Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 12;75(Pt 8):1169–1174. doi: 10.1107/S2056989019009848

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)meth­oxy]meth­yl}pyridazine monohydrate

Mouad Filali a,*, Hicham Elmsellem b, Tuncer Hökelek c, Abdelkrim El-Ghayoury d, Oleh Stetsiuk d, El Mestafa El Hadrami a, Abdessalam Ben-Tama a
PMCID: PMC6690445  PMID: 31417786

The title compound is built up by two dioxolo, two pyridine, one pyridazine and one pyran rings. The two dioxolo rings are in envelope conformations, while the pyran ring is in twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, C—Hdioxolo⋯Odioxolo, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into a supra­molecular structure. A weak C—Hmeth­oxy­meth­yl⋯π inter­action is also observed.

Keywords: crystal structure, pyridazine, dioxolo, Hirshfeld surface, electrochemical measurements

Abstract

In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­yl⋯π inter­action complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Electrochemical measurements are also reported.

Chemical context  

Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of 3,6-di(pyridin-2-yl)pyridazine and its derivatives has been a goal of chemists in recent years. 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2′-de­oxy­uridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015). Systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016). Heterocyclic mol­ecules such as 3,6-bis (2′-pyrid­yl)-1,2,4,5-tetra­zine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987). This bidentate chelate ligand is popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001). We report herein the synthesis and the mol­ecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and its corrosion inhibition properties.

Structural commentary  

The title mol­ecule contains two dioxolo, two pyridine, one pyridazine and one pyran rings (Fig. 1). The pyridazine ring is linked to the pyran ring through the meth­oxy­methyl moiety. The two dioxolo rings, B (O2/O3/C2–C4) and C (O4/O5/C5–C7), are in envelope conformations. Atoms O3 and O4 are at the flap positions and are displaced by 0.442 (2) and −0.397 (2) Å, respectively, from the least-squares planes of the four atoms. A puckering analysis of the pyran ring A (O1/C1/C2/C4–C6), gave the parameters Q T = 0.6508 (25) Å, q 2 = 0.6451 (25) Å, q 3 = −0.0865 (26) Å, φ = 214.6 (2)° and θ = 97.64 (23)°, indicating a twisted-boat conformation. The pyradizine ring D (N1/N2/C14–C17) is oriented at dihedral angles of 9.23 (6) and 12.98 (9)°, respectively, to the pyridine rings E (N3/C18–C22) and F (N4/C23–C27), while the dihedral angle between the two pyridine rings is 13.45 (10)°. The meth­oxy­methyl moiety is nearly co-planar with the pyradizine ring, as indicated by the O6—C13—C14—C15 torsion angle of −172.8 (2)°.graphic file with name e-75-01169-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are not shown.

Supra­molecular features  

In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1 and Fig. 2) link the mol­ecules, forming chains along [010]. The hydrogen bond involving H7B is bifurcated. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­yl⋯π inter­action complete the three-dimensional structure.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N3/C18–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N2i 0.84 (2) 2.18 (3) 3.019 (4) 172 (6)
O7—H7B⋯O1 0.86 (2) 2.30 (3) 3.112 (4) 157 (6)
O7—H7B⋯O6 0.86 (2) 2.57 (5) 3.176 (5) 129 (5)
C2—H2⋯O3ii 0.98 2.51 3.444 (4) 160
C12—H12ACg iv 0.97 3.07 3.761 (3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram showing the O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1) as dashed lines.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 3), white indicates contacts with distances equal to the sum of van der Waals radii, while red and blue indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1, O6, N2 and hydrogen atoms H2, H7A, H7B indicate their roles as the respective donors and/or acceptors. The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if these are absent, then there are no π–π inter­actions. Fig. 4 clearly suggest that there are no π–π inter­actions in (I). The overall two-dimensional fingerprint plot, Fig. 5 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N ⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 5 bg, respectively, together with their relative contributions to the Hirshfeld surface. Selected contacts are listed in Table 2.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.4555 to 1.4860 a.u.

Figure 4.

Figure 4

Hirshfeld surface of the title compound plotted over shape-index.

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) C⋯N/N⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Selected interatomic distances (Å).

O1⋯O3 3.153 (2) C2⋯C4ii 3.538 (4)
O1⋯O4 3.115 (3) C2⋯H4ii 2.96
O1⋯O5 2.999 (3) C3⋯H1 2.88
O1⋯O6 2.920 (3) C4⋯H11A 2.84
O3⋯O1 3.153 (2) C4⋯H2iii 2.83
O3⋯C1 3.002 (3) C4⋯H1 2.76
O7⋯O1 3.112 (3) C5⋯H9A 2.85
O7⋯O6 3.176 (3) C10⋯H1 2.93
O7⋯N2i 3.020 (3) H1⋯H10C 2.24
O2⋯H1 2.70 H2⋯H4ii 2.44
O2⋯H4ii 2.90 H4⋯H11A 2.47
O3⋯H1 2.54 H5⋯H9A 2.56
O3⋯H2iii 2.51 H7A⋯H19i 2.20
O5⋯H12B 2.70 H7A⋯N1i 2.84 (3)
O5⋯H12A 2.77 H7A⋯N2i 2.19 (4)
O6⋯H17 2.23 H7B⋯O1 2.30 (2)
O7⋯H19i 2.64 H7B⋯O6 2.56 (4)
N4⋯C13 2.776 (3) H8A⋯H9C 2.55
N1⋯H24 2.44 H8B⋯H9B 2.50
N2⋯H19 2.56 H8C⋯H11C ii 2.48
N3⋯H17 2.46 H10A⋯H11C 2.53
N4⋯H13A 2.56 H10B⋯H11B 2.57
N4⋯H13B 2.54 H12A⋯H13B 2.26
C1⋯C3 3.485 (3)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The most important inter­action is H⋯H, contributing 55.7% to the overall crystal packing, which is reflected in Fig. 5 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i ∼1.00 Å. In the presence of a weak C—H⋯π inter­action, the wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.6% contribution to the HS) have a symmetrical distribution of points, Fig. 5 c, with the thin and thick edges at d e + d i = 2.85 and 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (14.5%, Fig. 5 d) arises from the O—H⋯O and C—H⋯O hydrogen bonds (Table 1) as well as from the H⋯O/O⋯H contacts (Table 2) and has a pair of spikes with the tips at d e + d i = 2.18 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5 e, 9.6%) arises from the O—H⋯N hydrogen bonds (Table 1) as well as from the H⋯N/N⋯H contacts has a pair of spikes with the tips at d e + d i = 2.04 Å. Finally, the C⋯C contacts (Fig. 5 g, 2.4%) have a wide spike with the tip at d e = d i = 1.75 Å.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 6 ad, respectively.

Figure 6.

Figure 6

Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Electrochemical measurements  

The effect of the title compound as an inhibitor of the corrosion of mild steel (MS) were studied using electrochemical impedance spectroscopy in the concentration range of 10−6 to 10−3 M at 308 K. The electrochemical experiment consisted of a 3 electrode electrolytic cell consisting of platinum foil as counter-electrode, saturated calomel as reference electrode and MS as working electrode with an exposed area of 1 cm2. The MS specimen was immersed in a test solution for 0.5 h until a steady-state potential was achieved using a PGZ100 potentiostat (Bouayad et al., 2018). Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 0.1 × 10−3 KHz to 10 mHz and an amplitude of 10 mV with 10 points per decade. The percentage inhibition efficiency is calculated from R t values as (Sikine et al., 2016) E (%) = [1 − R t(HCl)/Rt(inh)] × 100, where R t(inh) and R t(HCl) are the charge-transfer resistances for MS immersed in HCl, with the title compound and without inhibitor. Nyquist representations of mild steel in 1 M HCl in the absence and presence of the inhibitor system are shown in Fig. 7.

Figure 7.

Figure 7

Nyquist plots of mild steel in 1M HCl in presence of different concentrations of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)meth­oxy]meth­yl}pyridazine monohydrate.

The impedance method provides information about the kinetics of the electrode processes and the surface properties of the investigated systems. The technique is based on the measurement of the impedance of the double layer at the MS/solution inter­face, and represents the Nyquist plots of mild steel (MS) specimens in 1 M HCl without and with various concentrations of the inhibitor. The impedance diagrams obtained have an almost semicircular appearance. This indicates that the corrosion of mild steel in aqueous solution is mainly controlled by a charge-transfer process. The imp­edance parameters are given in Fig. 8. It is observed from the plots that the impedance response of mild steel was significantly changed after addition of the inhibitor. R ct is increased to a maximum value of 185 Ω cm2 for the inhibitor, showing a maximum inhibition efficiency of 91% at 10−3 M. The decrease in C dl from the HCl acid value of 200 µF cm−2, may be due to the increase in the thickness of the electrical double layer or to a decrease in the local dielectric constant (Elmsellem et al., 2014). This is caused by the gradual displacement of water mol­ecules by the adsorption of organic mol­ecules on the mild steel surface (Hjouji et al., 2016). Apart from the experimental impedance (EIS) results, the following conclusion is drawn: the alternating impedance spectrum reveals that the double-layer capacitances decrease with respect to the blank solution when the title compound is added. This fact confirms the adsorption of inhibitor mol­ecules on the surface of the MS.

Figure 8.

Figure 8

EIS parameters for the corrosion of mild steel in 1M HCl with and without inhibitor 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)meth­oxy]meth­yl}pyridazine monohydrate at 308 K.

Database survey  

Silver(I) complexes coordinated by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable et al., 2008). Three other metal complexes including 3,6-di(pyridin-2-yl)pyridazine have also been reported, viz. aqua­bis­[3,6-bis(pyridin-2-yl)pyridazine-κ2 N 1,N 6]copper(II) bis­(tri­fluoro­meth­ane­sulfonate) (Showrilu et al., 2017), tetra­kis­[μ-3,6-di(pyridin-2-yl)pyridazine]bis­(μ-hydroxo)bis­(μ-aqua)­tetra­nickel(II) hexa­kis­(nitrate) tetra­deca­hydrate (Marino et al., 2019) and catena-[[μ2-3,6-di(pyridin-2-yl)pyridazine]bis­(μ2-azido)­diaza­idodicopper monohydrate] (Mastropietro et al., 2013).

Synthesis and crystallization  

6-O-Propargyl-1,2:3,4-di-O-iso­propyl­idene-α-d-galacto­pyran­oside (4 mmol) was added to a solution of 3,6-bis­(2-pyrid­yl)-1,2,4,5-tetra­zine (4 mmol) in toluene (20 ml). Stirring was continued at room temperature for 4 h. The solvent was removed under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1:2) as eluent. Colourless crystals were isolated on evaporation of the solvent (yield: 82%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Water hydrogen atoms were located in a difference-Fourier map and refined with the distance constraint O—H = 0.80 (2) Å. Other H atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methyl­ene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with U iso(H) = 1.5U eq(C-meth­yl) or 1.2U eq(C) for all other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C27H30N4O6·H2O
M r 524.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 8.8417 (3), 11.3252 (3), 25.7003 (8)
V3) 2573.47 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.47 × 0.15 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO (Rigaku OD, 2015)
T min, T max 0.656, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6128, 4277, 3853
R int 0.037
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.121, 1.10
No. of reflections 4277
No. of parameters 353
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.36
Absolute structure Flack x determined using 1226 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.01 (16)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019009848/lh5910sup1.cif

e-75-01169-sup1.cif (237.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009848/lh5910Isup2.hkl

e-75-01169-Isup2.hkl (340.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009848/lh5910Isup3.cdx

CCDC reference: 1939591

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C27H30N4O6·H2O Dx = 1.354 Mg m3
Mr = 524.56 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 2843 reflections
a = 8.8417 (3) Å θ = 3.3–72.3°
b = 11.3252 (3) Å µ = 0.82 mm1
c = 25.7003 (8) Å T = 150 K
V = 2573.47 (14) Å3 Plate, colourless
Z = 4 0.47 × 0.15 × 0.10 mm
F(000) = 1112

Data collection

Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2 diffractometer 4277 independent reflections
Radiation source: SuperNova(Cu) micro-focus sealed X-ray Source 3853 reflections with I > 2σ(I)
Detector resolution: 5.1990 pixels mm-1 Rint = 0.037
ω scans θmax = 72.4°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlis PRO (Rigaku OD, 2015) h = −9→10
Tmin = 0.656, Tmax = 1.000 k = −13→5
6128 measured reflections l = −31→29

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.4885P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.27 e Å3
4277 reflections Δρmin = −0.36 e Å3
353 parameters Absolute structure: Flack x determined using 1226 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraints Absolute structure parameter: −0.01 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3541 (3) 0.1622 (2) 0.41689 (9) 0.0282 (5)
O2 0.3948 (3) 0.34989 (19) 0.45130 (10) 0.0314 (5)
O3 0.6462 (3) 0.30998 (18) 0.44345 (9) 0.0275 (5)
O4 0.5889 (3) 0.00085 (19) 0.47272 (8) 0.0298 (5)
O5 0.5504 (4) −0.04337 (19) 0.38768 (10) 0.0397 (7)
O6 0.2874 (3) 0.20336 (19) 0.30710 (9) 0.0341 (6)
N1 0.0414 (3) 0.4001 (2) 0.16743 (11) 0.0279 (6)
N2 0.0957 (3) 0.5016 (2) 0.18697 (10) 0.0280 (6)
N3 0.3589 (4) 0.6013 (3) 0.28330 (11) 0.0324 (6)
N4 0.0746 (4) 0.0864 (2) 0.17094 (12) 0.0358 (7)
C1 0.4587 (4) 0.1547 (3) 0.37413 (12) 0.0258 (7)
H1 0.495093 0.234348 0.366098 0.031*
C2 0.4106 (4) 0.2260 (3) 0.45945 (13) 0.0277 (7)
H2 0.355033 0.203400 0.490891 0.033*
C3 0.5408 (4) 0.4049 (3) 0.44788 (14) 0.0310 (7)
C4 0.5790 (4) 0.2100 (3) 0.46886 (12) 0.0246 (6)
H4 0.600843 0.212023 0.506234 0.030*
C5 0.6463 (4) 0.0999 (3) 0.44448 (12) 0.0254 (6)
H5 0.756973 0.102135 0.446060 0.031*
C6 0.5926 (4) 0.0790 (3) 0.38885 (12) 0.0272 (7)
H6 0.676097 0.092996 0.364527 0.033*
C7 0.5754 (4) −0.0947 (3) 0.43729 (13) 0.0310 (7)
C8 0.4413 (5) −0.1669 (4) 0.4525 (2) 0.0550 (12)
H8A 0.453499 −0.194150 0.487614 0.082*
H8B 0.432577 −0.233440 0.429569 0.082*
H8C 0.351559 −0.119463 0.450095 0.082*
C9 0.7193 (5) −0.1667 (3) 0.43584 (15) 0.0394 (9)
H9A 0.802843 −0.116353 0.427016 0.059*
H9B 0.709878 −0.227881 0.410208 0.059*
H9C 0.736583 −0.201467 0.469376 0.059*
C10 0.5503 (5) 0.4786 (3) 0.39910 (15) 0.0427 (9)
H10A 0.650263 0.510885 0.395892 0.064*
H10B 0.478045 0.541722 0.400967 0.064*
H10C 0.528653 0.430067 0.369395 0.064*
C11 0.5698 (5) 0.4759 (3) 0.49680 (16) 0.0442 (9)
H11A 0.569729 0.424125 0.526380 0.066*
H11B 0.491803 0.534147 0.500856 0.066*
H11C 0.666221 0.514400 0.494189 0.066*
C12 0.3729 (4) 0.1086 (3) 0.32779 (13) 0.0286 (7)
H12A 0.442659 0.078782 0.301797 0.034*
H12B 0.306342 0.044768 0.338237 0.034*
C13 0.2122 (4) 0.1736 (3) 0.26014 (13) 0.0275 (7)
H13A 0.122273 0.127514 0.267550 0.033*
H13B 0.278292 0.127130 0.238042 0.033*
C14 0.1697 (4) 0.2873 (3) 0.23325 (12) 0.0253 (6)
C15 0.0791 (4) 0.2958 (3) 0.18820 (12) 0.0247 (6)
C16 0.1872 (4) 0.4980 (3) 0.22846 (12) 0.0247 (6)
C17 0.2238 (4) 0.3919 (3) 0.25319 (12) 0.0263 (6)
H17 0.284224 0.391984 0.282822 0.032*
C18 0.2537 (4) 0.6114 (3) 0.24658 (12) 0.0265 (7)
C19 0.2107 (4) 0.7197 (3) 0.22546 (14) 0.0315 (7)
H19 0.135761 0.723846 0.200145 0.038*
C20 0.2823 (5) 0.8210 (3) 0.24304 (15) 0.0380 (8)
H20 0.256630 0.894499 0.229490 0.046*
C21 0.3920 (4) 0.8114 (3) 0.28088 (15) 0.0376 (9)
H21 0.441630 0.877961 0.293426 0.045*
C22 0.4265 (5) 0.7001 (3) 0.29975 (14) 0.0349 (8)
H22 0.500690 0.693707 0.325247 0.042*
C23 0.0175 (4) 0.1927 (3) 0.15887 (12) 0.0253 (7)
C24 −0.0897 (4) 0.2085 (3) 0.12003 (13) 0.0325 (7)
H24 −0.126828 0.283313 0.112401 0.039*
C25 −0.1402 (5) 0.1107 (3) 0.09294 (14) 0.0378 (8)
H25 −0.211674 0.119110 0.066653 0.045*
C26 −0.0836 (5) 0.0004 (3) 0.10520 (14) 0.0375 (8)
H26 −0.116014 −0.066836 0.087656 0.045*
C27 0.0224 (5) −0.0065 (3) 0.14423 (15) 0.0414 (9)
H27 0.060342 −0.080694 0.152640 0.050*
O7 0.0146 (4) 0.1893 (3) 0.38725 (14) 0.0542 (8)
H7A −0.011 (7) 0.141 (5) 0.3642 (19) 0.081*
H7B 0.111 (3) 0.189 (6) 0.386 (2) 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0250 (11) 0.0272 (10) 0.0325 (11) −0.0023 (10) −0.0016 (10) −0.0023 (9)
O2 0.0294 (12) 0.0210 (10) 0.0438 (13) 0.0057 (9) −0.0026 (11) −0.0024 (9)
O3 0.0280 (11) 0.0181 (10) 0.0364 (12) 0.0007 (9) 0.0010 (10) 0.0006 (9)
O4 0.0419 (14) 0.0190 (9) 0.0286 (11) −0.0011 (10) −0.0005 (11) 0.0020 (8)
O5 0.0627 (18) 0.0179 (10) 0.0385 (13) 0.0041 (11) −0.0184 (14) −0.0038 (9)
O6 0.0499 (15) 0.0190 (9) 0.0333 (12) 0.0033 (11) −0.0182 (12) −0.0023 (9)
N1 0.0324 (15) 0.0203 (12) 0.0310 (13) −0.0004 (11) −0.0037 (13) −0.0002 (10)
N2 0.0339 (16) 0.0192 (11) 0.0310 (13) 0.0005 (11) 0.0006 (13) −0.0010 (10)
N3 0.0367 (16) 0.0252 (13) 0.0352 (14) −0.0026 (12) −0.0011 (13) −0.0045 (11)
N4 0.0485 (18) 0.0212 (12) 0.0377 (15) 0.0021 (13) −0.0154 (15) −0.0018 (11)
C1 0.0331 (17) 0.0180 (12) 0.0265 (15) −0.0010 (13) −0.0025 (14) 0.0020 (11)
C2 0.0333 (17) 0.0201 (13) 0.0298 (15) 0.0016 (13) 0.0036 (15) −0.0006 (12)
C3 0.0324 (18) 0.0192 (13) 0.0415 (18) 0.0039 (14) −0.0005 (16) −0.0011 (13)
C4 0.0299 (16) 0.0179 (12) 0.0260 (14) −0.0003 (13) −0.0018 (14) −0.0005 (11)
C5 0.0295 (16) 0.0188 (13) 0.0280 (15) 0.0026 (13) 0.0008 (14) 0.0019 (12)
C6 0.0333 (18) 0.0209 (13) 0.0274 (15) 0.0010 (13) −0.0001 (14) −0.0005 (12)
C7 0.0382 (19) 0.0194 (13) 0.0354 (17) 0.0006 (14) −0.0015 (16) −0.0004 (12)
C8 0.047 (2) 0.0365 (19) 0.081 (3) −0.012 (2) 0.017 (2) −0.020 (2)
C9 0.044 (2) 0.0321 (17) 0.042 (2) 0.0111 (17) −0.0034 (18) 0.0023 (15)
C10 0.051 (2) 0.0257 (16) 0.051 (2) 0.0042 (16) 0.002 (2) 0.0079 (15)
C11 0.051 (2) 0.0317 (17) 0.050 (2) 0.0028 (18) −0.007 (2) −0.0124 (16)
C12 0.0360 (18) 0.0191 (12) 0.0307 (15) 0.0030 (13) −0.0085 (15) 0.0024 (12)
C13 0.0331 (17) 0.0174 (13) 0.0319 (16) −0.0019 (13) −0.0062 (14) 0.0005 (12)
C14 0.0270 (16) 0.0224 (14) 0.0265 (15) 0.0009 (13) −0.0004 (13) 0.0014 (12)
C15 0.0269 (16) 0.0194 (13) 0.0277 (14) 0.0000 (13) −0.0005 (14) −0.0013 (12)
C16 0.0265 (16) 0.0212 (13) 0.0265 (14) −0.0003 (12) 0.0026 (13) −0.0020 (11)
C17 0.0297 (16) 0.0220 (13) 0.0272 (15) 0.0006 (13) −0.0020 (14) −0.0011 (12)
C18 0.0285 (16) 0.0217 (14) 0.0293 (15) −0.0001 (12) 0.0037 (14) −0.0029 (12)
C19 0.0348 (18) 0.0208 (14) 0.0389 (17) −0.0005 (15) −0.0010 (16) −0.0021 (13)
C20 0.043 (2) 0.0209 (15) 0.050 (2) −0.0014 (15) 0.0039 (18) −0.0021 (14)
C21 0.039 (2) 0.0247 (15) 0.049 (2) −0.0039 (14) 0.0037 (18) −0.0108 (14)
C22 0.0395 (19) 0.0276 (15) 0.0375 (17) −0.0033 (16) −0.0026 (16) −0.0073 (14)
C23 0.0262 (16) 0.0238 (14) 0.0259 (14) −0.0037 (12) 0.0008 (13) 0.0003 (12)
C24 0.0327 (18) 0.0295 (15) 0.0353 (16) 0.0029 (15) −0.0075 (15) −0.0002 (14)
C25 0.0383 (19) 0.0395 (18) 0.0358 (18) −0.0010 (17) −0.0148 (17) −0.0026 (15)
C26 0.049 (2) 0.0271 (15) 0.0366 (17) −0.0079 (17) −0.0059 (18) −0.0080 (14)
C27 0.058 (3) 0.0234 (15) 0.0428 (19) 0.0013 (16) −0.015 (2) −0.0027 (15)
O7 0.0524 (18) 0.0479 (16) 0.0623 (19) 0.0030 (15) −0.0015 (16) −0.0140 (14)

Geometric parameters (Å, º)

O1—C2 1.403 (4) C9—H9B 0.9600
O1—C1 1.439 (4) C9—H9C 0.9600
O2—C2 1.425 (4) C10—H10A 0.9600
O2—C3 1.437 (4) C10—H10B 0.9600
O3—C3 1.428 (4) C10—H10C 0.9600
O3—C4 1.436 (4) C11—H11A 0.9600
O4—C7 1.419 (4) C11—H11B 0.9600
O4—C5 1.430 (4) C11—H11C 0.9600
O5—C7 1.418 (4) C12—H12A 0.9700
O5—C6 1.436 (4) C12—H12B 0.9700
O6—C12 1.416 (4) C13—C14 1.509 (4)
O6—C13 1.418 (4) C13—H13A 0.9700
N1—C15 1.339 (4) C13—H13B 0.9700
N1—N2 1.343 (4) C14—C17 1.377 (4)
N2—C16 1.339 (4) C14—C15 1.411 (4)
N3—C18 1.330 (5) C15—C23 1.493 (4)
N3—C22 1.337 (5) C16—C17 1.397 (4)
N4—C27 1.339 (5) C16—C18 1.488 (4)
N4—C23 1.341 (4) C17—H17 0.9300
C1—C12 1.506 (5) C18—C19 1.394 (5)
C1—C6 1.510 (5) C19—C20 1.386 (5)
C1—H1 0.9800 C19—H19 0.9300
C2—C4 1.519 (5) C20—C21 1.378 (6)
C2—H2 0.9800 C20—H20 0.9300
C3—C10 1.508 (5) C21—C22 1.385 (5)
C3—C11 1.514 (5) C21—H21 0.9300
C4—C5 1.517 (4) C22—H22 0.9300
C4—H4 0.9800 C23—C24 1.388 (5)
C5—C6 1.525 (4) C24—C25 1.382 (5)
C5—H5 0.9800 C24—H24 0.9300
C6—H6 0.9800 C25—C26 1.383 (5)
C7—C8 1.492 (6) C25—H25 0.9300
C7—C9 1.512 (5) C26—C27 1.375 (6)
C8—H8A 0.9600 C26—H26 0.9300
C8—H8B 0.9600 C27—H27 0.9300
C8—H8C 0.9600 O7—H7A 0.84 (2)
C9—H9A 0.9600 O7—H7B 0.86 (2)
O1···O3 3.153 (2) C2···C4ii 3.538 (4)
O1···O4 3.115 (3) C2···H4ii 2.96
O1···O5 2.999 (3) C3···H1 2.88
O1···O6 2.920 (3) C4···H11A 2.84
O3···O1 3.153 (2) C4···H2iii 2.83
O3···C1 3.002 (3) C4···H1 2.76
O7···O1 3.112 (3) C5···H9A 2.85
O7···O6 3.176 (3) C10···H1 2.93
O7···N2i 3.020 (3) H1···H10C 2.24
O2···H1 2.70 H2···H4ii 2.44
O2···H4ii 2.90 H4···H11A 2.47
O3···H1 2.54 H5···H9A 2.56
O3···H2iii 2.51 H7A···H19i 2.20
O5···H12B 2.70 H7A···N1i 2.84 (3)
O5···H12A 2.77 H7A···N2i 2.19 (4)
O6···H17 2.23 H7B···O1 2.30 (2)
O7···H19i 2.64 H7B···O6 2.56 (4)
N4···C13 2.776 (3) H8A···H9C 2.55
N1···H24 2.44 H8B···H9B 2.50
N2···H19 2.56 H8C···H11Cii 2.48
N3···H17 2.46 H10A···H11C 2.53
N4···H13A 2.56 H10B···H11B 2.57
N4···H13B 2.54 H12A···H13B 2.26
C1···C3 3.485 (3)
C2—O1—C1 113.4 (2) H10A—C10—H10B 109.5
C2—O2—C3 110.4 (2) C3—C10—H10C 109.5
C3—O3—C4 106.7 (2) H10A—C10—H10C 109.5
C7—O4—C5 107.6 (2) H10B—C10—H10C 109.5
C7—O5—C6 109.6 (2) C3—C11—H11A 109.5
C12—O6—C13 112.9 (2) C3—C11—H11B 109.5
C15—N1—N2 121.1 (3) H11A—C11—H11B 109.5
C16—N2—N1 119.2 (3) C3—C11—H11C 109.5
C18—N3—C22 117.7 (3) H11A—C11—H11C 109.5
C27—N4—C23 117.2 (3) H11B—C11—H11C 109.5
O1—C1—C12 107.5 (3) O6—C12—C1 107.7 (2)
O1—C1—C6 110.3 (2) O6—C12—H12A 110.2
C12—C1—C6 113.4 (3) C1—C12—H12A 110.2
O1—C1—H1 108.5 O6—C12—H12B 110.2
C12—C1—H1 108.5 C1—C12—H12B 110.2
C6—C1—H1 108.5 H12A—C12—H12B 108.5
O1—C2—O2 111.0 (3) O6—C13—C14 107.7 (2)
O1—C2—C4 114.3 (3) O6—C13—H13A 110.2
O2—C2—C4 103.7 (3) C14—C13—H13A 110.2
O1—C2—H2 109.2 O6—C13—H13B 110.2
O2—C2—H2 109.2 C14—C13—H13B 110.2
C4—C2—H2 109.2 H13A—C13—H13B 108.5
O3—C3—O2 105.4 (2) C17—C14—C15 116.4 (3)
O3—C3—C10 108.3 (3) C17—C14—C13 118.5 (3)
O2—C3—C10 109.9 (3) C15—C14—C13 125.1 (3)
O3—C3—C11 110.8 (3) N1—C15—C14 121.9 (3)
O2—C3—C11 109.4 (3) N1—C15—C23 113.5 (3)
C10—C3—C11 112.8 (3) C14—C15—C23 124.6 (3)
O3—C4—C5 107.3 (2) N2—C16—C17 121.9 (3)
O3—C4—C2 103.9 (2) N2—C16—C18 117.5 (3)
C5—C4—C2 114.6 (3) C17—C16—C18 120.5 (3)
O3—C4—H4 110.3 C14—C17—C16 119.3 (3)
C5—C4—H4 110.3 C14—C17—H17 120.3
C2—C4—H4 110.3 C16—C17—H17 120.3
O4—C5—C4 107.2 (2) N3—C18—C19 122.9 (3)
O4—C5—C6 104.1 (2) N3—C18—C16 115.1 (3)
C4—C5—C6 113.2 (3) C19—C18—C16 122.0 (3)
O4—C5—H5 110.7 C20—C19—C18 118.5 (3)
C4—C5—H5 110.7 C20—C19—H19 120.8
C6—C5—H5 110.7 C18—C19—H19 120.8
O5—C6—C1 109.8 (3) C21—C20—C19 119.1 (3)
O5—C6—C5 104.5 (2) C21—C20—H20 120.5
C1—C6—C5 113.0 (3) C19—C20—H20 120.5
O5—C6—H6 109.8 C20—C21—C22 118.3 (3)
C1—C6—H6 109.8 C20—C21—H21 120.8
C5—C6—H6 109.8 C22—C21—H21 120.8
O5—C7—O4 106.1 (2) N3—C22—C21 123.5 (3)
O5—C7—C8 109.6 (4) N3—C22—H22 118.2
O4—C7—C8 108.4 (3) C21—C22—H22 118.2
O5—C7—C9 109.3 (3) N4—C23—C24 122.6 (3)
O4—C7—C9 110.9 (3) N4—C23—C15 116.6 (3)
C8—C7—C9 112.3 (3) C24—C23—C15 120.8 (3)
C7—C8—H8A 109.5 C25—C24—C23 118.7 (3)
C7—C8—H8B 109.5 C25—C24—H24 120.7
H8A—C8—H8B 109.5 C23—C24—H24 120.7
C7—C8—H8C 109.5 C24—C25—C26 119.5 (3)
H8A—C8—H8C 109.5 C24—C25—H25 120.3
H8B—C8—H8C 109.5 C26—C25—H25 120.3
C7—C9—H9A 109.5 C27—C26—C25 117.7 (3)
C7—C9—H9B 109.5 C27—C26—H26 121.2
H9A—C9—H9B 109.5 C25—C26—H26 121.2
C7—C9—H9C 109.5 N4—C27—C26 124.4 (3)
H9A—C9—H9C 109.5 N4—C27—H27 117.8
H9B—C9—H9C 109.5 C26—C27—H27 117.8
C3—C10—H10A 109.5 H7A—O7—H7B 104 (6)
C3—C10—H10B 109.5
C15—N1—N2—C16 −1.1 (5) O1—C1—C12—O6 77.8 (3)
C2—O1—C1—C12 −167.7 (2) C6—C1—C12—O6 −160.1 (3)
C2—O1—C1—C6 68.2 (3) C12—O6—C13—C14 −161.7 (3)
C1—O1—C2—O2 81.1 (3) O6—C13—C14—C17 8.0 (4)
C1—O1—C2—C4 −35.8 (3) O6—C13—C14—C15 −172.8 (3)
C3—O2—C2—O1 −115.1 (3) N2—N1—C15—C14 3.9 (5)
C3—O2—C2—C4 8.1 (3) N2—N1—C15—C23 −175.6 (3)
C4—O3—C3—O2 −27.7 (3) C17—C14—C15—N1 −3.3 (5)
C4—O3—C3—C10 −145.2 (3) C13—C14—C15—N1 177.6 (3)
C4—O3—C3—C11 90.5 (3) C17—C14—C15—C23 176.1 (3)
C2—O2—C3—O3 11.5 (4) C13—C14—C15—C23 −3.0 (5)
C2—O2—C3—C10 128.0 (3) N1—N2—C16—C17 −2.2 (5)
C2—O2—C3—C11 −107.7 (3) N1—N2—C16—C18 175.7 (3)
C3—O3—C4—C5 154.1 (3) C15—C14—C17—C16 0.0 (5)
C3—O3—C4—C2 32.4 (3) C13—C14—C17—C16 179.2 (3)
O1—C2—C4—O3 96.5 (3) N2—C16—C17—C14 2.7 (5)
O2—C2—C4—O3 −24.4 (3) C18—C16—C17—C14 −175.2 (3)
O1—C2—C4—C5 −20.2 (4) C22—N3—C18—C19 −0.8 (5)
O2—C2—C4—C5 −141.2 (3) C22—N3—C18—C16 177.7 (3)
C7—O4—C5—C4 147.7 (3) N2—C16—C18—N3 −171.4 (3)
C7—O4—C5—C6 27.5 (3) C17—C16—C18—N3 6.5 (4)
O3—C4—C5—O4 175.2 (2) N2—C16—C18—C19 7.1 (5)
C2—C4—C5—O4 −70.0 (3) C17—C16—C18—C19 −174.9 (3)
O3—C4—C5—C6 −70.5 (3) N3—C18—C19—C20 0.9 (5)
C2—C4—C5—C6 44.2 (4) C16—C18—C19—C20 −177.5 (3)
C7—O5—C6—C1 −121.7 (3) C18—C19—C20—C21 −0.5 (5)
C7—O5—C6—C5 −0.3 (4) C19—C20—C21—C22 0.1 (5)
O1—C1—C6—O5 76.1 (3) C18—N3—C22—C21 0.4 (5)
C12—C1—C6—O5 −44.5 (4) C20—C21—C22—N3 −0.1 (6)
O1—C1—C6—C5 −40.1 (3) C27—N4—C23—C24 −0.9 (5)
C12—C1—C6—C5 −160.7 (3) C27—N4—C23—C15 −178.8 (3)
O4—C5—C6—O5 −16.4 (3) N1—C15—C23—N4 167.1 (3)
C4—C5—C6—O5 −132.5 (3) C14—C15—C23—N4 −12.4 (5)
O4—C5—C6—C1 102.9 (3) N1—C15—C23—C24 −10.8 (4)
C4—C5—C6—C1 −13.2 (4) C14—C15—C23—C24 169.7 (3)
C6—O5—C7—O4 17.2 (4) N4—C23—C24—C25 0.4 (5)
C6—O5—C7—C8 134.1 (3) C15—C23—C24—C25 178.2 (3)
C6—O5—C7—C9 −102.4 (3) C23—C24—C25—C26 0.2 (6)
C5—O4—C7—O5 −28.3 (4) C24—C25—C26—C27 −0.3 (6)
C5—O4—C7—C8 −146.0 (3) C23—N4—C27—C26 0.8 (6)
C5—O4—C7—C9 90.3 (3) C25—C26—C27—N4 −0.3 (7)
C13—O6—C12—C1 174.4 (3)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the N3/C18–C22 ring.

D—H···A D—H H···A D···A D—H···A
O7—H7A···N2i 0.84 (2) 2.18 (3) 3.019 (4) 172 (6)
O7—H7B···O1 0.86 (2) 2.30 (3) 3.112 (4) 157 (6)
O7—H7B···O6 0.86 (2) 2.57 (5) 3.176 (5) 129 (5)
C2—H2···O3ii 0.98 2.51 3.444 (4) 160
C12—H12A···Cgiv 0.97 3.07 3.761 (3) 130

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iv) −x+1, y−1/2, −z+1/2.

Funding Statement

This work was funded by Hacettepe Üniversitesi grant 013 D04 602 004 to T. Hökelek.

References

  1. Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34.
  2. Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847–853.
  3. Elmsellem, H., Nacer, H., Halaimia, F., Aouniti, A., Lakehal, I., Chetouani, A., Al-Deyab, S. S., Warad, I., Touzani, R. & Hammouti, B. (2014). Int. J. Electrochem. Sci. 9, 5328–5351.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  6. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  7. Hjouji, M. Y., Djedid, M., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M., Abdel-Rahman, I. & Hammouti, B. (2016). J. Mater. Environ. Sci. 7, 1425–1435.
  8. Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77.
  9. Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.
  10. Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811.
  11. Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924.
  12. Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  18. Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.
  19. Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.
  20. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  21. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  22. Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126.
  23. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  24. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019009848/lh5910sup1.cif

e-75-01169-sup1.cif (237.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009848/lh5910Isup2.hkl

e-75-01169-Isup2.hkl (340.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009848/lh5910Isup3.cdx

CCDC reference: 1939591

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES