (3) |
| H9A—C9—H9C | 109.5 | N4—C27—H27 | 117.8 |
| H9B—C9—H9C | 109.5 | C26—C27—H27 | 117.8 |
| C3—C10—H10A | 109.5 | H7A—O7—H7B | 104 (6) |
| C3—C10—H10B | 109.5 | ||
| C15—N1—N2—C16 | −1.1 (5) | O1—C1—C12—O6 | 77.8 (3) |
| C2—O1—C1—C12 | −167.7 (2) | C6—C1—C12—O6 | −160.1 (3) |
| C2—O1—C1—C6 | 68.2 (3) | C12—O6—C13—C14 | −161.7 (3) |
| C1—O1—C2—O2 | 81.1 (3) | O6—C13—C14—C17 | 8.0 (4) |
| C1—O1—C2—C4 | −35.8 (3) | O6—C13—C14—C15 | −172.8 (3) |
| C3—O2—C2—O1 | −115.1 (3) | N2—N1—C15—C14 | 3.9 (5) |
| C3—O2—C2—C4 | 8.1 (3) | N2—N1—C15—C23 | −175.6 (3) |
| C4—O3—C3—O2 | −27.7 (3) | C17—C14—C15—N1 | −3.3 (5) |
| C4—O3—C3—C10 | −145.2 (3) | C13—C14—C15—N1 | 177.6 (3) |
| C4—O3—C3—C11 | 90.5 (3) | C17—C14—C15—C23 | 176.1 (3) |
| C2—O2—C3—O3 | 11.5 (4) | C13—C14—C15—C23 | −3.0 (5) |
| C2—O2—C3—C10 | 128.0 (3) | N1—N2—C16—C17 | −2.2 (5) |
| C2—O2—C3—C11 | −107.7 (3) | N1—N2—C16—C18 | 175.7 (3) |
| C3—O3—C4—C5 | 154.1 (3) | C15—C14—C17—C16 | 0.0 (5) |
| C3—O3—C4—C2 | 32.4 (3) | C13—C14—C17—C16 | 179.2 (3) |
| O1—C2—C4—O3 | 96.5 (3) | N2—C16—C17—C14 | 2.7 (5) |
| O2—C2—C4—O3 | −24.4 (3) | C18—C16—C17—C14 | −175.2 (3) |
| O1—C2—C4—C5 | −20.2 (4) | C22—N3—C18—C19 | −0.8 (5) |
| O2—C2—C4—C5 | −141.2 (3) | C22—N3—C18—C16 | 177.7 (3) |
| C7—O4—C5—C4 | 147.7 (3) | N2—C16—C18—N3 | −171.4 (3) |
| C7—O4—C5—C6 | 27.5 (3) | C17—C16—C18—N3 | 6.5 (4) |
| O3—C4—C5—O4 | 175.2 (2) | N2—C16—C18—C19 | 7.1 (5) |
| C2—C4—C5—O4 | −70.0 (3) | C17—C16—C18—C19 | −174.9 (3) |
| O3—C4—C5—C6 | −70.5 (3) | N3—C18—C19—C20 | 0.9 (5) |
| C2—C4—C5—C6 | 44.2 (4) | C16—C18—C19—C20 | −177.5 (3) |
| C7—O5—C6—C1 | −121.7 (3) | C18—C19—C20—C21 | −0.5 (5) |
| C7—O5—C6—C5 | −0.3 (4) | C19—C20—C21—C22 | 0.1 (5) |
| O1—C1—C6—O5 | 76.1 (3) | C18—N3—C22—C21 | 0.4 (5) |
| C12—C1—C6—O5 | −44.5 (4) | C20—C21—C22—N3 | −0.1 (6) |
| O1—C1—C6—C5 | −40.1 (3) | C27—N4—C23—C24 | −0.9 (5) |
| C12—C1—C6—C5 | −160.7 (3) | C27—N4—C23—C15 | −178.8 (3) |
| O4—C5—C6—O5 | −16.4 (3) | N1—C15—C23—N4 | 167.1 (3) |
| C4—C5—C6—O5 | −132.5 (3) | C14—C15—C23—N4 | −12.4 (5) |
| O4—C5—C6—C1 | 102.9 (3) | N1—C15—C23—C24 | −10.8 (4) |
| C4—C5—C6—C1 | −13.2 (4) | C14—C15—C23—C24 | 169.7 (3) |
| C6—O5—C7—O4 | 17.2 (4) | N4—C23—C24—C25 | 0.4 (5) |
| C6—O5—C7—C8 | 134.1 (3) | C15—C23—C24—C25 | 178.2 (3) |
| C6—O5—C7—C9 | −102.4 (3) | C23—C24—C25—C26 | 0.2 (6) |
| C5—O4—C7—O5 | −28.3 (4) | C24—C25—C26—C27 | −0.3 (6) |
| C5—O4—C7—C8 | −146.0 (3) | C23—N4—C27—C26 | 0.8 (6) |
| C5—O4—C7—C9 | 90.3 (3) | C25—C26—C27—N4 | −0.3 (7) |
| C13—O6—C12—C1 | 174.4 (3) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1.
Hydrogen-bond geometry (Å, º)
Cg is the centroid of the N3/C18–C22 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O7—H7A···N2i | 0.84 (2) | 2.18 (3) | 3.019 (4) | 172 (6) |
| O7—H7B···O1 | 0.86 (2) | 2.30 (3) | 3.112 (4) | 157 (6) |
| O7—H7B···O6 | 0.86 (2) | 2.57 (5) | 3.176 (5) | 129 (5) |
| C2—H2···O3ii | 0.98 | 2.51 | 3.444 (4) | 160 |
| C12—H12A···Cgiv | 0.97 | 3.07 | 3.761 (3) | 130 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iv) −x+1, y−1/2, −z+1/2.
Funding Statement
This work was funded by Hacettepe Üniversitesi grant 013 D04 602 004 to T. Hökelek.
References
- Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34.
- Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847–853.
- Elmsellem, H., Nacer, H., Halaimia, F., Aouniti, A., Lakehal, I., Chetouani, A., Al-Deyab, S. S., Warad, I., Touzani, R. & Hammouti, B. (2014). Int. J. Electrochem. Sci. 9, 5328–5351.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Hjouji, M. Y., Djedid, M., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M., Abdel-Rahman, I. & Hammouti, B. (2016). J. Mater. Environ. Sci. 7, 1425–1435.
- Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77.
- Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.
- Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811.
- Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924.
- Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
- Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.
- Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
- Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019009848/lh5910sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009848/lh5910Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019009848/lh5910Isup3.cdx
CCDC reference: 1939591
Additional supporting information: crystallographic information; 3D view; checkCIF report








